
[image: image1.png]

Universal Business Language (UBL)
Schema Modularity

Working Draft v0.1: 2004-03-09

Document identifier:

WD-UBLLCSC-SCHEMAMODS-20040309.DOC
Location:

http://www.oasis-open.org/committees/ubl/

Editor:

Lisa Seaburg, Aeon LLC, xmlgeek@aeon-llc.com

Contributor:

Bill Burcham, Sterling Commerce, Bill_Burcham@stercomm.com
Abstract:

This document information about schema modules within UBL and their namespace and use.

Status:

This is a draft document. It may change at any time.
This document was developed by the OASIS UBL Library Content Subcommittee [CLSC]. Your comments are invited. Members of this subcommittee should send comments on this specification to the ubl-clsc@lists.oasis-open.org list. Others should subscribe to and send comments to the ubl-comment@lists.oasis-open.org list. To subscribe, send an email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Security Services TC web page (http://www.oasis-open.org/committees/security/).

Change History

	Revision
	Editor
	Description

	2004-03-09
	Lisa Seaburg
	First version.

Table of Contents

31
Introduction

41.1
Message Types

41.2
Number of Message Types

61.3
Scope and Audience

71.4
Terminology and Notation

82
External Schema Modules

82.1
Control Schema Module

82.2
Specialized Data Type Schema Module

92.3
Unspecialized Data Types Schema Module

92.4
Core Components Types Schema Modules

92.5
Core Component Parameters Schema Modules

92.6
Common Basic Components Schema Module

92.7
Common Aggregate Components Schema Module

102.8
Codelist Specialized Schema Module

113
Internal Schema Modules

124
Imports and Includes

124.1
Importing External Schema Modules

124.2
Including Internal Schema Modules

135
References

14Appendix A. Notices

1 Introduction

The following Introduction section contains bits and pieces of the ModNamVer paper version 8, written by Bill Burcham.

This document attempts to describe the break down of schema modules and the mapping of namespace onto XSD files. A namespace contains type definitions and element declarations. Any file containing type definitions and element declarations is called a SchemaModule.

Every namespace has a special SchemaModule, a RootSchema. Other namespaces dependent upon type definitions or element declaration defined in that namespace import the RootSchema and only the RootSchema.

If a namespace is small enough then it can be completely specified within the RootSchema. For larger namespaces, more SchemaModules may be defined – call these InternalModules. The RootSchema for that namespace then include those InternalModules.

This structure provides encapsulation of namespace implementations. To recap:

Import Rule: A namespace “A” dependent upon type definitions or element declaration defined in another namespace “B” imports B’s RootSchema. “A” never imports other (internal) schema modules of “B”.

Include Rule: The only place XSD “include” is used is within a RootSchema. When a namespace gets large, its type definitions and element declarations may be split into multiple SchemaModules (called InternalModules) and included by the RootSchema for that namespace.

The import rule presents a namespace as an indivisible grouping of types. A “piece” of a namespace can never be used without all of it’s pieces. It is therefore important to strive to define namespaces that are minimal and orthogonal.

It is not enough that a namespace be minimal in terms of its intrinsic size, but also in terms of the closure of all other namespaces it imports. By closure we mean namespaces it imports, and namespaces they import, and so on.

One good way to foster minimal namespaces is to dictate that there be no circular dependencies between them. The same statement can be made for SchemaModules. This rule has been applied successfully in many large systems.

(No) Circular Dependency Rule: There are no circular dependencies between SchemaModules. By extension, there are no circular dependencies between namespaces. This rule is not limited to direct dependencies – transitive dependencies must be taken into account.

Here is a depiction of the component structure we’ve described so far. This is a UML Static Structure Diagram. It uses classes and associations to depict the various concepts we’ve been discussing:

[image: image2.png]Message Assembly

Included Imported | [importect

External Schema Modules

Unspetiaised
Commonpasc | DataTypes (LDT)
Camponents (66C) Sehema hodle
Senema Mode mported
mparted
1
portec
Code List (CL)
Sehema ode
\mpar\ed?
Core Component Type 1
(CCTySchemaiocie |4
Codeist
U e S

(CLUDT) Schema Mocile:

imported

You can see that there are two kinds of schema module: RootSchema and “InternalModule”. A RootSchema may have zero or more InternalModules that it includes. Any SchemaModule, be it a RootSchema or an InternalModule may import other RootSchemas.

The diagram shows the 1-1 correspondence between RootSchemas and namespaces. It also shows the 1-1 correspondence between files and SchemaModules. A SchemaModule consists of type definitions and element declarations.

The diagram unfortunately fails to express the (No) Circular Dependency Rule.

Another way to visualize the structure is by example. The following informal diagram depicts instances of the various classes from the previous diagram.

The preceeding diagram shows how the order and invoice RootSchemas import the “CommonAggregateTypes” and “CommonLeaf Types” RootSchemas. It also shows how e.g. the order RootSchema includes various InternalModules – modules local to that namespace. The clear boxes show how the various SchemaModules are grouped into namespaces.

1.1 Message Types

The type of the root element of a UBL document (message) is a global type (not an anonymous type). This is known as the control schema module. This module lives within its own namespace and imports many of the schema modules discussed in this paper.

1.2 Number of Message Types

In some cases, various actions in the protocol (create vs. delete) will have totally different document structure requirements. But in some cases (create vs. update), the content might be identical. However, we still think we should design in favor of more document types rather than less, e.g. one for each transmission (a la RosettaNet). It avoids confusion on the part of developers to have a separate document type for each thing. We might then decide to optimize some of them by merging them together.

[image: image3.png]names: totubl:

Invoice
[N

urnfossismembs:terun]t

ComponkggregageTypes

urnioasisimames:teiubl:
CommonLeafTypes

S

—

Root
Zohama

ntermal
Madule

import

includs

Namespace

1.3 Scope and Audience

The rules in this specification are designed to encourage the creation and maintenance of code list modules by their proper owners as much as possible. It was originally developed for the UBL Library and derivations thereof, but it is largely not specific to UBL needs; it may also be used with other XML vocabularies as a mechanism for sharing code lists in XSD form. If enough code-list-maintaining agencies adhere to these rules, we anticipate that a more open marketplace in XML-encoded code lists will emerge for all XML vocabularies.

This specification assumes that the reader is familiar with the UBL Library and with the ebXML Core Components concepts and ISO 11179 concepts that underlie it.

1.4 Terminology and Notation

The text in this specification is normative for UBL Library use unless otherwise indicated. The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this specification are to be interpreted as described in [RFC2119].

Terms defined in the text are in bold. Refer to the UBL Naming and Design Rules [NDR] for additional definitions of terms.

Core Component names from ebXML are in italic.

Example code listings appear like this.

Note: Non-normative notes and explanations appear like this.

Conventional XML namespace prefixes are used throughout this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

The prefix xs: stands for the W3C XML Schema namespace [XSD].

The prefix xhtml: stands for the XHTML namespace.

The prefix iso3166: stands for a namespace assigned by a fictitious code list module for the ISO 3166-1 country code list.

2 External Schema Modules

There are several external schema modules that are there to give consistent information to the above layers.

· One Control Schema (business process) module;

· Core Component Types (CCT) module;

· Core Component Parameter module;

· Qualified and Unqualified Code List and Identifier Schema Modules;

· Specialized and UnSpecialized Data Types modules; and

· the UBL BIE Reusable Schema module.

[image: image4.png]External Schema Modules

Unspetiased
DataTypes (UDT)
‘Schema Moduie

Common Besic
Compornerts (CBC)
‘Schema hodie mported

mported

jporect

Code List (CL)
Sehema hoduie

mported
e

Code List
Unspeciaise DataType
(CLUDT) Schem Mocile:

Trported

Core Component Type.
(CCT) Sehema Mode

imported

2.1 Control Schema Module

The Control Schema module is the control schema for all other Schema modules specific to an XML transaction. The Control Schema imports the BIE Reusables, Core Component Types, Specialized and Unspecialized Data Types, Code List and Identifier Schema modules.

2.2 Specialized Data Type Schema Module

The UBL SPDT module provides all qualified data types (complexTypes), which are derived from the USDT, and also includes their extensions, restrictions, and other domain constraints, such as facets. The SPDT is only reusable within UBL.

The namespace for this XSD file is “sdt”.

2.3 Unspecialized Data Types Schema Module

The UBL Unspecialized module provides the basic data (complexTypes) types from which all other data types must derive. The USDT is reusable external to UBL.

This file is a placeholder to implement data types that are required by main document schemas, but which are currently not yet a CCT-recognized type yet. In this release of UBL, there is no such need for additional data types yet. The content of this schema is therefore empty, although the necessary namespace and imports are already set in place.

The only schema file in the 'common' sub-directory that is not manually crafted is the Reusable schema. This is automatically generated from the re-usable spreadsheet model.

The namespace for this XSD file is “udt”.

2.4 Core Components Types Schema Modules

This file provides the Core Component Types (CCT) as defined by the UN/CEFACT Core Components Technical Specification, V2.01, 15 November 2003. The types defined within this file provide the basic building type blocks to construct higher level representation types in a standardized and consistent manner.

UBL Control Schema modules import the Core Component Type (CCT) , and the Core Component Parameters (CCP) schema modules.

The namespace for this XSD file is “cct”.

This file is not customizable or changeable. It is used by many other organizations in their CCTS alignment work also.

2.5 Core Component Parameters Schema Modules

This file provides the structure description of fields that go into the annotation/documentation section of the type definitions used in all the other schemas. The meta information, such as the object class, datatypes, etc are stored in specific fields as defined in this CoreComponentParameters in a consistent format. This allows the source derivation information to be extracted instead of reverse-engineered or guessed.

The namespace for this XSD file is “ccp”.

This file should not be changed or versioned very often, unless there is an error in information needed in the documentation.

2.6 Common Basic Components Schema Module

All DON BIEs reside in the BIE Reusable Schema module. The BIE forms the central unit of XML object reusability and attempts to maximize reusability and interoperability across the DON. The DON XML Developers Guide 2.0 provides detailed guidance and examples for constructing BIEs.

XML Schema modules containing the XML BIEs are developed as developmental BIE schema modules. These developmental modules are then submitted to the cognizant FNC and BSC for approval.

The namespace for this XSD file is “cbc”.

2.7 Common Aggregate Components Schema Module

This file provides the Aggregate Business Information Entities (BIEs) that are used throughout the UBL. Effectively, this schema serves as a “ABIE type-database” for constructing the main documents.

The namespace for this XSD file is “cac”.

2.8 Codelist Specialized Schema Module

Codes and identifiers are used to represent an exact set of business semantics or provide a unique identifier. It is possible to construct an XML Schema module that provides an allowable set of enumerated codes or identifiers as possible valid values of an XML element representing a code or identifier. Enterprise code list and identifier modules will allow departments responsible for maintaining code lists and identifiers to develop and maintain all approved code lists and identifiers.

3 Internal Schema Modules

[image: image5.png]Message Assembly

Document Schema Module

Included

TESTTal Seheta
Module(s)

4 Imports and Includes

4.1 Importing External Schema Modules

4.2 Including Internal Schema Modules

5 References

Appendix A. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

22

12
wd-ublcsc-schemamods-20040303a.doc

9 March 2004

Copyright © OASIS 2004. All rights reserved.

Page 1 of 13

