Containership, Modeling, and Component Reuse

Position Paper, UBL NDR SC: Arofan Gregory

Comments: Tim McGrath
1I. Introduction

1II. Grouping

1A. Lists

2B. Grouping Elements

4III. Extension and Reuse

This document outlines the design principles around the use of containing elements in the modeling work of the UBL Library Content Committee.

What I am struggling with is “what is the difference between ‘containership’ and aggregate BIEs?”. My thought is that if we get some decent integrity into our data model these issues will fall out as natural parts of the model and therefore the schema.
I. Introduction

There are two major reasons for including containership in the definition of schema library components: extension/reuse and grouping for ease of use and processing. The modeling methodology must include an ability to provide containers for the benefit of syntax binding, in cases where the containing elements are semantic constructs, and, in some cases, where they are not.

If a containership has no semantic value then it need not be part of our model.
When we look at a document, we can identify three categories of semantic information:

· Content components – the pieces of information in the document. For example, a DateOfBirth is a content component meaning, "the date on which you were born".
· Structure components – the arrangement of the content. For example, a DateOfBirth is a structural in that it contains a DayOfMonth, Month and Year component.
· Presentation components – the cosmetic display of both structure and content. These carry ambiguous semantics. For example a DateOfBirth has presentation facets such as DD-MM-YYYY. In this case the presentation affects the semantics of both the structure and content. A date of birth shown as "11-01-1980" to a European is not the same as November First to Americans. As another example, Street, City, Country is a presentational sequence commonly used for addresses but not all postal addresses follow this convention.
It is critical if we are to maintain loose coupling between business applications that the UBL Library should focus on only the structural and content components. Any presentational structures should be the prerogative of the applications processing the data.
II. Grouping

Grouping encompasses both sets of like things that are usefully enclosed in a container for ease of processing, such as lists of like elements, and groups that represent functional similarities which perform an encapsulation function.

A. Lists

Whenever a data element is defined as repeatable in a model, it is desirable to wrap it in a container. The container serves to signal the bounds of the list for processing and display purposes, and may also serve as a way of capturing data that is common to all members of the list. These are structural, rather than semantic, considerations, but they contribute materially to the usefulness of the schemas resulting from the model.

For the modelingmodeling exercise, there are two approaches that can be adopted:

- All repeating elements will automatically be wrapped in a containing element, named by prepending the construct "ListOf" to the element and type names of the composing members, to provide the constrcuts within the schema automatically. This has the benefit of having little or no impact on the semantic modeling activity, as it can be left entirely up to the syntax binding process that generates the schemas. This is disadvantageous in that it makes the semsntic models and the schema code somewhat dissimilar.

- List constructs can be explicitly introduced into the modeling methodology, so that the modellers can insert them where they are seen as useful and appropriate. The names can be the result oif the application of rules. This approach has the advantage of giving the modellers a higher degree of control over the schema-design aspects of the UBL modeling exercise.

This is addressed by ensuring the model is in the First Normal form, i.e. no lists of values for attributes (property/element) within an entity (object class/re-usable type). Such lists must (by definition) have some common feature, so “list of”s are really one(or zero) to many associations between two object classes, the former being the original grouping and the latter, the set that repeats. For example, an Item may have a list of different identifiers. First normal form means that ItemIdentifier is a separate entity (object class/re-usable type) and that this has an association with Item and a cardinality of one to many.
B. Grouping Elements

The majority of content models in the UBL library are - to date - simple sequences of elements. There is a need, in some cases, to express more complex content models: choices, grouped sequences of related elements that make up part of the overall content model, but that carry a single cardinality, etc.

Examples of these are as follows (DTD syntax):

<!element a (foo1, (foo2, foo3)*, foo4)>

In this example, foo2 and foo3 are a group that may be repeated as many times as desired, but the two elements have a relationship where for each instance of the first, there needs to be an instance of the second one.

Another simple example:

<!element x (a, (b|c|d), e)>

In this example, a may be followed by one instance of a choice between b or c or d, but only one of these three elements may be present. The "choice" relationship expresses a degree of substitutability.

In these and similar cases, the groups representing dependency (foo2 and foo3) and the choice (b or c or d) should be established as formal constructs, with names that express their function.

The first example is a variation on the list situation, but with a business rule for the dependency of the subsidiary structure (i.e. foo2 and foo3 should be in a separate structure with a business rule dictating their dependency).
First example:

<!element Item(foo1, (PartNumber, PartDrawing)*, foo4)>

would become…

<!element Item(foo1, PartIdentifier*, foo4)>

<!element PartIdentifier (PartNumber, PartDrawing)> + some syntax to describe PartDrawing as a mandatory element. (please excuse my DTD ignorance)

The second example is an example of the need to define the model in Third Normal form. That is, it is a transitive dependency that must be resolved by defining another entity.

Second example:

<!element Discount (a, (Percent|Amount), e)>
would become…

<!element Discount (a, (DiscountValue), e)>
<!element DiscountValue (Percent|Amount)>
These group portions of content models allow for the expression of business rules, and when we recommend that they be enclosed in containers, it is the business function of the group that should become the basis of their name. Ideally, this function is a semantic one that can be named and defined. In some cases, it is a structural group that is more difficult to name.

In the case of a choice, this is not a difficult task in most cases - the choice exists because there are a set of members all of which can perform some function, and it is the name of the common function that should be assigned to the group.

For example:

Instead of:

<!element x (foo1, foo2, tax.identifier.code?, tax.identifier.text?)>

establish the element "tax.identifier" to encapsulate the choice:

<!element tax.identifier (tax.identifier.code | tax.identifier.text)>

With a resulting model that looks like:

<!element x (foo1, foo2, tax.identifier)>

This better reflects the business requirement that either a tax.identifier.code OR a tax.identifier.text must be present, by allowing the schema to enforce this business logic through validation. The business need is for a tax identifier, whether expressed as a code or as a text string. The common function is tax identification, so this becomes the name of the containing element.

This is what I gave as the second example above – it is just normal data modeling process – not an example of the need for containerships.

This requires direct control in the modeling activity, since, unlike lists, there is no easy way to automate the creation of satisfactory names where choices exist in the semantic model.

For other types of groups, good names can also be created, but sometimes this is not as easy to do:

For example:

There is a case where for each transport provider, each vehicle in the provider's fleet has a type and a registration, and for each vehicle both piecs of data need to be supplied (sorry, not a great example...):

<!element transport.provider (transport.provider.name, transport.provider.vehicle.type*, transport.provider.vehicle.registration*)>
In this case, what is wanted is a set of vehicles, each member of which has a type and a registration supplied. So, instead of two optionally repeatable elements, which bear an implicit relationship, it is better to have a group consisting of transport.provider.vehicle.type and transport.provider.vehicle.regiatration, which can be a set of repeated pairs:

<!element transport.provider (transport.provider.name, (transport.provider.vehicle.type, transport.provider.vehicle.registration)*>

But this repeating group should be given a name, because it has a function at the level of the group:

<!element transport.provider (transport.provider.name, transport.provider.vehicle*)>

where the new element "transport.provider.vehicle" is defined:

<!element transport.provider.vehicle (transport.provider.vehicle.type, transport.provider.vehicle.registration)>

This demonstrates the need for our model to be in Second Normal Form, i.e. all attributes functionally dependant on the entity. The attributes vehicle.type and vehicle.registration are not fully functionally dependant on the transport.provider, their values (as you point out) relate to each other independently of the provider and therefore should be in a separate entity.
If we look carefully at this example, we begin to realize that by containing the group, we end up with a "ListOf" construct as described above. Ultimately, what ends up in the schema will look like:

<!element transport.provider (transport.provider.name, list.of.transport.provider.vehicle)>

Note that content models can be nested to great depth, so that we can end up with single elements whose content includes a choice of sequences, some of whose members are sets of repeatable groups, etc. The expressive power of XML schema is very great.

What does this give us that …

<!element transport.provider (transport.provider.name, vehicle*)>
doesn’t?
If it does offer advantage then could we just specify that all 0:M and 1:M associations will use “ListOf”s in their XSD form?

For reasons of usability and processability - and particularly in the areas of auto-generation of schema code and the ability to use XSD extension - it is best if all elements possible have a content model that consists of a simple sequence. This requires encasulating the typs of groups discussed above in containing elements.

I have a feeling that to optimize our model to Third Normal Form would produce the effect you require. It is not necessary to identify ‘containerships’ as something separate to normal data modeling techniques
III. Extension and Reuse

A component library has another major use for containing elements, which is to provide the basic "packages" of functionally related information that is the subject of a context mechanism that allows extension. Related business processes often use groups of similar data, much of which may be identical, but some of which may be context-specific.

The best example of this is the often-used "line item". It exists in a wide range of business processes. A line item in an order typically contains identifying information for the product ordered, and a quantity. It may also include shipment information and pricing information.

In almost every business process, the identification and quatity fields are used. The use of shipment and pricing information depends very much on which process is using the data. (An invoice doesn't need to discuss the requirements around shipment, but uses pricing, for example.)

UBL is providing a mechanism for taking a common construct, and modifying it to reflect the needs of use in a specific context (such as a business process). In doing this, the Library SC is designing not a set of minimal core constructs, but a set of "80%" core constructs, intended to have most of the commonly-used data in them. In doing this design, they are already reflecting the basic syntax binding, specifically in the area of business process.

As similar data is reflected in different processes, containership should be used to indicate the packages that represent the common data packages that span business processes. In the line-item example, a common package would include item identification and quatity fields, and be contextually qualified to include pricing information for invoices, and both pricing and shipment information for an order, for example.

In order for this contextual qualification to work efficiently, however, we need to have a core package that is the thing on which the context mechanism functions.

To illustrate:

In the Invoice, I want to have a line item construct that reflects the item identifiers, item quantity, item price, and total price. For the Purchase Order, I want all of these fields, plus an expected ship date.

If I write two context rules, one for Invoice and one for Purchase Order, then I need to factor out the common data members and package them, so that the rules have something to operate on.

This may not be a good example, as it demonstrates document assembly – which has been excluded from the context methodology at this point.

In this example, item description and item quantity are packaged into a "base.item.info" element:

<!element base.item.info (item.description, item.quantity)>
The context rules read:

"In the Invoicing context, take base.item.info and extend it by adding item.price and total.price"

and...

"In the Procurement context, take base.item.info and extend it by adding item.price, total.price, and expected.ship.date"

The technical need for these "packaging" elements is especially urgent because the context mechanism will be relying heavily on XSD derivation, which makes the addition of fields in this way quite straightforward, but which places limitations on the technical ability to remove fields.

For the modeling methodology, the job of factoring out the common semantic elements in each of these packages is not simple. Visibility must be exercised across the different processes, and the similarity of needed data must be carefully analyzed. The creation and re-use of functional "packages" wrapped in elements is strongly encouraged.

What you describe should be modeled as sub-types or generalizations/inheritance of classes.
Naming these packages is not easy, either, because the function they perform is a technical one, created to enable reuse. It is not a semantic packaging, but is a critical design aspect of a useful component library. Conventions could be established for naming (e.g., the use of "base" pre-pended to the package name, for example, as in the line-item example).
i cannot think of an example that is not semantic packaging. Surely, the context determines the difference, e.g.

"In the Invoicing context, take base.item.info and extend it by adding item.invoice.price and total.invoice.price"

and...

"In the Procurement context, take base.item.info and extend it by adding item.order.price, total.order.price, and expected.delivery/shipment.date"

There may be ways to automate the collection of "where used" information, but the analysis and naming will need to be done as part of the modeling activity if the schemas are to be automatically generated.

I suspect that we can capture the context semantics (in simplistic form) as part of the class/property qualifier.
