
Position Paper: Modularity,
Namespaces and Versioning

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

Author: (see Change History section)

Date: 2-26-2003

Filename: draft-burcham-modnamver-08doc

1 Change History ... 3

2 Summary ... 3

3 Problem Description ... 3

4 Assumptions.. 4

4.1 Problem Size ... 4

4.2 Optimal Component Size.. 4

5 Options: XML Namespace Identification... 5

5.1 Option 1: Namespace Name = Namespace Location ... 5

5.2 Option 2: Namespace Name is OASIS URN namespace 5

6 Recommendation: Namespace Identification ... 5

7 Recommendation: Schema Location .. 5

8 Options: Namespace Structure.. 6

8.1 Option 1: One Big Namespace ... 6

8.2 Option 2: One Namespace Per Type... 6

8.3 Option 3: Core Plus “Functional” Namespaces .. 6

8.4 Option 4: Core Plus “Functional” Namespaces Plus Internal Structure as
Needed .. 7

9 Recommendation: Namespace Structure .. 7

9.1 Into What Namespace Do Extensions Go... 7

10 Options: Module Structure.. 8

10.1 Option 1: One Module Per Namespace .. 8

10.2 Option 2: One Module Per Object Class... 8

29
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

10.3 Option 3: Modules based on Human Judgment of Related Functionality of
Type Definitions ... 8

10.4 Option 4: One Module per Type Definition ... 9

11 Recommendation: Module Structure .. 9

11.1 Message Types.. 11

11.2 Number of Message Types ... 11

12 Options: Versioning.. 12

12.1 Option XF-1: Change the (internal) schema “version” attribute 12

12.2 Option XF-2: Create a “schemaVersion” attribute on the root element 12

12.2.1 Usage A: Conformance enforced by validator.. 12

12.2.2 Usage B: Conformance enforced by an extra processing pass 12

12.3 Option XF-3: Change the schema’s target namespace 12

12.4 Option XF-4: Change the name/location of the schema................................... 12

12.5 Option 5: Schema Version as Context Classifier.. 12

13 Recommendations: Versioning... 12

14 Definitions... 16

15 References... 16

 2

1 Change History 47
Revision Editor Description

0.7 Bill Burcham Fleshed-out Recommendations:Versioning. Finalized
namespace URI’s throughout.

0.6 Dave Carlson Changes made to section “Options: Module Structure” to
enumerate several options for module definition.

0.1-0.5 Bill Burcham Baseline

48

49
50
51
52

53
54
55
56
57
58

59
60
61
62
63

64
65
66

67
68
69

70
71
72

73

74
75

76
77

2 Summary
There are many possible mappings of XML schema constructs to namespaces and to
operating system files. This paper explores some of those alternatives and sets forth
some rules governing that mapping in UBL.

3 Problem Description
Namespaces are a syntactic convenience supporting the association of a “context” with
either a lexical scope (default namespace), or a shorthand identifier (namespace
qualifier). This context, applied either implicitly (in a lexical scope) or explicitly (via
qualified names) supports compression of what would otherwise be long identifiers. In
the absence of namespaces, identifier names are all long.

It is common for an instance document to carry namespace declarations, so that it might
be validated. Processing logic (such as a stylesheet) typically carries namespace
declarations pertaining to the language in which it is specified in (XSLT) as well as the
namespaces on which it operates. The latter must match namespaces in the instance
document under translation in order for useful work to be carried out.

In practice, namespaces are often given names denoting a hierarchy. XML processing
tools may or may not use this hierarchy information. This sort of hierarchical naming
though can be useful for the human reader.

As with other significant software artifacts, schemas can become large. In addition to the
logical taming of complexity that namespaces provide, we might like to also divide the
physical realization of that schema into multiple operating system files.

Schemas change over time. UBL will be no exception. What sort of version information
(if any) will a schema carry? How shall that information be carried so as to conveniently
support the needs of users operating on document instances with XML processing tools.

This position paper will address these three topics related to namespaces:

1. Namespace Structure: What shall be the mapping between namespaces and
XML Schema constructs (e.g. type definitions)?

2. Module Structure: What shall be the mapping between namespaces and XML
Schema constructs and operating system files?

 3

3. Versioning: What support for versioning of schema shall be provided? 78

79
80

81
82
83

84
85

In subsequent sections, we’ll examine each topic in turn, presenting first the options, then
a recommendation.

4 Assumptions
Much of this discussion will be based on the expected complexity of the UBL
vocabulary. We structure systems into components in order to manage complexity.

4.1 Problem Size
How big will UBL be? How interconnected?

One source for complexity estimation is xCBL. TBD: how many type definitions, 86
element declarations, “instance roots” in xCBL? 87

88
89
90
91

92

93
94

95
96

97
98

99

100
101
102
103
104

105
106
107

108
109

Another source for estimation is X12 that according to [] has: NDR-MSG-88

NDR-MSG-88

SEVEN-TWO

a bit over 1,000 data elements (…) a smaller number of segments, and
300 or so transaction sets

Also from [] we have EDIFACT:

 There are just under 650 data elements which are

 used in approx 200 composite structures (sort of equivalent to low level
Aggregate Core Components (ACCs)).

 These elements and composites are reused within just over 150 segment
structures (sort of equivalent to higher level ACCs).

 Combinations of all the above make up just under 200 messages (doc
types).

So an estimate of 1000 types and 250 message types seems reasonable for UBL.

4.2 Optimal Component Size
We don’t want to define 1000 types all in one XML namespace, nor would we want to
define them all in one file. Such an approach would lack structure necessary for
understanding both by maintainer and users. Additionally, performance would be far
from optimal for instance documents that needed only a subset of the UBL types.

For these reasons we presume that we need to structure and divide UBL into a hierarchy
of components. We will strive to balance coupling and cohesion between the
components in order to:

 Manage the complexity of each component while not creating too many
components1

1 The “seven plus or minus two” rule [] is a good, general rule of thumb.
It’s especially useful when you don’t have any other rule. It says that if you want people
to be able to keep a set of concepts in mind, then you are limited to about seven concepts.

 4

 Provide for useful subsetting of components 110

111
112
113

114
115

116
117

We envision that many useful instance documents (messages) will be possible that
require only a fraction of the overall UBL schema. In those cases it should be possible to
avoid processing of the unneeded parts.

5 Options: XML Namespace Identification
This section presents some options for the form that UBL namespace names might take.

5.1 Option 1: Namespace Name = Namespace Location
There is certainly precedent for this approach. See for example the ebXML Message
Service schema http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd. 118

119
120
121
122

123
124
125

126
127

5.2 Option 2: Namespace Name is OASIS URN
namespace

This option exemplifies the current best practice within OASIS. See RFC 3121 [
] for details. See Namespaces in XML for background [NAMESPACE].

OASIS-
URN-NS

Under this option, the namespace names for UBL namespaces would have the following
form while the schemas are at draft status:
urn:oasis:names:tc:ubl:schema{:subtype}?:{document-id}

When they move to specification status the form will change to:
urn:oasis:names:specification:ubl:schema{:subtype}?:{document-id}

Where the form of {document-id} is TBD but should match the schema module name
(see section 7, Recommendation: Schema Location).

128
129

130

131
132

133
134

135
136
137

6 Recommendation: Namespace
Identification

We pick Option 2: Namespace Name is OASIS URN namespace.

Will document-id include versioning information or will versioning be handled outside
this identifier? See section 13, Recommendations: Versioning.

7 Recommendation: Schema Location
A question related to Namespace identification is schemaLocation. Schema location
includes the complete URI which is used to identify schema modules.

Implications for XML for example might be: a type would define no more than seven (or
so) elements, a namespace would define no more than about seven types, etc.

 5

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

138
139

In the fashion of other OASIS specifications, UBL schema modules will be located under
the UBL committee directory:

140
141

http://www.oasis-open.org/committees/ubl/schema/<schema-mod-name>.xsd

142

143

TBD does this recommendation need more justification?

Where <schema-mod-name> is the name of the schema module file. The form of that
name is TBD. 144

There are two issues here. One is: how do we tell users to reach our schemas and two: 145
what do we use internally – URN’s or URL’s. One is where/how do we publish our 146
schemas. 147

148
149
150

151
152
153
154

155
156
157
158

159
160
161
162

8 Options: Namespace Structure
In this section we’ll explore some mappings between XML Schema structures and
namespaces.

8.1 Option 1: One Big Namespace
We could have one big namespace for UBL. On the plus side, it would be fairly easy to
remember. The downside is that we would forfeit the opportunity to use hierarchical
namespaces to communicate the structure of the vocabulary.

8.2 Option 2: One Namespace Per Type
This approach represents the other end of the spectrum. If you’ve got a namespace per
type then why not just use the type name. The namespace fails to be shorthand for
anything. It fails to be memorable, or to group related types together.

8.3 Option 3: Core Plus “Functional” Namespaces
This option represents a space between 8.1 and 8.2. There would be namespaces for
“core” types and there would be namespaces for each of the functional areas e.g. Order,
Invoice.

Purpose Namespace name

Common Leaf
Types

urn:oasis:names:tc:ubl:schema:CommonLeafTypes:major-
version:minor-version

Common
Aggregate Types

urn:oasis:names:tc:ubl:schema:CommonAggregateTypes:major-
version:minor-version

Order Domain urn:oasis:names:tc:ubl:schema:Order:major-version:minor-
version

Invoice Domain urn:oasis:names:tc:ubl:schema:Invoice:major-
version:minor-version

TBD TBD

 163

 6

http://www.oasis-open.org/committees/ubl/schema/<schema-mod-name>.xsd

164
165
166

167
168

169
170
171
172

This represents a top-level decomposition of the vocabulary into multiple vertical
(functional) slices: Order, Invoice; and two (horizontal) slices – the so-called core,
CommonLeafTypes and CommonAggregateTypes.

The downside of this approach is that with seven or so functional namespaces, they are
going to get awfully “crowded” (on the order of one hundred types per namespace).

8.4 Option 4: Core Plus “Functional” Namespaces Plus
Internal Structure as Needed

A refinement on 8.3, this option frees each of the functional and core namespaces to have
their own hierarchy as necessary in order to further manage complexity.

173

174

Add explanation from the minutes here.

9 Recommendation: Namespace Structure
 Pro Con

Option 1: one big namespace Easy to remember namespace When anything in UBL changes,
all processing code must be
changed (at a minimum to use
new namespace name)

Option 2: namespace per type Total compartmentalization Why use namespaces at all?
With this option the namespace
ceases to provide useful
contextualization.

Option 3: core plus “functional”
namespaces

Allows parts of UBL to change
independently. When a
functional area changes,
processing code depending on
core needn’t change.

Doesn’t allow for intermediate
structure. What if the functional
namespaces may require further
subdivision?

Option 4: core plus “functional”
namespaces plus internal
structure as needed

(same as Option 3) By allowing intermediate
namespaces, they will certainly
flourish. Design rules must be
developed to avoid regressing
toward Option 2 over time.

 175

Option 3 is recommended. We reserve the right to revisit this decision when we are 176
further along in the process of defining types. If we find that we need more structure, we 177
can move to option 4. 178

179

180
181

Option 4 is recommended now!

9.1 Into What Namespace Do Extensions Go
Extensions (by users) go into user-defined namespaces outside of UBL.

 7

10 Options: Module Structure 182
183
184
185
186

187
188
189

190

191
192
193
194
195
196
197

198
199
200
201

202
203

204
205
206

207
208

209
210
211
212
213

214
215
216

This section describes options for decomposing schema definitions into modules, where
modules are typically represented as operating system files. For XML Schemas, each file
contains one schema document instance. A more general definition of “module” is as
follows:

Definition: A Module is a <xsd:schema> document instance. In the UBL deliverable,
each module is written to one operating system file. But in database storage (either
RDBMS or XML native), a module would be recognized as an XML document instance.

The following options for module decomposition have been identified:

10.1 Option 1: One Module Per Namespace
This is the option used in the 0p70 UBL deliverable. It is the simplest rule to apply and
works reasonably well for the size and scope of the 0p70 deliverable. However, it may
not scale to a more mature library of several hundred reusable type definitions. The
scalability concern is not due to technical issues, but due to difficulty of human users
working with one very large file. Tool support will help to mitigate this problem, but
even then some kind of logical modularity would be useful.

10.2 Option 2: One Module Per Object Class
This option would gather together all of the qualified variations of BIEs for each object
class, as implemented by schema type definitions and their associated global elements. So
BuyerParty, SellerParty, and so on would appear in one module.

A master schema must include all modules for a given namespace. Users of a namespace
library would not import the individual modules, but only the master schema.

The primary motivation for this rule is to provide an easily automated decomposition
strategy that does not require human intervention when generating schemas from a model
or component repository.

A downside of this option is that the type definitions in a module do not include any
definitions for closely related content element definitions.

10.3 Option 3: Modules based on Human Judgment of
Related Functionality of Type Definitions

This option would gather together related type definitions based on functional similarity.
For example, HazardousItem and its related child element content definitions would be
collected in one module.

This might require substantial human analysis to determine the best decomposition of a
namespace into modules. In particular, when leaf schema types (e.g. CountryType) are
used by several modules, those shared types cannot be duplicated in functional modules.

 8

10.4 Option 4: One Module per Type Definition 217
218
219
220

221

222
223
224
225
226

227
228
229

230
231
232
233

234

This is essentially the rule used for creating xCBL modules. Use of the schema files is
only practical when they are opened in a schema design tool. A user would open the
master schema, which must include several hundred small schema files.

11 Recommendation: Module Structure
This section describes the mapping of namespaces (as discussed in section 8 Options:
Namespace Structure) onto XSD files. A namespace contains type definitions and
element declarations. Any file containing type definitions and element declarations is
called a SchemaModule.

Every namespace has a special SchemaModule, a RootSchema. Other namespaces
dependent upon type definitions or element declaration defined in that namespace import
the RootSchema and only the RootSchema.

If a namespace is small enough then it can be completely specified within the
RootSchema. For larger namespaces, more SchemaModules may be defined – call these
InternalModules. The RootSchema for that namespace then include those
InternalModules.

This structure provides encapsulation of namespace implementations. To recap:

Import Rule: A namespace “A” dependent upon type definitions or element declaration
defined in another namespace “B” imports B’s RootSchema. “A” never imports other
(internal) schema modules of “B”.

235
236
237

238

Include Rule: The only place XSD “include” is used is within a RootSchema. When a
namespace gets large, its type definitions and element declarations may be split into
multiple SchemaModules (called InternalModules) and included by the RootSchema for
that namespace.

239
240
241
242

243
244
245

The import rule presents a namespace as an indivisible grouping of types. A “piece” of a
namespace can never be used without all it’s pieces. It is therefore important to strive to
define namespaces that are minimal and orthogonal.

246

247
248
249

Spin out minimal and orthogonal a bit more.

It is not enough that a namespace be minimal in terms of its intrinsic size, but also in
terms of the closure of all other namespaces it imports. By closure we mean namespaces
it imports, and namespaces they import, and so on.

 9

250
251
252

One good way to foster minimal namespaces is to dictate that there be no circular
dependencies between them. The same statement can be made for SchemaModules.
This rule has been applied successfully in many large systems2.

(No) Circular Dependency Rule: There are no circular dependencies between
SchemaModules. By extension, there are no circular dependencies between namespaces.
This rule is not limited to direct dependencies – transitive dependencies must be taken
into account.

253
254
255
256

257
258
259

 260

261
262

ou can see that there are two kinds of schema module: RootSchema and 263
s that it 264

rt 265
266

e 1-1 correspondence between RootSchemas and namespaces. It 267
268
269

cy Rule. 270

agram 271
272

Here is a depiction of the component structure we’ve described so far. This is a UML
Static Structure Diagram. It uses classes and associations to depict the various concepts
we’ve been discussing:

SchemaModule

RootSchemaInternalModule

1-included 0..*

0..*

-imported0..*

File

1

1

Namespace
11

TypeDefinition

ElementDeclaration1 0..*
1

0..*

Y
“InternalModule”. A RootSchema may have zero or more InternalModule
includes. Any SchemaModule, be it a RootSchema or an InternalModule may impo
other RootSchemas.

The diagram shows th
also shows the 1-1 correspondence between files and SchemaModules. A
SchemaModule consists of type definitions and element declarations.

The diagram unfortunately fails to express the (No) Circular Dependen

Another way to visualize the structure is by example. The following informal di
depicts instances of the various classes from the previous diagram.

2 For example [] introduces the concept of “levelization” as an organizing principal for
very large C++ systems. Those systems, due to the nature of the language often have an explosion of type
definitions (due to the presence of parameterized types). As a result, solutions to the management of type
systems in C++ could be viewed as exemplary for our purposes.

LARGE-SCALE

 10

urn:oasis:names:tc:ubl:
CommonLeafTypes

urn:oasis:names:tc:ubl:
CommonAggregateTypes

urn:oasis:
names:tc:ubl:
Invoice

urn:oasis:
names:tc:ubl
:Order

Common
LeafTypes

InvoiceOrder

Common
Aggregate

Types

Internal
Module

Root
schema

import

include

X:y:z
Namespace

273
274
275
276
277

278
279
280
281

282
283
284
285
286
287
288

The preceeding diagram shows how the order and invoice RootSchemas import the
“CommonAggregateTypes” and “CommonLeaf Types” RootSchemas. It also shows how
e.g. the order RootSchema includes various InternalModules – modules local to that
namespace. The clear boxes show how the various SchemaModules are grouped into
namespaces.

11.1 Message Types
If preferring type definitions over global element definitions is good, why not take it to
the extreme [NDR-MSG-70]. The type of the root element of a UBL document
(message) is a global type (not an anonymous type).

11.2 Number of Message Types
In some cases, various actions in the protocol (create vs. delete) will have totally different
document structure requirements. But in some cases (create vs. update), the content might
be identical. However, we still think we should design in favor of more document types
rather than less, e.g. one for each transmission (a la RosettaNet). It avoids confusion on
the part of developers to have a separate document type for each thing. We might then
decide to optimize some of them by merging them together.

 11

12 Options: Versioning 289
290
291
292
293

294
295

296
297

298

299
300

301
302

303
304

305
306
307

308
309

[XFRNT-VER] does a great job of laying out the problem and solution space for schema
versioning as it is traditionally practiced. The options presented in that document are not
really disjoint rather they are building blocks. If you look at the recommendations in that
document, you will see that the options are used in concert.

12.1 Option XF-1: Change the (internal) schema
“version” attribute

12.2 Option XF-2: Create a “schemaVersion” attribute
on the root element

12.2.1 Usage A: Conformance enforced by validator

12.2.2 Usage B: Conformance enforced by an extra processing
pass

12.3 Option XF-3: Change the schema’s target
namespace

12.4 Option XF-4: Change the name/location of the
schema

12.5 Option 5: Schema Version as Context Classifier
In [] the point was made that schema version might just be another context
classifier.

NDR-MSG-13

13 Recommendations: Versioning
The following table summarizes the tradeoffs between the options.

 Pro Con

Option XF-1: Change the
(internal) schema “version”
attribute

 Not enforced by validator

Option XF-2-A: Create a
“schemaVersion” attribute
on the root element --
Conformance enforced by
validator

 Conformance requires exact
match on version string

Option XF-2-B: Create a
“schemaVersion” attribute

 Extra processing step.

 12

on the root element --
Conformance enforced by
an extra processing pass

Option XF-3: Change the
schema’s target namespace

Schema validation ensures
that an instance conforms to
its declared schema. There
are never two (different)
schemas with the same
namespace URI.

With this approach, instance
documents will not validate
until they are changed to
designate the new
targetNamepsace. However,
one does not want to force
all instance documents to
change, even if the change
to the schema is really
minor and would not impact
an instance.

+Include problems.

Option XF-4: Change the
name/location of the
schema

 Ugh!

Option 5: Schema Version
as Context Classifier

Leverages the context
machinery

Requires the context
machinery

310

311
312
313

314
315

We will use Option XF3 as a starting point for UBL. A UBL namespace URI is divided
into two parts, one that describes the purpose of the namespace and another that captures
version information.

The version information will in turn be divided into major and minor fields. For
example, the namespace URI for the Invoice domain has this form:

316

317
318
319

urn:oasis:names:tc:ubl:schema:Invoice:major-version:minor-version

The major-version field is “1” for the first release of a namespace. Subsequent major
releases increment the value by 1. For example, the first namespace URI for the first
major release of the Invoice domain has the form:

320

321

urn:oasis:names:tc:ubl:schema:Invoice:1:0

The second major release will have a URI of the form:
322

323
324
325

urn:oasis:names:tc:ubl:schema:Invoice:2:0

The distinguished value “0” (zero) is used in the minor-version position when defining a
new major version. In general, the namespace URI for every major release of the Invoice
domain has the form:

326

327
328

urn:oasis:names:tc:ubl:schema:Invoice:major-number:0

Subsequent minor releases begin with minor-version 1. For example, the namespace URI
for the first minor release of the Invoice domain has this form:

urn:oasis:names:tc:ubl:schema:Invoice:major-number:1 329

 13

330
331
332
333
334
335
336
337
338

In UBL, the major-version field of a namespace URI must be changed in a release that
breaks compatibility with the previous release of that namespace. If a change does not
break compatibility then only the minor version need change. Regardless, at a minimum
any change to any schema module constituting the namespace necessitates some change
to the namespace URI. Said another way, once a namespace and its associated name
are published by UBL they shall not change.
This approach yields non-obvious, yet beneficial effects when the interdependencies of
namespaces are considered. UBL is composed of a number of interdependent
namespaces. For instance, namespaces whose URI’s start with
urn:oasis:names:tc:ubl:schema:Invoice:* are dependent upon the common leaf
and aggregate namespaces, whose URI’s have the form

339
340

urn:oasis:names:tc:ubl:schema:CommonLeafTypes:* and 341
urn:oasis:names:tc:ubl:schema:CommonAggregateTypes:* respectively. If either
of the common namespaces changes then its namespace URI must change. If its
namespace URI changes then any schema that imports the new version of the namespace
must also change (to update the namespace declaration). And if the importing schema
changes then its namespace URI in turn must change. The outcome is twofold:

342
343
344
345
346

• 347
348
349

• 350
351

352
353
354

355
356
357
358

359
360
361

362
363
364
365
366

367
368
369
370
371

There is never ambiguity at the point of reference. A dependent schema imports
precisely the version of the namespace that is needed. The dependent never needs
to account for the possibility that the imported namespace can change.

When a dependent is upgraded to import a new version of a schema the
dependent’s version (in its namespace URI) must change.

The question now arises: what is meant by “major” versus “minor”. What kind of change
may a minor version introduce? When is it necessary to incur a new major version?
Why are the answers to these questions even interesting?

To answer these questions you must start by understanding that UBL’s use of major and
minor version number borrows from a long tradition software tradition. In that tradition,
a minor version declared it’s “compatibility” with previous minor versions (of the same
major version).

Since this sort of versioning scheme was applied to libraries, applications and even whole
operating systems, the definition of the term “compatibility” in those various contexts
necessarily varied widely.

Its historical use in shared libraries probably comes closest to the intended UBL use. A
new release of a library (namespace) must specify a new major version number if it
breaks compatibility with the most recent release of the library (namespace). In the case
of object libraries examples of breaking compatibility were 1) calling interface changed
or 2) behavior (semantics) of interface changed.

Implicit in this major/minor scheme is that there is some benefit in breaking the version
information into two pieces. The benefit in the traditional shared library paradigm is that
objects dependent upon those shared libraries could still function properly with
subsequent minor releases. Those minor releases might add new functionality of repair
defects – but they wouldn’t break the “contract” identified by the major version number.

 14

372
373
374
375

376
377

The level of formal specification of this “contract” has varied in historical practice
ranging from informal and undocumented to human-readable interface specification.
UBL leverages XML schema itself as the means to capture this contract. Here’s how it
works…

A minor revision (of a namespace) imports the schema module for the previous version.
For instance, the schema module defining:

378

379

urn:oasis:names:tc:ubl:schema:Invoice:1:2

Must import the namespace:
380

381
382
383

384
385
386
387
388
389
390
391
392

urn:oasis:names:tc:ubl:schema:Invoice:1:1

The 1:2 revision may define new complex types by extending or restricting 1:1 ones. It
may define brand new complex types and elements by composition. It must not use the
XSD redefine element to change the definition of a type or element in the 1:1 version.

The opportunity exists in the 1:2 version to rename derived types. For instance if 1:1
defines Address and 1:2 specializes Address it would be possible to give the derived
Address a new name, e.g. NewAddress. This is not required since namespace
qualification suffices to distinguish the two distinct types. The minor revision may give
a derived type a new name only if the semantics of the two types are distinct.
For a particular namespace, the minor versions of a major version form a linearly-linked
family. Each successive minor version imports the schema module of the preceding
minor version. The process is bootstrapped by the first minor version importing the
namespace defining the major version of interest. E.g.
urn:oasis:names:tc:ubl:schema:Invoice:1:2 imports 393
urn:oasis:names:tc:ubl:schema:Invoice:1:1 which imports 394
urn:oasis:names:tc:ubl:schema:Invoice:1:0. 395

396
397

398
399

400
401
402
403

404
405
406

407
408
409
410
411
412

The outcome of this usage of XSD import is that schema validation enforces these
constraints:

1. forward compatibility of instances: an instance document valid in version M:m
will be valid in any version M:m+n.

2. backward compatibility of reused components: an instance document that is valid
in version M:m may contain constructs defined in M:m-n. Processing logic
implemented in terms of version M:m-n will process those constructs properly
since those constructs are valid with respect to version M:m-n.

3. backward incompatibility of new constructs: new constructs defined in version
M:m will not be valid in M:m-n therefore processing logic would not be expected
to operate on them.

4. potential backward compatibility of extended constructs: Extensions (of complex
types) defined in M:m are valid in M:m-n however, processing logic implemented
in terms of M:m-n will not be aware of extension elements. Care must be taken in
the construction of processing logic to maximize the potential for compatible
extension. In particular, processing logic that copies element content should do so
in such a way that extension elements will be copied too.

 15

413
414
415
416
417
418

419
420
421
422
423
424
425
426

427

428
429
430
431
432
433
434
435
436
437
438

When the changes to a namespace are such that it doesn’t fit conveniently into this
scheme (of importing the previous minor version namespace), a new major version is
created. A new major version does not import previous version namespaces, nor does it
make any representation as to compatibility with old versions. The purpose of the major
version is to free the UBL designers to make significant, incompatible changes to the
library. Even a single incompatible change necessitates a new major version.

It bears stating explicitly again that UBL is composed of a number of interdependent
namespaces. It is not a single monolithic component. While it is expected that UBL
releases will be assigned version identifiers of some sort e.g. UBL 1, UBL 2, this should
not be confused with the versioning of the UBL namespaces discussed in this section. It
would be perfectly reasonable, for example, for a release called “UBL version 2” to
contain namespaces with URI’s whose major version is not 2. Namespace versioning as
described here is a fine-grained, technical mechanism for declaring and enforcing
compatibility between interdependent namespaces over long periods of time (years).

14 Definitions
Backward compatibility – TBD.

BIE – Business Information Entity. A description of a business concept. Represented as an XML schema
by a root schema.

extension a.k.a. customization – specification of new BIE’s with well-defined, enforced relationships to old
BIE’s. Relationship types include: restriction, extension. In some cases processing logic will need to treat
the base and the extension as the same, in other cases it will need to distinguish between them.

Forward compatibility – TBD

Namespace – a name that scopes a related group of XML type definitions.

processing logic – software logic that operates on BIE instances to achieve some business function

root schema – A schema module that directly, or via inclusion of other schema modules, defines all types
for a particular namespace. This is the XML Schema representation of a BIE. (Compare that definition, 439
with the one we came up with last week in Menlo Park: A schema document corresponding to a single 440
namespace, which is likely to pull in (by including or importing) schema modules. Issue: Should a root 441
schema always pull in the "meat" of the definitions for that namespace, regardless of how small it is?) 442

443
444
445

schema document – as defined by the XSD specification – per that specification, a schema document
defines types into exactly one namespace, the target namespace.

schema module – A schema document. A schema module need not define all types in a
particular namespace. Contrast with root schema. (Compare that definition, with last 446
week’s: A "schema document" (as defined by the XSD spec) that is intended to be taken 447
in combination with other such schema documents to be used.) 448

449
450

451

versioning – reification of revisions to BIE’s in order to support coexistence in a system,
of two or more revisions of a BIE.

15 References
LARGE-SCALE Large Scale C++ Software Design,

 16

 17

John Lakos, 1996, Addison-Wesley.

NAMESPACE Namespaces in XML http://www.w3.org/TR/REC-
xml-names/

NDR-MSG-13 schema version as context classifier,
Burcham, Bill; Maler, Eve; a post to
the UBL-NDR mailing list.

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200111/msg00013.html

NDR-MSG-70 Fwd: Straw Man on Namespaces,
Schema Module Architecture,etc.,
Rawlins, Mike; a post to the UBL-
NDR mailing list.

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200111/msg00070.html

NDR-MSG-88 Fwd: Straw Man on
Namespaces,Schema Module
Architecture, etc., Probert, Sue;
Maler, Eve.; a post to the UBL-NDR
mailing list.

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200111/msg00088.html

OASIS-URN-NS IETF RFC 3121 A URN Namespace
for OASIS

http://www.faqs.org/rfcs/rfc31
21.html

SCHEMA-PRIM XML Schema Part 0: Primer http://www.w3.org/TR/xmlsch
ema-0/

SEVEN-TWO The Magical Number Seven, Plus or
Minus Two: Some Limits on our
Capacity for Processing Information,
George A. Miller, Psychological
Review, 63, 81-97.

http://psychclassics.yorku.ca/
Miller/

XFRNT-VER XML Schema Versioning, MITRE
Corporation and xml-dev list group
members.

http://www.xfront.com/Versio
ning.pdf

XML-URI-LIST XML-URI List at w3.org http://lists.w3.org/Archives/Pu
blic/xml-uri/

 452

453

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00013.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00013.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00013.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00070.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00070.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00070.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00088.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00088.html
http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00088.html
http://www.faqs.org/rfcs/rfc3121.html
http://www.faqs.org/rfcs/rfc3121.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://psychclassics.yorku.ca/Miller/
http://psychclassics.yorku.ca/Miller/
http://www.xfront.com/Versioning.pdf
http://www.xfront.com/Versioning.pdf
http://lists.w3.org/Archives/Public/xml-uri/
http://lists.w3.org/Archives/Public/xml-uri/

	Change History
	Summary
	Problem Description
	Assumptions
	Problem Size
	Optimal Component Size

	Options: XML Namespace Identification
	Option 1: Namespace Name = Namespace Location
	Option 2: Namespace Name is OASIS URN namespace

	Recommendation: Namespace Identification
	Recommendation: Schema Location
	Options: Namespace Structure
	Option 1: One Big Namespace
	Option 2: One Namespace Per Type
	Option 3: Core Plus “Functional” Namespaces
	Option 4: Core Plus “Functional” Namespaces Plus

	Recommendation: Namespace Structure
	Into What Namespace Do Extensions Go

	Options: Module Structure
	Option 1: One Module Per Namespace
	Option 2: One Module Per Object Class
	Option 3: Modules based on Human Judgment of Related Functionality of Type Definitions
	Option 4: One Module per Type Definition

	Recommendation: Module Structure
	Message Types
	Number of Message Types

	Options: Versioning
	Option XF-1: Change the \(internal\) schema “v�
	Option XF-2: Create a “schemaVersion” attribute
	Usage A: Conformance enforced by validator
	Usage B: Conformance enforced by an extra processing pass

	Option XF-3: Change the schema’s target namespace
	Option XF-4: Change the name/location of the schema
	Option 5: Schema Version as Context Classifier

	Recommendations: Versioning
	Definitions
	References

