
[image: image1.png]

Universal Business Language (UBL)
Position Paper: Defining Containership

Authors:

Tim McGrath (tmcgrath@portcomm.com.au)

Date: September 22, 2002

Filename: position-mcgrath-containership-01.doc

Table of Contents

31
Summary

42
Problem Description

53
Types of Containership

53.1
List Containers

53.2
Presentational Containers

63.3
Grouped Element Containers

6Dependency

7Normalization

7Expressing a normalized model in XML

94
Conclusion

94.1
List Containers

9Basic list containers

9Semantic list containers

94.2
Presentational Containers

104.3
Grouped Element Containers

11Appendix A. Notices

12Appendix B. Example of normalization.

12Identifiers and keys

14Third Normal Form

16Appendix C. Example of XML schema construction.

1 Summary

This document represents the outcome of several weeks’ discussions within UBL teams on the way Business Information Entities (BIEs) may be aggregated and then how these aggregations may be expressed in XML schemas. The overall concept has been categorized as ‘containership’.

As such, this document is intended to form part of the proposed UBL Library Content development approach for grouping BIEs into Aggregate BIEs and is complementary to the UBL draft methodology position paper (position-mcgrath-methodology-02.doc).

This paper also describes the UBL Naming and Design Rules for implementation of these structures in XML syntax.

After examining rules for containership based on both series’ of like elements and historical presentation, this paper promotes the idea of defining containers based on functionally dependent elements using a technique known as normalization. To ensure alignment between the logical model and the physical form we also propose a consistent approach for expressing these normalized models in XML form.

2 Problem Description

Whilst there is little doubt that we need some grouping of elements (i.e. containers) in our logical models and our schemas, this write-up considers how we may formalize the identification and design of these groups. Formalization is important to allow consistency and replication of the UBL Library development work. This will enable a broader range of interested parties to understand, refine and extend the UBL Library and to develop content for contextualized situations.

Most importantly, correctly formed containers add semantic value to our Library and promote re-usable components.

We can view the UBL vocabulary as three levels of components:

· ‘Atomic’ elements that hold individual pieces of information. We refer to these as Basic Business Information Entities (BBIEs).

· The grouping of these BBIEs into the logical structures we call Aggregate BIEs (ABIEs).

· Assemblies of the structures (ABIEs and BBIEs) into the documents that form transactional messages within a business process.

All of these components have both a logical (syntax independent) model and a physical (XML Schema) model.

This paper focuses on the second type of component – the aggregation of BIEs into the structures we implement as XML containers.

Whilst the overall approach has been covered at a higher level in the draft methodology position paper (position-mcgrath-methodology-02.doc), this paper focuses in more detail on sections 3.3.6 (Identifying Content and Structural Components) and 3.3.7 (Normalizing the data model) of that paper.

3 Types of Containership

Our initial discussions identified three types of containers that occur in XML schemas:

3.1 List Containers

These containers provide a wrapper around sets of repeated data structures with differing values. That is, "containers of a series of like elements". For example Line Items on an Order. Each Line Item would have the same structure, such as item number, description, quantity, etc, and there could be many of these per Order.

The container serves to signal the bounds of the list for processing and display purposes. Whenever a data element is defined as repeatable in the logical model, it is possible to wrap it in such a container. This suggests that they are technical, rather than semantic, considerations. For example, an Order may have a container called ListofLineItems, as follows …[mm1: This could also pertain to logically related items which may cause some confusion in differentiation with Grouped Elements.]
<xs:complexType name="Order">
<xs:sequence>
<xs:element name="ListofLineItems">

<xs:complexType>

<xs:sequence>

<xs:element name="LineItem" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>

In this case, a reference to ListofLineItems would apply to all LineItems on the Order.

We shall refer to these lists of repeated elements as ‘List’ containers.

3.2 Presentational Containers

Other containers provide historical formatting to a document. For example, a Header and Summary wrapper may be used to replicate the layout of many common printed Order documents, as in…

<xs:complexType name="Order">
<xs:sequence>
<xs:element name="Header">

<xs:complexType>

<xs:sequence>

<xs:element name="OrderNumber"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ListofLineItems">

<xs:complexType>

<xs:sequence>

<xs:element name="LineItem" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Summary">

<xs:complexType>

<xs:sequence>

<xs:element name="TotalAmount"/>

</xs:sequence>

</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>
We shall refer to these as ‘Presentational’ containers.

3.3 Grouped Element Containers

Most common in any document are containers that wrap elements having an apparent logical connection to each other. We shall call these ‘Grouped Element’ containers.

Identifying these logical groups allows us to minimize redundancy, localize dependencies and ensure that information can be maintained in logical sets that reflect the constraints of the real world.

Defining the logical grouping of elements in documents is something that can be done intuitively. It might sound right to group Name, Address and DateOfBirth into a Person container. However, if we want to have strongly re-usable structures we need a more formal and consistent approach for grouping elements.

Conventional data modeling practices include formal rules for designing logical structures. In fact, much of what document analysts have done in the past, albeit informally, is establishing what data analysts call functional dependencies – which we will refer to as simply, dependencies. Using these principles we can apply the same rigor to document schema design that we have customarily applied to database design.
Dependency
Dependency means that if the value of a BIE changes when another BIE value changes, then the former set is dependent on the latter. Technically, this can be defined as:

"Given an ABIE, called E (e.g. Person), the BIE called Y (e.g. DateofBirth) of E is functionally dependent on the BIE called X (e.g. Name) of E if and only if, whenever two instances of E agree on their X-value, they also agree on their Y-value."

For example, suppose the price per sheet of printer paper is reduced if the pack size changes from reams to cartons. This means pricing per sheet is dependent on pack size. In a similar way we can say that the values for address and date of birth are all dependent on the name of the person in question. It helps to explain this if we examine some data values we might find in these elements …
[mm1: The concept of dependency is widely known, but the overhead to cascade and associate such items and keep them synchronized may limit the utility of this concept.]
	E = PaperOrder

	X = Pack Size
	Sheet
	Ream
	Carton

	Y = Price per Sheet
	0.14
	0.09
	0.07

	E = Person

	X = Name
	Jones
	Smith
	Lee

	Y = Address
	Boston
	London
	London

	Y = Date of Birth
	121260

	010272
	060384

From these tables we can see that every X value (Pack Size and Name) has only one set of Y values. Whereas Y values can have different X values (e.g. Address of London may be Smith or Lee). Using our definition this means the Y values are dependent on the X values.

In database theory, a formal technique for identifying and defining these dependencies is known as normalization. [mm1: Show how this relates to the concept being presented. Not as a flat structure but within an OO construct.]
Normalization

Normalization is a series of analytic steps that:

· Ensures that all data elements in a group are discrete, i.e., can only take a single value. For example, no Person can have more than one DateOfBirth. (NB this is what separates this concept from the 'List' container type.)

· Establishes the primary identifier of each logical group. For Person, this may be the Name of the Person. Obviously this example is simplistic; a person's name is not really a practical identifier since some names are duplicates (like John Smith). For this reason we generally fabricate an identifier, such as Employee Number or SSID. [mm1: Neither are unique. An association of values that are aggregated could be unique in this regard, unless a UUID is generated and represents a surrogate key or alias to the actual record.]
· Defines groups of data that are fully dependent on each value of the primary identifier, i.e., for each instance of the group. For example, each time we introduce a new Person by adding a Name, we can also have a DateOfBirth and Address. [mm1: In OO, this may not be true – although the case you cite is true.]
· Ensures that all members apart from the primary identifier are independent of one another. For example, the value of the DateOfBirth does not affect the Address and vice versa.

For database designers, normalization yields sets of relational tables.

For UBL, normalization yields the logical ABIEs that put containers or "depth" into document schemas.

The rationale is the same: [mm1: There are two key items to consider: relationship/association and dependency.]
"recognizing dependency is an essential part of understanding the meaning or semantics of the data"

Appendix B describes the processes of normalization. The resultant data model is a set of logically formed Aggregate BIEs (ABIEs) that also contain links (or relationships) to other ABIEs. These links are described by foreign key BIEs within the structure.

This logical model requires some manipulation before it can be defined using grouped element containers in XML, i.e. its physical model form. This is because hierarchical structures (such as XML schema) are abstracted presentations of more complex structures. We cannot show all the relationships so we choose the ones pertinent to our business requirement. In effect we create an hierarchical view of our logical model. [mm1: Consider whether being focused on the resultant physical structure with the assumption that all reusable types are related. If they are in fact reusable, they may not all have relationships. There can be multiple levels of an object model or class diagram. The class diagram may or may not reflect the actual ‘construction’ of the objects. Query CCSD in their discussion on this item.]
Of course, we can create several alternate views of the same model. This is what we call re-use.

Expressing a normalized model in XML

To ensure alignment between the logical model and the physical form we must also have a consistent approach for expressing these normalized models in XML form.

While the principles of normalization can be applied to the design of document schemas to achieve similar goals as in database design, these are not identical goals. Database models and document schemas are different in key ways. Most apparent is that while most databases are built using relational structures, documents are generally hierarchical in structure. Therefore, the actual implementation of grouped element containers in XML schemas will differ from the logical model of ABIEs.

To construct XML schema (i.e. containers) from our normalized ABIEs, requires the definition of a hierarchy using pathways through our model. These pathways are determined by the requirements (or context) of the application or message. [mm1: I would propose that the context is outside of the object and guides its construction when the reusable type is to become a part of a Business Document. The context may have nothing to do with the application or message but the business requirements and processes the objects are used to support.] Appendix C describes how such an hierarchical pathway man be derived from a normalized data model.

Each schema is only one view because hierarchical structures are abstracted presentations of more complex structures. We cannot show all the relationships so we choose the ones pertinent to our business requirement. In fact, this is similar processing to that required when creating views from relational tables in a database application.

4 Conclusion

4.1 List Containers

Basic list containers

In our discussions, we postulated the possibility of 'basic' list containers and 'semantic' list containers.

Basic list containers were those that wrapped a set of elements. In other words they were a container of purely like elements. [mm1: Couldn’t this impact the already completed, code list evaluation?
Wherever we had the possibility of multiple occurrences, we could implement a 'basic' list container. This suggested that these need not be part of the logical model or if they were it would be as metadata in the model stating whether a list container was deemed appropriate in the schema.

We then considered why basic list containers would be beneficial to applications. We decided that XML processes, such as XSLT, could deal with XSD definitions in these sets without the need for additional wrappers.

The addition of another layer of wrapper to cover basic list containers brings some overheads and may not be as beneficial once believed. [mm1: Suggest these concepts have a set of defined criteria for evaluation, be weighted and scored as were the code list evaluation of NDR.]
Therefore, if we adopt an 80/20 rule (i.e. only 20% of cases would use these containers), we should avoid this type of container in our schemas.

Semantic list containers

The second type of list container proposed were those that added additional information to the repeated elements they covered. The example we considered was, "an order was for ten shirts and each shirt had a common set of features; that is, they were ordered in the same set of six different colors". In this case, the same information about colors would be repeated for each shirt on the order.

Adding common information to a group of data using XML, requires an element to hang them off. A list container would be the likely candidate. For example, we could add “color” to the list of order item’s container and thereby have it apply to all items on the order. This means the list container now has semantic value (it has information we cannot find elsewhere). [mm1: Your assumptions only acknowledge the data as it relates to the document which should not be the total basis for evaluation, from the LCSC perspective of reusable types.]

However, it is difficult to find cases that required this type of list container and that weren’t expressing functional dependency. Therefore, these may actually be new ABIEs and hence containers in their own right. This type of container is actually covered under the heading of logically grouped element containers.

4.2 Presentational Containers

Traditionally, electronic documents in business transactions have inherited some container features from their printed counterparts. Some of these relate to the formatting of information to suit the processing of specific applications, be they computerized or manual. For example, when creating an order transaction, an application may need to establish the validity of the seller and then process each item serially. This meant that overall totals were not known until all items had been processed. Such systems gave rise to the typical Header-Detail-Summary structure common in business documents. Human beings have become familiar with this structure in their document use and carried this into the design of electronic documents.

We should remember that electronic documents form the interfaces between various applications, and these applications that provide the presentational features to the document content. Building presentational structures (ABIEs) into our logical models may bind them into un-necessary application specific uses. Therefore, in our logical model we should attempt to remove these presentational features.

However, it is possible that we may want to assist applications (computerized and human) to read documents by providing some form of presentational wrappers in the schema. Fortunately, this was the reason that XML developed stylesheets. For example, we may use a stylesheet to format an order’s contractual information to appear before the line items and the overall totals after them. The actual order document schema can be independent of this presentational requirement.

If we look again at our example of an order we can see that there is no logical reason why the total amounts and the contract details applying to an order should be in separate containers. The choice of whether elements appear in a Header or a Summary are arbitrary, their values apply to the entire order regardless of which container they reside in.

Once again, applying an 80/20 rule we would say that additional complexity of these containers does not warrant the benefit to UBL.

4.3 Grouped Element Containers

Well-engineered document schemas need to have clear, unambiguous definitions of logical sets of data. Functional dependency is a semantically meaningful way of aggregating sets of BIEs into ABIEs. [mm1: Need to use the process I suggested above where you weight this concept against others to see if it is the most optimal or best practice approach; this is an important decision and should be qualified and quantified.]

This paper has demonstrated that normalization is a reasonably formal technique that helps us establish these dependencies in a consistent manner and that effective XML containers can be formed from normalized logical models.

Furthermore, these techniques will deliver a logical model that is both application independent and yet capable of being directly integrated with other forms of normalized models such as in a database management system.

There is a note of caution to this. Whilst these steps appear straightforward, the correct normalization of most business data models requires considerable analysis and interpretation of both document artifacts and business practices. Determining what are the BIEs, what are unique identifiers, interpreting sample data to prove the model, etc. All these are analytical skills. Developing data models is a craft not a science.

We should also note that many of these types of design decisions are pragmatic and based on the business rules of the required application. It may on occasion, be appropriate to have other form of structures, such as presentational containers in our schemas. We should not ignore practical considerations because of any methodology dogma. However, having the normalized model as a reference allows us to make these design decisions consciously and formally rather than on an ad-hoc basis.

Not every database or document collection needs a schema that has been fully normalized - but it helps to know why it isn't.

Appendix A. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix B. Example of normalization.

This appendix describes the process of developing normalized data models. To do so we shall use the following statement for a case study...

"Our company places an order against an authorized seller. These are identified by an account code. For every item on order we have the unit price and quantity required together with a description of the item."

Further analysis of this situation may lead us to identify some potentially useful business information entities (BIEs). These can be expressed in a single flat structure (a proto-ABIE). For example:

order (order number, item number, seller name, seller account, order date, unit price, quantity, item description)

This flat structure we call Zero Normal Form or 0NF. Normalization also has a First, Second and Third Normal form. Whilst it can be extended to other higher forms, we shall settle on Third Normal Form as our design goal.

To better understand the dependencies of the BIEs, we should populate the structure with some sample data…

	order number
	Item number
	seller name
	seller account
	order date
	unit price
	quantity
	item description

	A28289GF
	S-25
	WidgetsRUs
	WRU
	12-01-02
	163
	2000
	widgets

	003-27898
	46372828
	WWWickets
	WWW
	12-01-02
	25
	64
	large wickets

	003-27898
	46372829
	WWWickets
	WWW
	12-01-02
	12
	354
	small wickets

	003-27899
	XXXGP
	WWWickets
	WWW
	13-01-02
	99
	100
	gift packs

	003-27899
	46372829
	WWWickets
	WWW
	13-01-02
	12
	10
	small wickets

Identifiers and keys

A fundamental principle of normalization is that all structures (what we call ABIEs) have a unique identifier (known as the primary key). This establishes the identity of each instance of data in the ABIE. Furthermore, a single BIE may not be sufficiently individual to do this. Sometimes we have to use compound keys, such as bank and branch numbers, street number and street name, order number and line number, etc. to uniquely identify instances of our ABIEs.
When we know the value (or values) of our primary key, we are referring to one individual identifiable occurrence. In our example, this might be the order number. We can describe this as follows:

order (PRIMARY IDENTIFIER [order number], item number, seller name, seller account, order date, unit price, quantity, item description)

First Normal Form

The aim of First Normal Form data is to ensure that all of the BIEs are discrete i.e. can only take a single value. This is achieved by the removal of repeating groups into their own ABIE.

In our case we note that we have "every item" on an order. This tells us that the things that vary with each item should be separated into an ABIE of their own. For example ...

order(PRIMARY IDENTIFIER [order number], seller name, seller account, order date)

order item(PRIMARY IDENTIFIER [order number, item number], unit price, quantity, item description)

An important point to note is that when we established this new repeated ABIE (e.g. order item) we also included the primary identifier of the original ABIE (e.g. order number). This is known as a foreign key and is a critical part of maintaining the relationships between our ABIEs. In this case the foreign key enables us to know which order these items relate to.

In terms of our sample data set, this would look like...

order:

	order number
	seller name
	seller account
	order date

	A28289
	WidgetsRUs
	WRU
	12-01-02

	003-27898
	WWWickets
	WWW
	12-01-02

	003-27899
	WWWickets
	WWW
	13-01-02

order item:

	order number
	item number
	unit price
	Quantity
	item description

	A28289GF
	S-25
	163
	2000
	widgets

	003-27898
	46372828
	25
	64
	large wickets

	003-27898
	46372829
	123
	54
	small wickets

	003-27899
	XXXGP
	99
	100
	gift packs

	003-27899
	46372829
	12
	10
	small wickets

[NB. Because they deal with a repeated series of like BIEs, first normal form is the point at which we may consider introducing the 'list' container types]

Second Normal Form

The aim of second normal form is to split off into separate ABIEs any BIEs that do not wholly depend on the entire key. This only applies where we have compound keys (more than one BIE is needed to uniquely identify an instance of an ABIE).

In our case, only order item has a compound key. If we examine order item we can see that the description is dependent on the item involved, but not dependent on the order. We can assume that the same item may appear on other orders but it will always have the same description. The item description is only dependent on the item, not the order.

The same might be said of unit price. Normally, this too would be dependent on the item – but not dependent on the order.

As item number is only one part of the compound key of order item, second normal form means it must be separated into another ABIE. For example:

order item(PRIMARY IDENTIFIER [order number, item number], quantity)

item(PRIMARY IDENTIFIER [item number], unit price, item description)

This time the primary key of the new ABIE (item) is simply the dependent part of the compound key of the original ABIE (order item). The item number is enough to uniquely identify each item.

 In terms of our sample data set, this would look like...

order item:

	order number
	item number
	quantity

	A28289GF
	S-25
	2000

	003-27898
	46372828
	64

	003-27898
	46372829
	54

	003-27899
	XXXGP
	100

	003-27899
	46372829
	10

item:

	item number
	unit price
	item description

	S-25
	163
	widgets

	46372828
	25
	large wickets

	46372829
	123
	small wickets

	XXXGP
	99
	gift packs

	46372829
	12
	small wickets

Third Normal Form

To achieve a data model in third normal form we must ensure that all non-key BIEs are independent of one another. This is similar to second normal form, but now we focus on the BIEs that are not part of the primary identifier.

In our case, when we examine the order ABIE we can see a dependency between the seller’s name and the seller account. It appears the account may be a code for the seller. This implies that the seller's name is dependent on the account. Neither of these are primary identifiers for the order, so third normal form means we move these into their own ABIE. We will call this new structure ‘seller’ and we can reasonably assume that the account code is our primary identifier. Therefore, we have…

order(PRIMARY IDENTIFIER [order number], seller account, order date)

seller(PRIMARY IDENTIFIER [seller account], seller name)

This time when we established the new ABIE we included the primary identifier of our new ABIE in the original ABIE (e.g. seller account is in order). That is, the primary identifier of the new ABIE becomes a foreign key in the original. Now the foreign key enables us to know which seller the order relates to.

In terms of our sample data set, this would look like...

order:

	order number
	seller account
	order date

	A28289
	WRU
	12-01-02

	003-27898
	WWW
	12-01-02

	003-27899
	WWW
	13-01-02

seller:

	seller account
	seller name

	WRU
	WidgetsRUs

	WWW
	WWWickets

	WWW
	WWWickets

This construct is common in referencing coded values.

To complete the exercise, as the order item and item ABIEs are already in third normal form (i.e. they have no non-key dependencies), we have no more changes. Our final model looks like this...
[mm1: I would propose that we do not necessarily need to know that the seller account relates to the seller until we use construction of the schema for the Business Document(s) and they are instantiated. This brings up the point if we are only focused on the document or the reusable types that can be used (regardless in a business document or not).]
order(PRIMARY IDENTIFIER [order number], seller account, order date)

seller(PRIMARY IDENTIFIER [seller account], seller name)

order item(PRIMARY IDENTIFIER [order number, item number], quantity)

item(PRIMARY IDENTIFIER [item number], unit price, item description)

Appendix C. Example of XML schema construction.

This appendix describes the formalization of constructing hierarchical schemas from normalized data models.

As a case study, we continue with the case study in appendix B. The normalized model had four Aggregate Business Information Entities (ABIEs) and looked like...

order(PRIMARY IDENTIFIER [order number], seller account, order date)
seller(PRIMARY IDENTIFIER [seller account], seller name)
order item(PRIMARY IDENTIFIER [order number, item number], quantity)
item(PRIMARY IDENTIFIER [item number], unit price, item description)

To create an XML schema we create a 'pathway' through our model that satisfies the requirements of the document being defined. This process results in an hierarchical view of our logical model.

We do this through implementing relationships by replacing the foreign keys with references to the containers themselves. The cardinality of the relationship tells us which container defines the reference.

This can be described in four steps.

Step 1. All normalized ABIEs become candidate containers. All their BIEs become sub-elements of the container.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="order">

<xs:complexType>

<xs:sequence>

<xs:element ref="ordernumber"/>

<xs:element ref="selleraccount"/>

<xs:element ref="orderdate"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="seller">

<xs:complexType>

<xs:sequence>

<xs:element ref="selleraccount"/>

<xs:element ref="sellername"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="orderitem">

<xs:complexType>

<xs:sequence>

<xs:element ref="ordernumber"/>

<xs:element ref="itemnumber"/>

<xs:element ref="quantity"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="item">

<xs:complexType>

<xs:sequence>

<xs:element ref="itemnumber"/>

<xs:element ref="itemdescription"/>

<xs:element ref="unitprice"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ordernumber" type="xs:string"/>

<xs:element name="orderdate" type="xs:string"/>

<xs:element name="selleraccount" type="xs:string"/>

<xs:element name="sellername" type="xs:string"/>

<xs:element name="quantity" type="xs:string"/>

<xs:element name="itemnumber" type="xs:string"/>

<xs:element name="itemdescription" type="xs:string"/>

<xs:element name="unitprice" type="xs:string"/>
</xs:schema>

Not that these are still only candidates and not the final result. We have yet to establish the relationships between these containers.

Step 2. From every ABIE, take its given BIEs and replace each foreign key with the name of the native container. For example in the ABIE called order, the BIE called selleraccount becomes a reference to the container called seller. Similarly, ordernumber and itemnumber in orderitem are replaced by references to the containers, order and item. As in…

<xs:element name="order">

<xs:complexType>

<xs:sequence>

<xs:element ref="ordernumber"/>

<xs:element ref="seller"/>

<xs:element ref="orderdate"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="orderitem">

<xs:complexType>

<xs:sequence>

<xs:element ref="order"/>

<xs:element ref="item"/>

<xs:element ref="quantity"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Step 3. Start assembling the schema from the root element. In our case this is the order, but it may be a different view of the model depending on the contact or purpose of the document.

<xs:element name="order">

<xs:complexType>

<xs:sequence>

<xs:element ref="ordernumber"/>

<xs:element ref="seller"/>

<xs:element ref="orderdate"/>

</xs:sequence>

</xs:complexType>

</xs:element>

For every container that references this container (except the one that lead us to this container), remove the reference and add this container to the root container. Because this reference means that there may be more than one occurrence (i.e. represents a potentially multiple cardinality relationship) it should be given an unbounded expression.

For example, in the container called orderitem, there is an order. This means we should remove order from the orderitem container, to give us …[mm1: You wouldn’t care if it included order until you ‘constructed’ it.]

<xs:element name="orderitem">

<xs:complexType>

<xs:sequence>

<xs:element ref="item"/>

<xs:element ref="quantity"/>

</xs:sequence>

</xs:complexType>

</xs:element>

We then need to add an unbounded reference to orderitem within our order container. As in:

<xs:element name="order">

<xs:complexType>

<xs:sequence>

<xs:element ref="ordernumber"/>

<xs:element ref="seller"/>

<xs:element ref="orderdate"/>

<xs:element ref="orderitem" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>
</xs:element>

NB. We can't be more precise about cardinality because the occurrences permissible are defined in the model's metadata not in the BIEs themselves.

Step 4. Build the schema by taking each referenced container and applying step 3 to it.

For example, our root container, called order, has a reference to the seller. [mm1: How would this premise hold up if the ‘order’ is not the physical order transaction but an abstract view of an order process? It may not hold true and this should be discussed.] Step 3. tells us that seller is referenced by order. However, step 3. also states that we should ignore the relationship of the container that lead us to seller (ie order). This is because this direction of the relationship represents a single cardinality relationship. An order can only have one seller, and we have already defined that information. That is why the seller is already in our order container and why we can ignore this reference.

Therefore, the seller container looks like this…

<xs:element name="seller">

<xs:complexType>

<xs:sequence>

<xs:element ref="selleraccount"/>

<xs:element ref="sellername"/>

</xs:sequence>

</xs:complexType>

</xs:element>
As there are no sub-containers within seller we move on to the other container in order, the orderitem. Orderitem is also not referenced by any other container, so does not require any changes. However, it does have a reference to the container called item. So we move on to this container and apply step 3. to item. The item container holds no further containers but is references by orderitem. As before, orderitem is already in our schema and so this reference represents a single cardinality. The orderitem can only be for one item and we already have the orderitem container defined so no further action is required.

Therefore, the final schema would look like this …

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="order">

<xs:complexType>

<xs:sequence>

<xs:element ref="ordernumber"/>

<xs:element ref="seller"/>

<xs:element ref="orderdate"/>

<xs:element ref="orderitem" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="seller">

<xs:complexType>

<xs:sequence>

<xs:element ref="selleraccount"/>

<xs:element ref="sellername"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="orderitem">

<xs:complexType>

<xs:sequence>

<xs:element ref="item"/>

<xs:element ref="quantity"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="item">

<xs:complexType>

<xs:sequence>

<xs:element ref="itemnumber"/>

<xs:element ref="itemdescription"/>

<xs:element ref="unitprice"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ordernumber" type="xs:string"/>

<xs:element name="orderdate" type="xs:string"/>

<xs:element name="selleraccount" type="xs:string"/>

<xs:element name="sellername" type="xs:string"/>

<xs:element name="quantity" type="xs:string"/>

<xs:element name="itemnumber" type="xs:string"/>

<xs:element name="itemdescription" type="xs:string"/>

<xs:element name="unitprice" type="xs:string"/>
</xs:schema>

This schema is a consistent view of our original normalized logical model...

order(PRIMARY IDENTIFIER [order number], seller account, order date)
seller(PRIMARY IDENTIFIER [seller account], seller name)
order item(PRIMARY IDENTIFIER [order number, item number], quantity)
item(PRIMARY IDENTIFIER [item number], unit price, item description)

The consistency comes from having a formal process of derivation. The same schema would be created by anyone following the steps defined.
This also recognizes that the schema is a view because hierarchical structures are abstracted presentations of more complex structures. We cannot show all the relationships so we choose the ones pertinent to our business requirement.
For example, if we were designing an Account Summary document schema, we could have taken a ‘seller’ view of the model, as in …

<xs:element name="seller">

<xs:complexType>

<xs:sequence>

<xs:element ref="selleraccount"/>

<xs:element ref="sellername"/>

<xs:element ref="order" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="order">

<xs:complexType>

<xs:sequence>

<xs:element ref="ordernumber"/>

<xs:element ref="orderdate"/>

<xs:element ref="orderitem" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>
Similarly, we could build an ‘item production view’ schema, with unbounded orderitems contained within item.

However, all these views are derived from the same common data model and this ensures a clear semantic understanding of the information contained.

� Date, C.J. An Introduction to Database Systems 3rd Edition, Addison-Wesley, 1981. pp.240-242

22

12
position-mcgrath-containership-01
20
September 22, 2002

