Overall UBL Design Principles

Following are the high-level principles for the design of UBL that have been approved by the UBL TC.

Interchange format ("various and sundry")

Because UBL is purely an interchange format, its design cannot make any assumptions about sophisticated tools for creation, management, storage, or presentation being available. The lowest common denominator for tools is incredibly low (for example, Notepad), and the variety of tools used is staggering. We do not see this situation changing in the near term.

Time constraints

Making fast design decisions is more important than making the "right" design decisions. Urgency is a key theme in the development of UBL.

Simplicity

The design of UBL must be as simple as possible (but no simpler).

80/20 rule

The design of UBL should provide the 20% of features that accommodate 80% of the needs.

Component reuse

The essential nature of e-commerce transactions is to pass along information that gets incorporated again into the next transaction down the line. For example, a purchase order contains information that will be copied into the purchase order response. This forms the basis for our need for a core library of reusable components. In fact, reuse in this context is important not only for the efficient development of software, but also for keeping audit trails. Thus, the design of document types should share as many common features as possible.

Domain expertise

It will be critical to leverage expertise in a variety of domains.

Customization and maintenance

The design of UBL must enable customization and maintenance.

Context sensitivity

The design of UBL must ensure that context-sensitive document types aren't precluded.

Prescriptiveness

Having precise, tight content models and datatypes is a good thing (and for this reason, we might want to advocate the creation of more document type "flavors" rather than less; see below). However, in an interchange format, it is often difficult to get the prescriptiveness that would be desired in any one usage scenario, so this will have to be balanced in UBL.

Content orientation

Most UBL document types should be as "content-oriented" (as opposed to merely structural) as possible. Some document types, such as product catalogs, will likely have a place for structural material such as paragraphs, but these will be rare.

XML technology

We should avail ourselves of standard XML processing technology wherever possible (XML itself, XML Schema, XSLT, XPath, and so on). However, we should be cautious about basing decisions on "standards" (foundational or vocabulary) that are works in progress.

Relationship to other namespaces

We don't need to reuse existing namespaces wherever possible; in fact, we should be cautious about making dependencies on other namespaces. For example, XHTML might be useful in catalogs and comments, but it brings its own kind of processing overhead, and if its use is not prescribed carefully it could harm our goals for content orientation as opposed to structural markup.

Legacy formats

UBL is not responsible for catering to legacy formats; companies (such as ERP vendors) can compete to come up with good solutions to permanent conversion. This is not to say that mappings to and from other XML dialects or non-XML legacy formats wouldn't be very valuable.

Relationship to xCBL

It is not important for UBL to be a strict subset of xCBL, or to be explicitly compatible with it in any way.

Number of document types (not yet approved)

Should UBL favor the creation of many different (but similar) document types, using the RosettaNet PIP approach that says that every transmission in a particular process is another document type? To group logical document types together into a single schema leaves less room for prescriptiveness, and may be false economy. [This probably wants to be moved into a different section.]

Programming models (not yet developed/approved)

What sorts of programming models should be enabled?

Mismatches between schema languages (not yet developed/approved)

What should UBL's relationship to the capabilities of various non-XML Schema schema languages be? [This probably wants to be moved into a different section.]

New vs. old systems (not yet developed/approved)

How do we balance redesigning e-business and legacy system requirements?

B2B vs. others (not yet developed/approved)

How do we weigh the needs of document types for ERP-to-ERP, enterprise-to-enterprise, and mixed communication?

