Main Issues:

-- Alignment of ebXML Core Components and HL7 Data Types, CMETs, and/or HL7 Vocabularies.  ebXML Core Components Technical Specification is not in line with 

the HL7 data types, CMET's or HL7 identified vocabularies that give 

semantic clarity to instances which are representations of the "abstract" 

HL7 RIM.  HL7 and UBL group should attempt to harmonize these structures to maximize semantic interoperability

-- proposed UBL approach for developing XML vocabularies looks like much of the early (circa 1997) HL7 work in which we had not layered content components, structured components, and presentation/message components.  Our experience is that this layering is essential.   The class diagram of ‘order’ is very cluttered (it looks like the RIM circa 1997, or a more recent RMIM (Reference Message Information Model) for a set of order messages.)

-- How does UBL plan to harmonize its registry approach with the goals of UDDI.  They seem to have similar objects although the UBL effort seems more structured.  Users of HL7 messages will need to utilize the contents of UBL-type registries and will clearly depend on web services to maximize efficient information interchange and coordination of applications across the continuum of care.

-- The ebXML Message Specification Service appears to be of immediate use the HL7 v2.x and v3 message development.  However, the maturity of the remaining UBL materials does not appear to be sufficient for immediate application.  An initial productive effort would be to produce a mapping profile that would enable the encapsulation of HL7 composite message payloads in ebXML MSS SOAP headers.

-- The Template Acceleration Group is working with the Conformance SIG and people from NIST to build a test implementation of an ebXML-based registry to evaluate the correctness and completeness of our current template and conformance metadata.

Some specific comments on the Order Class Diagram:

-- The concepts Order, Quote, LineItems, Summary, Pricing compare to the HL7 generalized ‘Act’ class

-- They don’t seem to have a formal concept for building the semantic linkage between Acts, i.e. the HL7 class ‘ActRelationship.’  The LineItem class is an example of where an ActRelationship-type class might make things more powerful.

-- Specifically in LineItem: the attributes buyerLineId/sellerLineId vs. 

buyerParentLineId and sellerParentLineId look suspicious. This reminds

me of HL7 v2.x placer-order-number and filler-order-number and parent

placer/filler order number in the OBR segment. In v3.x we have gotten

rid of this intermingling of order as placed vs. order as executed making

them separate objects, and still keeping the parallel, defining them in

the same class and using the mood code of Act to distinguish the various instances. (NOTE – ‘mood code’ in HL7 is an instance-specific attribute that defines which ‘business state’ an object is in.  One instance has one and only one invariant mood code over its lifetime.  The complete business cycle is manifest by multiple linked instances of an class, each in a particular mood, the composite of which defines the complete set of business states.) 

-- These many Party boxes like BuyerParty, SellerParty, InvoiceeParty etc

remind me of Participations. However, on closer look, they have confused Role and Entity and Participation (concepts that we struggled with for quite a while.)  Our disambiguation of Role and Participation was a watershed moment in our collective understanding of how to model these kinds of interactions.   It's useful to

distinguish between information about the party that is dependent on the

transaction, vs. information about the party that is independent of the

transaction. And then, of course, the same entity can play different roles.

So, they might remodel their Order diagram as follows:

   Order -1--0..1- InvoiceParty -0..*--1- Role -0..1--1- Entity

Then they have Party vs. ContactParty, which we have very nicely solved

using the Role that has two entities, the scoper and the player. This

would allow the contact entity on one end and the organization entity

for which the contact is an agent would be on the other side of the role.

   Organization

    Entity

       | scoper

       1

       |

      0..*

       |

     Party  -----1---0..*- Buyer -1------1- Order

   Role (Agency)        Participation

       |

      0..*

       |

       |

       1

       |  player (the agent)

     Person

I really think that this model could be cast as an R-MIM to the HL7

RIM without much loss. The discipline that it would require to use

only our Entity-Role-Participation-Act-ActRelationship patterns would

not place too much of a burden on their thinking.  Also, I think the UBL approach would benefit from a more abstract model.  For example, they have modeled Purchase Order….but what about other transactions?  Will they model each from scratch?  The RIM at its highest level of abstraction is domain independent.


I note that the attributes are all untyped. But I like it that the

designer seems to have some abstract types in mind. They didn't

try to make this a data element map where attributes that belong

together are all flattened out (e.g. code + code system, price

value + currency unit, etc.) This is good.

Here is some more detail on their CoreComponentTypes.xsd schema

GENERAL:

In general, I would advocate that no formal data is put into an

XML element's text node(s) content. For instance, instead of

<TaxAmount currencyId="USD">3.14</TaxAmount>

would recommend

<TaxAmount currencyId="USD" value="3.14"/>

rationale, many reasons:

1) save bandwidth otherwise required for closing tags,

2) makes the content more readable because the

    payload-data:tag-date ratio is more on the side of payload.

3) it is sometimes undecidable what component has the priviledge

    of being the text-node and which components should stay as

    attributes. Example, in a code data type consisting of code-

    symbol, code-system, what would be the text node? The code

    symbol? Well, what if you add a display-text component? Now

    it's the display-text and the code symbol goes in attribute?

    Well, what if you now need original-text (user-entered-text)?

    Now that is the text node?

4) Use of element's text-nodes may require or evolve into mixed

    content as soon as there are also sub-elements to an element.

    Mixed content cannot be controlled by schemas and it can

    lead to multiple text nodes. For instance mixed content would

    be this:

<TaxAmount>3.14

   <currency code="USD" codeSystem="ISO-Currency"/>

</TaxAmount>

    now anybody could send this instance:

<TaxAmount>3.14

   <currency code="USD" codeSystem="ISO-Currency"/>

     159265

</TaxAmount>

   and what would that mean? Our rule in HL7 are these:

   - terminal formal data (e.g., numbers, code-symbols) go into

     attributes

   - non-terminal formal data (composite data types) use elements.

   - only free text or bulk opaque data goes into an element's

     text node(s), using mixed content for example to add style

     tags to free text (e.g. HTML for emphasis, strong, etc.)

5.) text nodes cannot be defaulted or fixed in the schema. But

     there are good possible uses of formal data to be fixed,

     codes, codeSystem identifiers, even numbers.

currencyId:

Do not confuse the terms "Id" or "Identifier" with "Code" or "Symbol".

An identifier should identify an instance or individual data record.

Conversely a "code" or "symbol" denotes a concept. Currency code is

a concept. I agree that currency can stay as an attribute and need

not be a CodeType.

CodeType:

   CodeContent - as explained above, a code symbol as content text

   nodes may not be a good choice. Make it an attribute called 'code'.

   listId suggest name codeSystem

   listAgencyId would discourage this construct. The listId and listAgencyId

   can be combined to be a globally unique identifier. There is no value in

   breaking these apart. In HL7 we use OIDs for those. In the WEB age, I guess

   people would use URIs. I'm not a fan of the URI identification scheme,

   because it's too willy-nilly.

   listVersionId: we made this a string called codeSystemVersion. "Id"

   implies a level of formality that these version numbers do not have

   in practice. Also, versioning is a mixed blessing. This attribute

   is of little practical use (we have it too, but it's important not

   to suggest that a code symbol can only be understood with the exact

   same versionId of the code system.)

   name - what name? Name of code system or display name of concept? If

   the latter, why is that nor the text node of the CodeType? Suggest

   calling it displayName and keep it as an attribute (my question was

   rhetortical to underline the problems with making any formal or

   fixed data into text nodes.

   languageCode: don't think that makes sense for codes. O.K. the

   display name can be in a certain language. But it isn't so

   important unless you allow for multiple display names selected

   by language. Suggest lowering the profile for language code to

   just allow an xml:lang attribute but not advertize its use.

IdentifierType

   suggest calling it "InstanceIdentifier" to make it clear that

   this identifies an individual thing or data record.

   Would not use different schemes. Would not use the agency name

   as anything functional. We have:

   * root : a globally unique root. OID. Nowadays we allow UUIDs too.

   The point is that this must be a totally globally unique string,

   no implied context.

   * extension : a string that means something as part of the root.

   Extension is not needed if the whole identifier is in the root

   (e.g., if you identify by UUID or URI.)

   * assigninAuthorityName : an optional component for human

   consumption only. No computing should make a decision using this.

   languageCode: do not use this here. Makes no sense for instance

   identifiers.

DateTimeType / DateType / TimeType:

   I realize that this is a common way of doing it, but think that

   HL7's approach to timestamps and precision and the entire

   conceptual approach to time and timing is far superior. On the

   surface at least DateTimeType and DateType should be made one

   type with a simple digit string that can be truncated from the

   RIGHT, i.e., always starts with the 4 digits year, but only

   shows as many more digits as are desired. This contains the

   notion of Date (without time of day) and it allows for time

   of day to be specified only to the minute (not implying 00

   seconds.)

   BYW: the HL7 timestamp format without decorator characters is

   valid ISO 8601 reading. HL7 v3 conceptualization of time and

   timing goes beyond ISO 8601 and is superior to it (it's rooted

   in physical time and a functional model of a calendar not just

   in intuition about calendars as is ISO's.)

Year, YearMonth, MonthDay ... etc. These types have no semantics

   Do you know what exactly they mean? How useful are they?

   Suggest HL7 v3 conceptualizations.

FrequencyType: what does it mean? Can you say "every second

   tuesday from 3 to 4:30 PM between meorial day and labor day?

   Probably not. We can, and we even know what it means.

PeriodGroup, RecurrenceGroup etc. I can see why one would

   prefer this over HL7's more general approach, however, the

   two can conceptually be mapped. Just think that the HL7

   conceptuallization is more general, and better defined.

IndicatorType: why not stick to Boolean? But it's just an issue

    of name.

GraphicContent: suggest making this a multimedia content type,

   modeled after MIME. See the HL7 v3 ED data type.

   BTW: the word "graphic" seems to be chic in U.S. english

   these days. I find it weird. To me it should be "Graphics"

   as it has always been (Graphic Content sounds like you

   should send you children out of the room.) If you really

   mean "image" use that. If you mean "diagram" use that. Most

   likely, however, you will want any "multimedia".

PictureType: == GraphicType??? --> suggest making it all just

   multimedia type.

MeasureType:

   suggest "PhysicalQuantity" with value and unit attributes.

   Discourage from use of formal data in element text node.

QuantityType:

   interesting that you shoul have both Measure and Quantity.

Seems like MeasureType matches our PhysicalQuantity best and

Quantity is more general, allowing such weird count-nouns

as unit (e.g., boxes, pieces, etc.)

   See HL7's PQ and PQR types. Also consider the Unified Code

   for Units of Measure that has semantics beyond just a list

   of terms.

NumericType:

   May be want to distinguish integer from real, that can be

   conceptionally important and has an impact on implementation.

DurationType: this is conceptually nothing but a physical

   quantity in the dimension of time. Discourage from making

   this anything special (except for a constraint on physical

   quantity that limits units to s, h, min, d, mon, a, etc.

PercentContent: discourage. Use a simple real instead or

   phsycial quantity with unit "%".

ValueType: what's that for? Difference to numeric? Probably

   none.

RateType: discourage. Either you mean Ratio with numerator and

   denominator (strongly suggested for price values) or you don't

   need this as it can be a Real or PhysicalQuantity.

NameType: clarify the relation with a person's name. Why not

   just String?

this is all of the data types schema. In addition we have

extensions for uncertainty and other things that may only

be necessary in scientific (incl. medical) data domains.

Finally, what are the rules by which the XML schema is derived

from the information model? Could be useful to tell them

more detail about our model based development in general and

our ways to get at a schema in particular.

