UBL Comment/Proposal 1

Dividing the Qualifiers of Object Class and Property Terms into context driver and adjective parts (ref. Line 1348/ 1434)

Suggestion from Mike Adcock (in memory)

Mike suggested that the Qualifiers of Object Class and Property Terms should be divided into two parts: “Context Driver” and “Adjective” Qualifiers. The „Context Driver“ Qualifiers are values from one of the CCTS context driver categories. And the „Adjective“ Qualifier is any other value that qualifies the object class or property term noun. The “Noun” is the main part of each object class or property term.
On experimentation of this method UBL has found that this method of including an additional “Adjective” column results in extra semantic clarity in defining property terms and supports the reuse of components as well as the harmonization process.

It is proposed that if adopted Property Term “Adjectives” could be separated in the dictionary entry name by a dash and white space from the noun of its property term.

For example:

Order Cancellation. Required- Response. Indicator
Transport Equipment. Provider- Type. Code
Transport Equipment. Owner- Type. Code
Item. Pack- Quantity. Quantity

Item. Pack- Size. Quantity
For example:
Item. Maximum- Quantity. Quantity
The BIE, „Maximum Quantity“ – „Maximum“ is not a specific expression of Context Driver, so we define the Property Term as „Maximum Quantity“ with „Maximum“ as the adjective and „Quantity“ as the noun.
or
Order Cancellation. Required- Response. Indicator

The Order Cancellation document had a BBIE, „Response Required“. The noun is „Response“ and the adjective is „Required“ – so the revised name is now „Required Response“. This is more meaningful and consistent with other Property Terms.

UBL Comment/Proposal 2

Definition of data types (ref. Lines 1587 – 1667)

It is not clear, when a data type must be defined. Every BCC or BBIE could be described by different characteristics and restrictions.

For example the length of „Buyer_ Product. Type. Code“ is a fixed length of 3 characters and the lenght of „Seller_ Product. Code“ is a variable length with the minimum lenght of 2 characters and a maximum length of 5 characters. It is necessary now, to define two „Data. Types“ for this two BBIEs? What must be the name of this Data. Types?

There are two possibilities to define the name: a.) using exactly the same names from each BBIE like „Buyer Product Type_ Code. Type“ or b.) but the restricition information into the name of this Data. Type, like „3Characters_ Code. Type“. The second possibility is not very advantageously, because it’s including some none semantical information.

This problem will be more complicated if we would like to differntiate some identifier schemes or code lists. For example it existing more different versions of “Internationcal Classification of Disease”. This different versions have different code lists. Normally we define the different versions by using the specific supplementary components (exp. Code List. Version. Identifier). But the code lists will be enumerations and enumerations are restrictions of Data Types. That means, we have to define for every code list or identifier scheme a new Data Type. If its happen so, what is the naming convention of this Data Types?. Should we put all supplementary information which are necessary for the distinction into the Data Type name? For example: “ICD_ V10_ Disease Classification_ Code. Type”. This is not a very efficient way for naming Data. Types and makes also the use of supplementary components needless.

UBL Comment/Proposal 3

Clarification of the use of data type qualifiers in a BCC and BBIE (ref. Lines 1629 – 1637)

It is nor very clear, how we can use the Qualifiers of Data Types in the specific BCCs or BBIEs. The best explanation could be done by the following examples:

Name_ Text. Type

Picture_ Binary Object. Type

Country_ Code. Type

Language_ Code. Type

According to the rules of the CCTS V1.9, the qualifiers of the two Data Types “Name_ Text. Type” and “Picture_ Binary Object. Type” will be used for the representation term of a BCC or BBIE like

Person. Surname. Name

Person. Passport. Picture

	Comment from Tim:

What I think we should be saying is that there is an overlap of definitions between data types and representation terms. If ever we needed to qualify a Data type it be the same as the Representation Term qualifier (which UBL never uses anyway). As i said before I think we could happily exist with all Representation Terms being Data Types and thats it – they are effectively to same thing. Can anyone come up with an example of why these would be different?

None of this convoluted problems would exist if we simplifed the meta-model. The name of the BIEs gives the semantics to identify a consistent, logical piece of information. The concern about specific physical characterics is confusing the real issues (see my comments for Proposal 2)

This adjectives should be separated in the dictionary entry name by a dash and white space from the noun of its property term.

But what is with the qualifiers of “Country_ Code. Type” or “Language_ Code. Type”. Can we use these qualifiers for the property terms of each BCC or BBIE or will this be qualifiers representation terms only?

And if we have to define a new data type for every specific physical characteristic (like length, regular patterns etc.) of a BCC or BBIE, the names of these data types will become longer and will have included many more qualifiers. How do we have to use these qualifiers in the names of BCCs and BBIEs? Do we represent each qualifier term as part of the object class term, property term, their qualifiers and representation term of each BCC/BBIE? Can the name of data type be different as a dictionary entry name of BCC/BBIE? If the names different, a type awarness is always necessary. Because, we have to know on which Data. Type every BCC/BBIE will be based.

UBL Comment/Proposal 4

Clear distinction between Identifier and Codes (ref. Line 2245 through to Table 8-1)

Suggestion from Mike Adcock (in memory)

The distinction in the definition of „Code. Type“ and „Identifier. Type“ is not clear enough.

The current definition of “Identifier. Type” is: “A character string to identify and distinguish uniquely, one instance of an object in an identification scheme from all other objects in the same scheme together with relevant supplementary information.”

The current definition of “Code. Type” is: “A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute together with relevant supplementary information. Should not be used if the character string identifies an instance of an object class or an object in the real world, in which case the Identifier. Type should be used.”

This definitions have the following problems:

· „code“ is according some dictionaries normally a synonym of „identifier“.

· Everthing could be an object. Than must be everthing identified by an identifier.

Mike Adcock made a very good suggestion to UBL for the clear and unambiguous definition of code and identifier. The definitions are:

· Code. Type – It is character string (letters, figures or symbols). It can be used for all elements that should enable coded value representation in the communication between partners or systems, in place of texts, methods, or characteristics. The list of codes should be relatively stable and should not be subject to frequent alterations (for example, CountryCode, LanguageCode, ...). Codelists should have versions.
Two examples of codes would be:
· Ones from a publicly available code list maintained by an agency generally significant on a world scale, such as ISO, UN, WTO, WCO etc.
· Ones from a community-based and -maintained code list, the community being as small or as large as is necessary for the purpose. Such a list is kept within the community, and the codes could be mis-interpreted outside the community if its source is not known.
	Comment from Tim:

A code is a representation of some thing, normally text, abbreviating it to a shortened, encoded form, and usually of the same consistent length within a code list. In essence it is an abbreviation.

The aim with a code is that there should generally be one list of codes for the same concept. It doe not always work out that way, but it would be the ideal situation

Examples are:

· Country code
instead of the country name

· Currency code
instead of the name of the currency

· Reason code
instead of a string of words

· Location code
instead of the name of a place and its country

· Commodity code
instead of a description which most probably would have 'including' and 'excluding' phrases

· Identifier. Type – A character string to identify and distinguish uniquely, one instance of an logical or real object in an identification scheme from all other objects in the same scheme together with relevant supplementary information. Instead of being ‘restricted’, the number of forms should constantly increase (for example, as for Product Identification, Order Identification,...). New Identifiers are always being added and the list of identifiers cannot be versioned.

	Comment from Tim:

A code is a representation of some thing, normally text, abbreviating it to a shortened, encoded form, and usually of the same consistent length within a code list. In essence it is an abbreviation.

The aim with a code is that there should generally be one list of codes for the same concept. It doe not always work out that way, but it would be the ideal situation

Examples are:

· Country code
instead of the country name

· Currency code
instead of the name of the currency

· Reason code
instead of a string of words

· Location code
instead of the name of a place and its country

· Commodity code
instead of a description which most probably would have 'including' and 'excluding' phrases

In some cases it may be that it is not possible to distinguish between “Identifier” and “Code” for coded values. This is particularly applicable if an object is identified uniquely using a coded value and this coded value also replaces a longer text. For example, this includes the coded values for “Country”, “Currency”, “Organization”, “Region” and so on. If the list of coded values proves to be consistent, then the”Code. Type” can be used for the individual coded values.

Examples:

· Person identifier
an identification given or taken by a person, such as ther name, social security number, etc

· Country name
the unique name of a country

· Item identifier
an identification given to an article, an item, a product distinguishing these down to the level of detail that it is a particular make/model of car, of a window, can of beans etc. And here is a subtlety. Often this identification was called a 'product code' or "product number'. We need to keep these as synonyms but keep to the preferred term 'item identifier' to avoid misinterpretation. This is an example of an identifier that identifies a set of things.
· Serial No. Identifier
The unique identification given to a single instance of an article, item, product etc. This allows the unique identification of one particular car or part of a car, such as a chassis number, engine number etc. As can be seen from the example, this is often known as 'a number' although it may actually comprise letters and symbols as well as numeric characters. This is an example of an identifier that identifies a unique instance of something within a set of things. For example one specific window of a particular design and construction.
· Bank Account identifier
The unique identification of a single account at a bank. Again, this is commonly known as an Account No. although it may actually comprise letters and symbols as well as numeric characters.
UBL Comment/Proposal 5

New Supplementary Components (ref. Line 2245 and Table 8-1)

a) In the case of Code. Types

The supplementary code “Code List. Agency. Identifier” represents the unique identifier from the responsible agency of the specific code list. This identifier comes from the code list of the UN/CEFACT data element 3055. This code list does not have all agencies from every code list included within it.

The problem is now, how we can distinguish a code list and makes this interoperable without any manual agreements beforehand. The current supplementary components „Code List. Agency. Name“ and „Code List. Uniform Resource. Identifier“ are not very helpful. Because the names in „Code List. Agency. Name“ are freely spellable and needs a manual agreement between the exchanging parties and „Code List. Uniform Resource. Identifier“ are not very stable or can

not be always defined as an invokable URI. Therefore it makes sense to represent the responsible agency by other unique and international code lists or identifier schemes, like the DUNS number.

	Comment from Tim:

We resolve these by allowing for a Property Term of “Identification” . So we can have “Country. Identification. Code”.

I think we should use this section to state our official policy. This has worked to date and is a reflection of our currently library.

The problem identified by UBL is, how can we fully distinguish any code list and make this interoperable without any mutual trading partner agreements being in place beforehand. The current supplementary components “Code List. Agency. Name” and “Code List. Uniform Resource. Identifier” are not sufficient because a) the names in “Code List. Agency. Name” are free text and require a manual agreement between the exchanging parties and b) the “Code List. Uniform Resource. Identifiers” are not very stable nor can they always be defined as an invokable URI. Therefore it makes sense to represent the responsible agency by other unique and international code lists or identifier schemes, like the DUNS number.

To doing this, two further supplementary components are necessary:
· Code List. Agency. Scheme. Identifier– Identifies the ID schema that represents the context for identifying the agency. Note: This attribute is necessary, if the value in Code List. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Code List. Agency Scheme Agency. Identifier– Identifies the agency that listAgencySchemeID manages. This attribute can only contain values from DE 3055 (excluding roles).
Note: This attribute is necessary, if the value in Code List. Agency. Identifier is not based on UN/CEFACT data element 3055.

The following examples illustrate the precise distinction of code lists by utilising these proposed extra supplementary components:

a.) Standardized codes whose code lists are managed by an agency from the code list DE 3055.

	Code
	Standard

	Code List. Identifier
	Code list for standard code

	Code List. Version. Identifier
	Code list version

	Code List. Agency. Identifier
	Agency from DE 3055 (excluding roles)

	Code List. Agency Scheme. Identifier
	-

	Code List. Agency Scheme Agency. Identifier
	-

b.) Proprietary codes whose code lists are managed by an agency that is identified by using a standard.

	Code
	Proprietary

	Code List. Identifier
	Code list for the propriety code

	Code List. Version. Identifier
	Version of the code list

	Code List. Agency. Identifier
	Standardized ID for the agency (normally the company that manages the code list)

	Code List. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Code List. Agency Scheme Agency. Identifier
	Agency DE 3055 that manages the standardized ID ‘listAgencyId’

c.) Proprietary codes whose code lists are managed by an agency that is identified without the use of a standard.

	Code
	Proprietary

	Code List. Identifier
	Code list for the proprietary code

	Code List. Version. Identifier
	Code list version

	Code List. Agency. Identifier
	Standardized ID for the agency (normally the company that manages the code list)

	Code List. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Code List. Agency Scheme Agency. Identifier
	‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary codes whose code lists are managed by an agency that is specified by using a role or that is not specified at all.

The role is specified as a prefix in the tag name. listID and listVersionID can optionally be used as attributes if there is more than one code list. If there is only one code list, no attributes are required.

	Code
	Proprietary

	Code List. Identifier
	ID schema for the proprietary identifier

	Code List. Version. Identifier
	ID schema version

	Code List. Agency. Identifier
	-

	Code List. Agency Scheme. Identifier
	-

	Code List. Agency Scheme Agency. Identifier
	-

b) In the case of Identifier. Types

The supplementary code “Identification Scheme. Agency. Identifier” represents the unique identifier from the responsible agency of the specific identification scheme of the identifiers. This identifier comes from the code list of the UN/CEFACT data element 3055. This code list does not have all agencies from every Identification Scheme in it.

The problem is now, how we can distinguish a identification scheme and makes this interoperable without any manual agreements beforehand. The current supplementary components „Identification Scheme. Agency. Name“ and „Identification Scheme. Uniform Resource. Identifier“ are not very helpful. Because the names in „Identification Scheme. Agency. Name“ are freely spellable and needs a manual agreement between the exchanging parties and „Identification Scheme. Uniform Resource. Identifier“ are not very stable or the can not be always defined as an invokable URI. Therefore it makes sense to represent the responsible agency by other unique and international code lists or identifier schemes, like the DUNS number.

To doing this, two further supplementary components are necessary:

· Identification Scheme. Agency.Scheme. Identifier – Identifies the ID schema that represents the context for identifying the agency. Note: This attribute is necessary, if the value in Identification Scheme. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Identification Scheme. Agency Scheme Agency. Identifier – Identifies the agency that listAgencySchemeID manages. This attribute can only contain values from DE 3055 (excluding roles).
Note: This attribute is necessary, if the value in Identification Scheme. Agency. Identifier is not based on UN/CEFACT data element 3055.

The following examples illustrates the precise distinction of Identification Schemes by using these proposed extra supplementary components:

a.) Standardized Identifiers whose ID schema is managed by an agency from code list DE 3055.

	Identifier
	Standard

	Identification Scheme. Identifier
	ID schema for the standard identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	Agency from DE 3055 (excluding roles)

	Identification Scheme. Agency Scheme. Identifier
	-

	Identification Scheme. Agency Scheme Agency. Identifier
	-

b.) Proprietary identifier whose ID schema is managed by an agency that is identified using a standard.

	Identifier
	Proprietary

	Identification Scheme. Identifier
	ID schema for the proprietary identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	Standardized ID for the agency (generally the company that manages the proprietary identifier)

	Identification Scheme. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Identification Scheme. Agency Scheme Agency. Identifier
	Agency from DE 3055 that manages the standardized ID ‘schemeAgencyId’

c.) Proprietary identifier whose ID schema is managed by an agency that is identified without using a standard.

	Identifier
	Proprietary

	Identification Scheme. Identifier
	ID schema for the proprietary identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	Standardized ID for the agency (generally the company that manages the proprietary identifier)

	Identification Scheme. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Identification Scheme. Agency Scheme Agency. Identifier
	‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary identifier whose ID schema is managed by an agency that is specified by a role or is not specified at all.

The role is specified as a prefix in the tag name. Optionally, schemeID and schemeVersionID can be used as attributes if more than one ID schema exists. If there is only one ID schema, then no attributes are required.

	Identifier
	Proprietary

	Identification Scheme. Identifier
	ID schema for the proprietary identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	-

	Identification Scheme. Agency Scheme. Identifier
	-

	Identification Scheme. Agency Scheme Agency. Identifier
	-

	Comment from Tim:

I agree that we cannot have a pre-defined set of Agencies for Identifiers or Codes. How else can we allow things like personalised Buyer or Seller coding and identification schemes?

New Core Component Types – Line 2245 – Table 8-1

UBL Comment/Proposal 6

New Core Component Types (ref. Line 2245 and Table 8-1)

UBL has identified the requirement for the following additional CCTs:

a) Rate. Type

Rate. Type is a value expresses the ratio per specified unit and a rate basis unit.

Rate. Type can be used to represent a value of a physical or quantitative dimension relative to a quantitative or measure unit, for example kilometers per hour, kilogram per meter, pieces per time, count per minute.

The content component of Rate. Type includes the rate value and will be represented in decimal.

RateType comprises the following supplementary components:

· Rate. Unit. Code – The units of a rate are represented in accordance with UN/ECE Recommendation #20.

· Rate. Basis Unit. Code – The basis unit of a rate are represented in accordance with UN/ECE Recommendation #20.

· Rate Unit Code. List Version. Identifier The version of unit code list and basis unit code list. Note: The default version is the 2002 version of the set of Common Codes from UN/ECE Recommendation 20.

Examples are:

Vehicle. Maximum- Speed. Rate

(exp. Vehicle. Maximum- Speed. Rate

Content= “20”

Rate. Unit. Code= “KM”

Rate. Basis Unit. Code= “HUR”
The Rate. Type can not be used for exchange or discount rates of monetary amounts. Because the unit codes representing only the physical (time, measure and quantity) codes. The rates for amounts must be created by the definition of ACCs or the use of the CCT “numeric”.
	Comment from Tim:

Can you explain how we would use this is our current library. The examples we have of ‘rates’ are…

Exchange Rate. Calculation_ Rate. Numeric

Payment Terms. Settlement Discount_ Rate. Numeric

Payment Terms. Penalty Surcharge_ Rate. Numeric

Tax Category. Rate_ Percent. Numeric

Category Total. Rate_ Percent. Numeric
Who would we apply your new type (and its related Representation term) to the above?
In your email you did not answer my question about what makes Percent and Rate different. A Percent is a refinement of a Rate – so if Rate is a CCT, why can’t Percent be as well?

c) URI. Type

“URI. Type” is a digital and unique address that is represented by the Unified Resource Identifier (URI) (compare IETF RFC 1738, IETF RFC 1808, IETF RFC 2396 and IETF RFC 2732).

“URI. Type” is a Core Component Type that can be used to represent global data types (GDTs) for e-mail addresses, Web pages, as well as documents or information found on Web pages.

The content component of URI. Type is based on the convention of the URI scheme. The syntax of this scheme is specified in the recommendation IETF RFC 2396. A URI comprises the schema (in other words, how a resource is to be accessed) followed by a colon and the schema-specific part. The schema-specific part is in each case only of importance to the service that is connected with the respective schema. A resource can have multiple URIs. On the one hand, reflection can mean that a resource can be physically located in multiple positions, and on the other can be accessed by using different protocols that are specified by the schema name. Example: A file can be referenced by http and ftp.

URI. Type comprises the following supplementary components:

· URI. Language. Code – If the attachment is a document or text then the language of the attachment can be represented correspondingly IETF RFC 1766 or IETF RFC 3066.

· URI. Protocol. Identifier – If the URI schemas above are not sufficient to determine the protocol of the address, then an additional URI schema in accordance with the specifications of IETF RFC 2717 can be requested. It is also possible to define the corresponding protocol type by using the additional specifications in the “protocolID” attribute. The code from the code list UN/EDIFACT DE 3155 “Communication Address Code Qualifier” is used for this type of protocol:

· AB – SITA (Communications number assigned by Societe Internationale de Telecommunications Aeronautiques (SITA)).

· AD – AT&T mailbox - AT&T mailbox identifier.

· AF – U.S. Defense Switched Network - The switched telecommunications network of the United States Department of Defense.

· AN – O.F.T.P. (ODETTE File Transfer Protocol) - ODETTE File Transfer Protocol.

· AO – Uniform Resource Location (URL) - Identification of the Uniform Resource Location (URL) Synonym: World wide web address.

· EM – Electronic Mail . Exchange of Mail by electronic means (SMTP).

· EI – EDI transmission - Number identifying the service and service user.

· FT – FTAM - File transfer access method according to ISO.

· GM – GEIS (General Electric Information Service) mailbox - The communication number identifies a GEIS mailbox.

· IM – Internal mail - Internal mail address/number.

· SW – S.W.I.F.T. - Communications address assigned by Society for Worldwide Interbank Financial Telecommunications s.c.

· XF – X.400 address - The X.400 address.

· The code is missing for the following protocols (the respective code suggestions are to be submitted to the UN/CEFACT Forum for standardization purposes):

· ms – Microsoft Mail (Example: MM)

· ccmail – CC-Mail (Example: CC)

	Comment from Tim:

We did discuss this at the face-to-face (it was raised with respect to Code sets, but the same principle applies). Our conclusion was that this Type would place too much restriction of the content. It means all implementations and instances must know the URI expressions of their addresses, etc.. So even if it were added, I doubt UBL would use it.

a) Meta Language. Type

 „Meta Language. Type“ is a core component type which can be used for the representation of values by other meta languages, which will be based on example of different XML standards or EDI standards.

It is very useful to have a core component type for carry specific kind information in other meta languages. Because some meta languages are the standard language for the expression some specific information. For example is „MathML“ a very common language for the representation of mathematical formulas or „SVG“ will be used very often for the representation of vector graphics. etc.

The content component of „Meta Language. Type“ includes an instance based on a specific meta language.

Following supplementary components are necessary:

· Meta Language. Type. Code – Describes the format of the binary content if the format from “mimeCode” is ambiguous.

· Meta Language. Type. Name - The textual equivalent of the type code.

· Meta Language. Version. Identifier – Identifies the version of a meta language.

· Meta Language. Agency. Name – The name of the agency that manages this meta language.

· Meta Language. Agency. Identifier – Identifies the agency that manages this meta language. The default agencies used are those from DE 3055 but roles defined in DE 3055 cannot be used.

· Meta Language. Agency Scheme. Identifier – Identifies the ID schema that represents the context for identifying the agency. Note: This attribute is necessary, if the value in Meta Language. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Meta Language. Agency Scheme Agency. Identifier – Identifies the agency that listAgencySchemeID manages. This attribute can only contain values from DE 3055 (excluding roles). Note: This attribute is necessary, if the value in Meta Language. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Meta Language. MIME. Code – Identifies the type of medium (image, audio, video, application) of the meta language in accordance with the MIME type definition in IETF RFC 2046 or the MIME type recommendations based on it.

· Meta Language. Character Set. Code – Identifies the particular character record of text data of the meta language.

· Meta Language. Encoding. Code – Specifies the decoding algorithm of the meta language.

· Meta Language. Language. Identifier – The identifier of the language used in the corresponding instance of the meta language.

· Meta Language. Uniform Resource. Identifier – This identifier defines the Uniform Resource Identifier that identifies where the instance is located.
· Meta Language. Scheme Uniform Resource. Identifier – The identifier defines the Scheme Uniform Resource Identifier that identifies where the scheme of the specific meta language is located.
UBL Comment/Proposal 7

New Representation Terms (ref. Lines 2257-2258 and Table 8-3)

UBL identified the requirement for the following additional secondary RTs.

	Comment from Tim:

We did discuss this at the face-to-face (it was raised with respect to Code sets, but the same principle applies). Our conclusion was that this Type would place too much restriction of the content. It means all implementations and instances must know the URI expressions of their addresses, etc.. So even if it were added, I doubt UBL would use it..

a) Date Time. Type

· Day - It is a gregorian day that recurs, specifically a day of the month such as the 5th of the month. Arbitrary recurring days are not supported by this datatype. The ·value space· of gDay is the space of a set of calendar dates as defined in § 3 of [ISO 8601]. Specifically, it is a set of one-day long, monthly periodic instances.

· Duration – It represents a duration of time. The ·value space· of duration is a six-dimensional space where the coordinates designate the Gregorian year, month, day, hour, minute, and second components defined in § 5.5.3.2 of [ISO 8601], respectively. These components are ordered in their significance by their order of appearance i.e. as year, month, day, hour, minute, and second.

· Month – It represents a gregorian month that recurs every year.

· Month Day – It is a gregorian date that recurs, specifically a day of the year such as the third of May.

· Year – This representation term represents a gregorian calendar year.

· Year Month – This representation term represents a specific gregorian month in a specific gregorian year.

b) Numeric. Type

· Factor – It represents a numerical factor for mathematical reasons.

· Float – It represents long numerical string in a specific convention. It corresponds to the IEEE single-precision 32-bit floating point type [IEEE 754-1985].
· Integer – It represents a number without any decimals.

c) Text. Type

· Description – A free form field that can be used to give a text description of an object.

· Note – A free form field that contains supplementary information
d) Measure. Type

· Size – A measure on a graded scale (eg. shoe size, clothing sizes)
· Weight – A measure of mass
· Volume – A measure of dimension
UBL Comment/Proposal 8

Use of ACCs/ABIEs as Semantic and List Containers (ref Line …)

Some of the ACCs as well as the ABIEs could be defined as semantic or list containers as described below.

a) Semantic Container

A semantical container is an ACC/ABIE, which has semantically equivalent information as its BCCs/BBIEs or ASCCs/ASBIEs. This components with the semantically equivalent information should be based on the same representation term, if they are BCCs/BBIEs, or on the same object class term. of ACCs/ABIEs, if they are ASCCs/ASBIEs.

This semantical containers help the modeller to define a clear and common structure of business information. A semantical container can be used for templates within empty business information that the modeller knows with which kind of components he have to fill up the specific business information or business document. Furthermore, the same semantical containers can be used in different business information or business documents.

Any ACC/ABIE which would be defined as a semantic container should be distinct from all other ACCs/ABIEs by means of being specified a different name (such as the extension “. Container” instead of “. Details” and the use of plural names for its object class term).

For example (re-use):

Transport Equipment. Container

Provider- Type. Code

Owner- Type. Code

The ABIE, „Transport Equipment.Container". The ACC/ABIE which will be defined as a semantical container should be distinct from the other ACCs/ABIEs by a specific name (like the extension „. Container“ instead „. Details“ contains two BBIEs, „Provider_ Type. Code“ and „Owner_Type. Code“. By recognising that „Provider“ and „Owner“ are Property Term adjectives we see potential re-the use of the Property noun, „Type“.
or:

Parties. Container (ABIE as a semantical container)

Buyer_ Party. Party (ASBIE based on ACC “Party”)

Seller_ Party. Party (ASBIE based on ACC “Party”)

Manufacturer_ Party. Party (ASBIE based on ACC “Party”)

b) List Container

A list container is an ACC/ABIE which, has one and only one ASCC/ASBIE but which allows this single ASCC/ASBIE to be repeated infinitely.

A list container could be used for the separation of ACCs/ABIEs which can be repeated infinitely from the other components at the same level. This would help processing and modelling as it is not very helpful to have such repeated components mixed up with other components at the same level.

Any ACC/ABIE which would be defined as a list container should be distinct from all other ACCs/ABIEs by means of a different name (such as the extension “. List” instead of “. Details” and the use of plural names for its object class term).

For example:

Items. List (ABIE as a list container)

Product. Item (ASBIE which can be repeated infinitely)
	Comment from Tim:

{i disagree with the premise of this concern. We are confusing a few things here. Firstly, UBL should not be concerned with presentational facets of data representation unless they are explicitly bound to the semnatics of the BIE concerned.

That is, there are two possibilities of why we might have a 3 character produce code and a 5 character product code. The first is that these are from the saming coding set but one represents an abbreviation of the other. For example, the 5 character harmonised product code is a higher granularity of the 8 character harmonised product code. Semantically, these should be named as „Five Character- Product. Code“ and „Eight Character- Product. Code“ – to show they are different levels of accuracy.
The second sxituation is where we have different coding sets, such as the Buyer and Seller using their own coding methods. Here the differentiation should be made within the Code attributes, to denote different code agencies.

In neither case, should UBL be trying to set up data types for facets such as character length of format. It is either by clear naming and identification at the BIE level or by code identification in the CCT itself.
Remember, the importance of these defintions is to promote interoperability – either the library does this semantically (as in the first case above) or the individual application does it physically (as in the second).

UBL Comment/Proposal 9

Rationalisation of the metadata that the current CCTS required.

Overlap in the use of the data types and representation terms.

UBL Comment/Proposal 10

Use of Qualifiers for Object Class Terms and Property Terms
More clarification in use of qualifiers for object class terms and property terms.

Should the qualifier come from one of the context drivers, only? Or can we use other terms for the definition of qualifiers?

UBL Editorial

Line 2284 –

7.4.1 Stored Aggregate Business Information Entities must be changed in

7.4.1 Stored Business Information Entity

Line 2372 –

7.4.5 Stored Association Core Component Properties must be changed in
7.4.5 Stored Association Business Information Entity Properties
