Last Updated: Wednesday, March 27, 2002

UBL Library Content

Review Comment and Disposition Form

Reviewer: OASIS UBL NDR SC

Contact Details: Eve Maler (eve.maler@sun.com), chair

Date: 27 March 2002

Artifact/Version Reviewed: UBL_Library-0pt64.xls

	UBL UID
	Comment
	Proposal
	References
	Disposition
	Date

	-
	The spreadsheet is missing System
Constraints Context and Supporting Role Context.
	Add these columns.
	-
	
	

	-
	We note that there is no capturing of precision (for numeric formats) and other similar constraints, such as string lengths. This will need to be captured at a later date.
	Figure out a methodology for capturing this information and then go through the structures capturing it.
	
	
	

	-
	We think we'll need a rule eventually about how relationships (extra-hierarchical) get encoded in XML. E.g., ID/IDREF, URI, application-specific IDs, linkbases, etc. We wonder if the LCSC is sufficiently considering its requirements about such relationships.
	Looking for such relationships should probably be in the methodology somewhere. The following template of information that could be collected about each link is adapted from Developing SGML DTDs:

- Type of relationship/meaning expressed
- What source(s) and target(s) are being associated
- Directionality (e.g., is it a two-way relationship?)
- How the link gets used in processing

This is probably enough information for the NDR SC to get started recommending one or more linking strategies in the actual schema modules.
	Developing SGML DTDs, ISBN 0-13-309881-8
	
	

	-
	Do not use specific words that have different meanings in different industries (like check-in/check-out, which are the opposite in hotel and rental cars); instead, go for general terms (e.g. period-start, period-end, etc.)
	See comment.
	-
	
	

	UBL000002 (occurs other places as well)
	UBL Name should be "BuyerID" because you're supposed to fold the property term into the representation term when they're similar, and you're supposed to truncate Identifier to ID.
	Change name here to "BuyerID" and check other similar cases.
	-
	
	

	UBL000017
	Is there a need to provide rules for constructing models that allow for either a small-grained structure (address postbox ID etc.) and a large-grained structure (address line 1 etc.)?
	Consider the option of allowing more "blob"-like addresses that call out only a few specific pieces of information. This could possibly be done as a "choice group" beneath the main address structure, so that both options are always available when an address is being supplied. However, if one of the options needs to be removed in certain contexts, then it is more appropriate to make two object classes for different kinds of addresses and pushing the optionality "up" a level. (We are happy to discuss this kind of modeling further with the LC SC.)
	-
	
	

	UBL000017 (occurs other places as well)
	The structure seems unusually flat by XML, OO, and database standards. While we're not against the use of sequences, we suspect that developers may find it more useful to have collections of elements that are "rolled up" into container elements at an intermediate level (for example, rows 30-31 for country sub- entities). The classic chunking standard for human memory is 7 +/- 2, and standard operating procedure for software developers and database designers is to use this standard.
	Consider intermediate containership for addresses, and possibly other structures with long flat sequences.
	-
	
	

	UBL000017 (occurs other places as well)
	We note that there's a lot of optionality of elements. For example, there's nothing required in Address. Are there interoperability consequences to this? If the context methodology is sufficient, is it better to allow optional elements to be made required or better to allow removal of elements? Would intermediate containers help this situation at all (e.g., you can make the container optional and the contents required)? How is the "sweet spot" determined on this? As another example, we know that there will be other kinds of things that we want to consider line items, but each
kind will have a different combination/cardinality of contents. We want to have a rule that the structures have the maximum number of required contents, and where splitting the structure into multiples will help, it should generally be done.

Example: Line items contain at least quantity (1), part number (2), and description (3). In certain stages of the process, they also contain price information (4), tax information (5), and shipping information (6). So you have really four kinds of line item: order, invoice, shipping, and catalog. These should be considered different rows.
	Consider intermediate containership in order to require information that is truly required, assisting interoperability. Also, consider splitting some structures into multiples for the same benefits.
	-
	
	

	UBL000345
	The choice of property term seems to obfuscate the desired semantic here. This is supposed to identify the order from the buyer's perspective; something like "Buyer's Order ID" would convey this better, though possessives in English are suspect for tag naming.
	Consider a different name here.
	-
	
	

	UBL000338 (as an example)
	The LineItem content in the Order model, and likely many (most? all?) other things that have 0..n or 1..n cardinality, could usefully be grouped in a containing structure (the xCBL ListOf... design pattern). For some (all?) 0..n things, it might be desirable to make the container 0..1 and the contents 1..n.
	Consider adding a "list of" notion in order to capture series of like things and strengthen validation.
	-
	
	

UBL Library Content subcommittee

Page 6 of 7

