OASIS 3

UBL Code List Value Validation
Methodology

Working Draft 0.6, 18 June 2006 17:40z - Draft 1

Document identifier:
UBL-codelist-methodology-0.6

Locations:
Persistent version: TBD
Current version: http://www.oasis-open.org/committees/download.php/18809/
UBL-codelist-methodology-0.6-D1-20060618-1740z.zip
Previous version: http://www.oasis-open.org/committees/download.php/16765/
UBL-codelist-methodology-0.4.zip

Technical committee:
OASIS Universal Business Language (UBL) TC

Chairs:

Jon Bosak, Sun Microsystems
Tim McGrath <tmcgrath@portcomm.com.au>

Author:
G. Ken Holman, Crane Softwrights Ltd.

Abstract:

This Working Draft describes a methodology and supporting document types with which trading
partners can agree unambiguously on the sets of coded values against which exchanged docu-

ments must validate. The illustration context of this specification is the Universal Business Language
2.0 however the methodology is presented in such a way as to apply to any context. This illustration
uses genericode files for the external representation of coded values, however the methodology is
presented in such a way that any representation of coded values can be used. This methodology

is packaged with document models, functional stylesheets and demonstration test files for both
Windows and Linux environments that can be executed to demonstrate the behaviors.

Status:

This is a work in progress and does not at this time represent the consensus of the UBL Technical

Committee.

Please send comments on this specification to the <ubl-dev@lists.oasis-open.org>list. To
subscribe, send an email message to <ubl-dev-request@lists.oasis-open.org> with the

word "subscribe" as the body of the message.

Notices:
Copyright © OASIS Open 2006. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intel-
lectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS

website.

http://www.oasis-open.org/committees/download.php/18809/UBL-codelist-methodology-0.6-D1-20060618-1740z.zip
http://www.oasis-open.org/committees/download.php/18809/UBL-codelist-methodology-0.6-D1-20060618-1740z.zip
http://www.oasis-open.org/committees/download.php/16765/UBL-codelist-methodology-0.4.zip
http://www.oasis-open.org/committees/download.php/16765/UBL-codelist-methodology-0.4.zip
mailto:tmcgrath@portcomm.com.au

UBL Code List Value Validation
Methodology

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published, and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this section are included on all such copies and derivative works. However,
this document itself may not be modified in any way, including by removing the copyright notice or
references to OASIS, except as needed for the purpose of developing any document or deliverable
produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as
set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages
other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its suc-
Cessors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Table of Contents

IO [(T [FTex (o] I OSSPSR SO UTO TP PTPTP 3
B =T 421 T] [0 Y OSSPSR 4
3. Code list definitions iNSIAE SCREMALAceiiiiiiiiee e e bbbt nae s 4
3.1. Code list constraints With @NUMEIAtIONScoiiiiiiiie e 4
3.2. Code list constraints WithOUt ENUMETALIONSeiiiiiiiieiee e 5
3.3. UBL schemata constraints 0N COAR TISScc.oiuiiiiiiiiiiiiiee e 6
4. Code list definitions OULSIAE SCNEMALAcc.oiviitiiieiiiire bbbt e 7
4.1. Trading partner genericode definitioNScccooiiiii i e 7
4.2. Normative UBL genericode Specification and USEccooeieriiineiiiie s e 9
5. Document coNteXtS iN XIMIL INSTANCESooueiiiieriirierie ettt sttt b bbbttt see b b sbe et e ene e 9
5.1. Using XPath to Specify dOCUMENT CONTEXLoouiiiiiieieieeeieie bbb 9
5.2. Trading partner uses Of dOCUMENT CONTEXESc.eiuieierieieiiesiese ittt see 10
5.3. UBL reporting of document contexts of code list information itemsccocoeeiiiinniniiiiicieee 11
6. Code list values in dOCUMENT CONTEXLSuiiuiiiriiieiieieie ettt sttt st bbbttt eene e e 11
6.1. Code list context asSOCIAtION FIIEScoiiiiiie e e 11
7. Code liSt Value ValITALIONooiiiiiiiie e bbb bbb bbb b e 13
7.1. Instance metadata SPECITICALIONcoiiiiiiiiic e e 14
7.2. External code list metadata ValIdationccooiiiiiiii e 14
7.3. ISO/IEC 19757-3 SCREMALIONoouiiiiiiie ittt e et e bbb bt sne s 15
7.4. Methodology XSLT transformation StyleSheetsccceiiiiiiie e 15
7.5. Methodology data FIOW Iagramccoieiiiiie st ereenre s 16
7.6. Necessary preconditions for the methodologyccocviiiiiiiiiie e 17
8. A complete runNINg EXAMPIE ... bbbt bbb bbb n ettt nr e 17
8. 1. SUPPOIL FIlES FEQUITETeviieiie ittt ettt b et sbesb b e 18
ST o1 o 1 (o TSP SO P RO RPRUPOPUPTPN 18
8.3. Running test instances against the SCENAIIOcucciiiiiiere e 20
0. FULUIE WOTK ..ttt bbb bbbt et b e e bR bt bt e bt e bt e bt e bt e b e e bt e bt e bt et en b e e et et snenes 23
Appendix
RS (=] £ T2 OO ETTSOTTSPPRO 23

UBL Code List Value Validation
Methodology

1. Introduction

This Working Draft describes a methodology and supporting document types with which trading partners can agree
unambiguously on the sets of coded values in a controlled vocabulary against which exchanged documents must
validate.

Schemata describe the structural and lexical constraints on a document. Some information items in a schema are
described lexically as a token value whereby the token is a coded value representing an agreed-upon semantic
concept. The value used is typically chosen from a set of unique coded values enumerating related concepts. These
sets of coded values are sometimes termed code lists.

For some commonly-understood concepts, publicly-available enumerations of coded values are published and
maintained by authorities regarded as the custodians of the set of defined values and their associated concepts. A
schema may constrain a value to be one of the entire set of published values so as to ensure the value used represents
the published concept. A common example of a publicly-maintained code list is that which enumerates currency
value indications [currency] and is used for illustrative purposes in this document.

The use of coded values may also be specified where the coded values themselves are merely agreed upon amongst
users but not formally enumerated as a constraint on the definition of a document type. A schema thus constrains
the document instance value to be a coded value, but the coded value itself is unconstrained. An example from the
Universal Business Language 2.0 [UBL 2.0] is cbc: CountrySubentityCode that constrains the indication
of jurisdictional or administrative boundaries below the country level, such as provinces (as in Canada) and states
(as in the United States). UBL schemata do not constrain the coded values used for information items representing
this concept.

Trading partners may agree to use the published UBL schemata for constraining the documents exchanged for
electronic commerce, but may find the constraints of some code lists therein too loose. For two examples, the
schema-expressed enumerated list of currency indications may contain many more items that the parties are willing
to use, and the lack of an enumeration of country sub-entity codes might allow nonsensical or undesired values to
be used. Thus, the UBL schemata successfully validate an exchanged document against the standardized con-
straints, but allow information to be represented that is not agreed upon by the parties. Trading partners might,
then, wish to constrain the currency indications and country sub-entity indications used in the exchanged docu-
ments.

Furthermore, trading partners may wish to agree that different sets of values from the same code lists be allowed
at multiple locations within a single document (perhaps allowing the state for the buyer in an order be from a
different set of states than that allowed for the seller). Large or published schemata might not be able to accom-
modate such differentiation very elegantly or robustly, or possibly could not be able to express such varied
constraints due to limitations of the schema language's modeling semantics. Moreover it is not necessarily the role
of the creators of schemata to accommodate such differentiation mandated by the use of their work products.

Having a methodology and supporting document types with which to perform code list value validation enables
parties involved in document exchange to formally describe the sets of coded values that are to be used and the
document contexts in which those sets are to be used. Such a formal and unambiguous description can then become
part of a trading partner contractual agreement, supported by processes to ensure the agreement is not being
breached by a given document instance.

Note

This is not the standard for code list schema representation (as in UBL Naming and Design Rules (NDR)),
nor is it the standard for external code list coded value enumeration representation (as in genericode
[genericode] files), but rather it is only the methodology for value validation given that you have some
instances being validated by a schema with agreed-upon values represented in supplemental files.

Both the ZIP [UBL-codelist-methodology-0.6.zip] and TAR/GZ [UBL-codelist-methodology-0.6.tar.gz] com-
pressed packages of the documentation for this methodology each include the stylesheet, data and test files that
are referenced in the prose.

UBL Code List Value Validation
Methodology

2. Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in
this Working Draft are to be interpreted as described in [RFC Keywords]. Note that for reasons of style, these
words are not capitalized in this document.

3. Code list definitions inside schemata

Some of the constraints expressed in a schema are used to control the vocabulary used for an information item by
specifying the lexical and value limitations used in an XML instance. Such constraints may enumerate all of the
possible coded values ina code list. Alternatively, the constraints may merely limit the value lexically to an expected
pattern without limiting the actual values used that match that pattern (for example, a token string of characters
without any embedded white space).

How code list constraints are expressed in a schema impacts on the flexibility of trading partners to use subsets,
supersets or simultaneously use different sets of coded values for a given code list in a given XML instance that
needs to be validated by the schema.

3.1. Code list constraints with enumerations

Schema expressions constraining the values of code list coded values often use xsd :enumeration elements
restricting a base data type of either a normalized string or a tokenized value. The UBL declaration for currency
coded values imported from UN/CEFACT uses such an approach as illustrated by this incomplete fragment:

<xsd:simpleType name="CurrencyCodeContentType'>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="AED">
<xsd:annotation>
<xsd:documentation>
<ccts:CodeName>Dirham</ccts:CodeName>
<ccts:CodeDescription></ccts:CodeDescription>
</xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="AFN"">
<xsd:annotation>
<xsd:documentation>
<ccts:CodeName>Afghani</ccts:CodeName>
<ccts:CodeDescription></ccts:CodeDescription>
</xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="ALL">
<xsd:annotation>
<xsd:documentation>
<ccts:CodeName>Lek</ccts:CodeName>
<ccts:CodeDescription></ccts:CodeDescription>
</xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="AMD"">

Trading partners may wish to contractually constrain the set of coded values for these information items to only
those values that are allowed in instances being exchanged. This is easily accommodated in the information ex-
change since any coded value used from a strict subset is, by definition, a coded value in the full enumeration.

UBL Code List Value Validation
Methodology

Instances with one of the limited values can be validated by the unchanged schema for the document model with
all of the values.

Note that while techniques are available in some schema expression languages for restricting a data type definition
of an enumeration to a subset of values, such a restriction typically has global scope across the instance. Trading
partners may wish to constrain the values to different sets in different contexts of the document, which is not
possible by way of available restriction techniques in some schema language expression semantics.

Trading partners wishing to extended the set of coded values for these information items are unable to do so when
code list constraints in a schema are expressed with an enumeration. Adding a new value to the list changes the
definition of the list such that instances with new values cannot be validated by the unchanged schema for the
document model.

3.2. Code list constraints without enumerations

Some code lists are declared in schemata without an enumeration, as there may be far too many possible coded
values to be manageable, the sets of coded values may differ in different contexts of a single document, or the
coded values are not predefined in any way. Schema expressions constraining such code list coded values often
merely constrain the value to a normalized string or a tokenized value. This satisfies the lexical requirements of
the coded value without constraining the particular values that meet the requirements.

A UBL example of a code list with an unmanageable number of enumerations is cbc : CountrySubentity-
Code as there are so very many provinces, states, regions, prefectures and other administrative or jurisdictional
areas in the world that would be included to be complete. UBL does not supply any sets of values to use.

A UBL example of a code list with predefined values that trading partners may wish to extend or restrict is
DocumentStatusCodeType where the UBL committee has chosen a set of meaningful values for a certain
class of workflow definitions, but trading partners may have a richer set employed in their respective systems. This
predefined list, among other predefined lists, is supplied in UBL using an external code list expression conforming
to this methodology.

An example of a code list without any predefined values is cac: AccountTypeCode as there may be as many
account types as there are trading parties, and none are predefined by UBL. Trading partners wishing to validate
information items using coded values from this code list are obliged to agree on and express the set of values they
expect to use. UBL does not supply any sets of values to use.

UBL has two generic declarations of code lists for these examples based on whether the coded value is an identifier
or a code. These declarations are illustrated by this incomplete fragment:

<xsd:complexType name="'CodeType''>
<xsd:annotation>
<xsd:documentation xml:lang=""en*>
</xsd:documentation>
</xsd:annotation>
<xsd:simpleContent>
<xsd:extension base=""xsd:normalizedString">
<xsd:attribute name="listID" type="xsd:normalizedString"
use="‘optional*/>
<xsd:attribute name=""listAgencylID" type="xsd:normalizedString"
use="‘optional*/>
<xsd:attribute name=""listAgencyName" type="xsd:string"
use="‘optional*/>
<xsd:attribute name="listName"™ type="'xsd:string" use="optional™/>
<xsd:attribute name="listVersionlD" type="xsd:normalizedString"
use="‘optional*/>
<xsd:attribute name=""hame™ type=''xsd:string” use="‘optional’/>
<xsd:attribute name=""languagelD" type="xsd:language™
use="‘optional*/>

UBL Code List Value Validation
Methodology

<xsd:attribute name="listURI" type="xsd:anyURI' use="optional'/>
<xsd:attribute name="listSchemeURI" type='xsd:anyURI"
use="‘optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="ldentifierType'>
<xsd:annotation>
<xsd:documentation xml:lang="en">
</xsd:documentation>
</xsd:annotation>
<xsd:simpleContent>
<xsd:extension base="xsd:normalizedString'">
<xsd:attribute name="schemelD" type="xsd:normalizedString"
use="‘optional"/>
<xsd:attribute name="schemeName™ type="'xsd:string” use="optional'/>
<xsd:attribute name="schemeAgencyID" type="'xsd:normalizedString"
use="‘optional"/>
<xsd:attribute name="'schemeAgencyName
use="‘optional"/>
<xsd:attribute name="schemeVersionlD" type=""xsd:normalizedString"
use="‘optional"/>
<xsd:attribute name="schemeDataURI" type='xsd:anyURI"
use="‘optional"/>
<xsd:attribute name="schemeURI" type="xsd:anyURI'" use="optional'/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

type=""xsd:string"”

Note in the above how the optional metadata attributes do not have fixed attributes, thus allowing the XML instance
to indicate not only the coded value but also the metadata related to the code list from which the value is taken.
This approach allows XML instances validated with the schema to have any coded value for these information
items.

3.3. UBL schemata constraints on code lists

UBL includes both kinds of constraints for coded values in code lists, very few of which are declared with enu-
merations. The CurrencyCodeContentType data type is an example whose coded values are internationally
standardized [currency]. The only other two such code lists in UBL enumerate MIME encoding identifiers and
unit code values. All three enumerations are imported from UN/CEFACT-standardized sets of coded values.

All other code lists in UBL are not enumerated in the schema expressions. Such code lists can be very large and
would be awkward to accommodate in a schema expression. Some code lists have a set of predefined coded values
supplied by UBL that trading partners may wish to extend. Other codes lists can only have coded values provided
by the users, as standardization either hasn't happened or shouldn't happen because it isn't appropriate to set out
what trading partners are allowed to use.

The UBL 2.0 support package [UBL 2.0 Support] includes genericode files for every code list. All the enumerated
code lists have complete sets of coded values distilled from the schema expressions, a limited number of code lists
have the sets of coded values predefined by the UBL committee, and all other code lists have an empty set of coded
values. Trading partners can modify or replace any of the genericode files to meet their business requirements
using the code list value validation methodology in this Working Draft.

UBL Code List Value Validation
Methodology

4. Code list definitions outside schemata

At this time of writing there are no standardized approaches to formally publishing the enumeration of coded value
members of a code list that is published by a code list maintainer. Such a formal representation is required for the
purposes of machine processing suitable to methodologies supported by automated processes.

The genericode [genericode] approach is a de facto implementation of such a formal expression cataloguing the
members of an enumeration with associated member and list documentation and list metadata description. This
approach is used in the illustration of this value validation methodology.

Itis with genericode files that this methodology's included stylesheets support trading partners expressing the coded
values agreed to being used in contexts. Other expressions of coded values in a code list can be accommodated by
one of at least the two following methods:

« rewrite this methodology's implementation's stylesheet fragment accessing genericode files with an equivalent
fragment that accesses the alternative format;

» transliterating instances of the alternative format to be minimal instances of the genericode format and using
this methodology's implementation's existing stylesheet fragment.

4.1. Trading partner genericode definitions

Trading partners will need to replace the genericode definitions for those code lists they wish to restrict or, if
allowed, extend. Their flexibility in modifying the code list is based on whether the code list is described in the
schema with or without an enumeration.

When limiting the coded values from a list described in the schema with an enumeration, the unedited genericode
file is initialized to include all enumerated values. Trading partners can then work from the complete list and prune
unwanted values in a copy leaving in the values agreed to be used in XML instances.

An example of this is a genericode file based on the UN/CEFACT currency values that would have over 160 entries.
A copy of this file named scenario/MyCurrencyLimits.gc is edited where the entire list of coded values
has been pruned to only the Canadian dollar and the US dollar. An excerpt from that file reads as:

<gc:CodeList xmlns:gc="http://genericode.org/2006/ns/CodeList/0.4/" ...
<ldentification>
<ShortName>CurrencyCode</ShortName>
<LongName>1SO 4217 Alpha</LongName>
<SimpleCodeList>
<Row>
<Value ColumnRef="code’">
<SimpleValue>CAD</SimpleValue>
</Value>
<Value ColumnRef="name’">
<SimpleValue>Canadian Dollar</SimpleValue>
</Value>
</Row>
<Row>
<Value ColumnRef="code’">
<SimpleValue>USD</SimpleValue>
</Value>
<Value ColumnRef="name’">
<SimpleValue>US Dollar</SimpleValue>
</Value>
</Row>
</SimpleCodeList>
</gc:CodeList>

UBL Code List Value Validation
Methodology

When specifying the coded values for a list described in the schema without an enumeration, the unedited gener-
icode file may either have some predefined coded values initialized through system design decisions, or may be
void of any coded values whatsoever. Trading partners can modify a copy of the genericode file or synthesize a
new file from scratch and include the values agreed to be used.

An excerpt from the scenario/MyCanadianProvinces.gc file created by hand reads as:

<gc:CodelList xmlns:gc="http://genericode.org/2006/ns/CodeList/0.4/" ...
<ldentification>
<ShortName>provinces</ShortName>
<LongName>Canadian Provinces</LongName>
<Version>2</Version>
</ldentification>
<SimpleCodeList>
<Row>
<Value ColumnRef="code">
<SimpleValue>AB</SimpleValue>
</Value>
<Value ColumnRef=""name">
<SimpleValue>Alberta</SimpleValue>
</Value>
</Row>
<Row>
<Value ColumnRef="code">
<SimpleValue>BC</SimpleValue>
</Value>
<Value ColumnRef=""name">
<SimpleValue>British Columbia</SimpleValue>
</Value>
</Row>

An excerpt from the scenario/MyUSStates . gc file created by hand reads as:

<gc:CodeList xmlns:gc="http://genericode.org/2006/ns/CodeList/0.4/" ...
<ldentification>
<ShortName>states</ShortName>
<LongName>US States</LongName>
<Version>1</Version>
</ldentification>
<SimpleCodeList>
<Row>
<Value ColumnRef="code'>
<SimpleValue>AL</SimpleValue>
</Value>
<Value ColumnRef=""name"''>
<SimpleValue>ALABAMA</SimpleValue>
</Value>
</Row>
<Row>
<Value ColumnRef="code'>
<SimpleValue>AK</SimpleValue>
</Value>
<Value ColumnRef=""name"''>
<SimpleValue>ALASKA</SimpleValue>

UBL Code List Value Validation
Methodology

</Value>
</Row>

Of course genericode files need not be created by hand and could be synthesized as the result of a database query
or some other process to create the XML expression of the coded values.

4.2. Normative UBL genericode specification and use

To satisfy the normative requirements for references in UBL, the UBL set of deliverables includes a snapshot of
the genericode specification.

The UBL support package includes a complete set of genericode files conforming to this snapshot specification,
with which trading partners can tailor their needs. Each of the more than 80 code lists in UBL schemata are
accommodated by a genericode file structured as one of the following:

» acomplete set of predefined coded values specified by UN/CEFACT and matching the enumeration of values
in the UBL schemata; these sets of values can be restricted by trading partners to only a subset of the predefined
values required for validation;

» acomplete set of predefined coded values specified by the UBL Technical Committee and reflecting system
design properties of UBL as a whole; these sets of values can be restricted or extended by trading partners to
be any set required for validation;

» an empty set with no coded values; these sets can be extended by trading partners to be any set required for
validation.

5. Document contexts in XML instances

The different types of information items that are described by code lists are typically declared in few places in
document models but, because of document context, the actual instances of these information items are found in
possibly very many places in actual instances. Document grammars that validate information items based solely
on their declarations cannot distinguish the different uses of the items and any desired differences in value validation
required by trading partners exchanging XML instances. Each use of an information item is in a different document
context.

Document contexts are expressed structurally as hierarchical tree locations. Without confidence that the document
contexts of the information items of an XML instance are sound, no amount of contextual checking of item values
is going to be reliable. It is a necessary precondition in advance of using this code list value validation methodology
to validate the XML instances against a schema expression of structural constraints. This is a critically important
step because the schema constraints will confirm the document contexts of information items are correctly posi-
tioned in the XML instance document hierarchy. Only when the information items are known to be in correct
contexts will the value checking of the document contexts reflect bona fide results.

In UBL the XML document constraints are expressed using the W3C Schema [W3C Schema] language. This
suffices to be a structural schema for all of the information items, and in addition describes the enumerations for
the UN/CEFACT-based code lists.

5.1. Using XPath to specify document context

The XML Path Language 1.0 [XPath 1.0] is used to address locations in an XML document according to a data
model of processed syntax. This XPath data model differs from other data models such as the Document Object
Model [DOM] in that the DOM models more aspects of raw syntax used in the document. Given that syntax is
irrelevant (in that it is arbitrary to the creator of XML which syntactic choices are made when marking up docu-
ments) the XPath data model is sufficient to talk about the elements and attributes found in documents.

UBL Code List Value Validation
Methodology

Elements are referred to in an XPath expression by their namespace-qualified names, while the "@" character (an
abbreviation for the XPath attribute: : axis) prefixes attributes referred to by their namespace-qualified
names.

Note

XPath 1.0 considers names without prefixes to always be in ho namespace, and never uses the default
namespace to qualify names without prefixes. For this reason, all namespace-qualified information items
in an XML vocabulary being validated must be prefixed when being addressed in XPath 1.0, even if the
instances of this vocabulary utilize the default namespace.

The syntax of an XPath expression separates multiple location steps of a single location path using an oblique
"/" character. Each step to the right names the child element or attached attribute of the immediately preceding
step to the left which is always an element. Child elements are one level deeper in the XML hierarchical nesting
than their parents. Elements are also parents of their attached attributes.

A fully-qualified absolute XPath location path begins with the oblique indicating the path starts from the root node
(the parent of the document element) of the XPath data model document tree. A relative XPath location path starts
with the name of an information item without the oblique at the beginning.

Examples of absolute XPath location paths possible for an instance of UBL Order are:

/po:Order/cac:TaxTotal/cbc:TaxAmount/@currencylID
/po:0rder/cbc:DocumentCurrencyCode
/po:0Order/cac:BuyerCustomerParty/cac:Party/cac:Address/cbc:CountrySubentityCode
/po:Order/cac:SellerSupplierParty/cac:Party/cac:Address/cbc:CountrySubentityCode

An example of a relative XPath location that matches all currency coded values in attributes in the entire instance
of any UBL document model is as follows, as the information item does not include any ancestral distinction to
the left:

@currencyID

An example of a relative XPath location that matches all country sub-entity coded values in elements in the entire
instance of any UBL document model is as follows, as the information item does not include any ancestral dis-
tinction to the left:

cbc:CountrySubentityCode

The minimum XPath addresses needed to precisely distinguish the country sub-entity code of the party address of
each of the buyer and seller are as follows, as the information item includes explicit ancestry to the left:

cac:BuyerCustomerParty/cac:Party/cac:Address/cbc:CountrySubentityCode
cac:SellerSupplierParty/cac:Party/cac:Address/cbc:CountrySubentityCode

Note the use of the "//" operator in XPath allows the matching within an entire sub-tree of the hierarchy; the
XPath addresses needed to distinguish all (not just in the party address) country sub-entity codes descendent to the
buyer and the seller would be as follows indicating only the required (and possibly distant) ancestor:

cac:BuyerCustomerParty//cbc:CountrySubentityCode
cac:SellerSupplierParty//cbc:CountrySubentityCode

5.2. Trading partner uses of document contexts

When deciding on code list value validation, trading partners must agree in which contexts particular sets of values
need to be constrained.

Some business rules may require the same context to be specified across all document types, such as "All currency
values must be Canadian or US dollars.”

10

UBL Code List Value Validation
Methodology

Other business rules may require indistinct document contexts to be specified, such as "all country sub-entity coded
values used in the order and in the invoice shall be valid states according to the United States postal service."

Yet other business rules might require more distinct document contexts to be specified, such as "The country sub-
entity codes for the seller can only be states of the United States, while country sub-entity codes for the buyer can
be both provinces of Canada and states of the United States."

Furthermore, trading partners can choose to employ an agreed-upon controlled vocabulary for document contexts
for which code lists are not defined. This UBL value validation methodology is agnostic to the method by which
information items are declared in schemata, thus allowing trading partners to specify acceptable values for infor-
mation items in any context.

Trading partners must, therefore, take the step to agree on which XPath addresses will specify the contexts at which
particular values are constrained. Examining the list of contexts in which code-list-typed information items are
found, the partners can identify as much specificity as is required to match those contexts in which the values are
constrained.

5.3. UBL reporting of document contexts of code list
information items

The UBL support package includes context reports for every document type of the UBL suite. Each context report
lists all of the minimally-unique document contexts for information items based on code lists in that document
type definition expressed by the schema. These reports are algorithmically derived from the UBL W3C Schema
expressions.

The number of code-list-based information items ranges from a low of 14 for the Order Response Simple model,
to a high of 77 for the Freight Invoice model.

The number of minimally-unique code-list-based information item document contexts ranges from a low of 311
for the Attached Document model, to a high of 153,335 for the Order Response model.

6. Code list values in document contexts

This Working Draft describes a document model with which associations are made between document contexts
of information items and genericode files expressing the values allowed for those items.

6.1. Code list context association files

This model is found in the compressed package associated with this specification in uti 1 ity/ directory in the
UBL-ContextConstraints-0.6.xsd file. This model needs an external declaration of the xml : id= at-
tribute, for which one is supplied named xml id . xsd (derived from the xml:id Recommendation [xml:id]).

Using this document model, trading partners create an instance of code list context associations. The instance points
to genericode files as system resources using URI strings, and names these pointers using XML identifiers unique
to the instance. The document context of eac