Position Paper: Modularization, Namespaces and Versioning

Author: Bill Burcham (bill_burcham@stercomm.com)

Date: 1/14/02

Filename: draft-burcham-modnamver-02.doc

1Position Paper: Modularization, Namespaces and Versioning

31
Summary

32
Problem Description

33
Assumptions

33.1
Problem Size

43.2
Optimal Component Size

54
Options: Namespace Structure

54.1
Option 1: One Big Namespace

54.2
Option 2: One Namespace Per Type

54.3
Option 3: Core Plus “Functional” Namespaces

54.4
Option 4: Core Plus “Functional” Namespaces Plus Internal Structure as Needed

55
Recommendation: Namespace Structure

65.1
Into What Namespace Do Extensions Go

66
Options: Module Structure

67
Recommendation: Module Structure

77.1
Recursive Composition

87.2
Instance Root Types

87.3
Number of Instance Roots

88
Options: Versioning

88.1
Option XF-1: Change the (internal) schema “version” attribute

88.2
Option XF-2: Create a “schemaVersion” attribute on the root element

88.2.1
Usage A: Conformance enforced by validator

88.2.2
Usage B: Conformance enforced by an extra processing pass

88.3
Option XF-3: Change the schema’s target namespace

88.4
Option XF-4: Change the name/location of the schema

88.5
Option 5: Schema Version as Context Classifier

99
Recommendations: Versioning

1010
Definitions

1111
References

Summary

There are many possible mappings of XML schema constructs to namespaces and to operating system files. This paper explores some of those alternatives and sets forth some rules governing that mapping in UBL.

1 Problem Description

Namespaces are a syntactic convenience supporting the association of a “context” with either a lexical scope (default namespace), or a shorthand identifier (namespace qualifier). This context, applied either implicitly (in a lexical scope) or explicitly (via qualified names) supports compression of what would otherwise be long identifiers. In the absence of namespaces, identifier names are all long.

It is common for an instance document to carry namespace declarations, so that it might be validated. Processing logic (such as a stylesheet) typically carries namespace declarations pertaining to the language in which it is specified in (XSLT) as well as the namespaces on which it operates. The latter must match namespaces in the instance document under translation in order for useful work to be carried out.

In practice, namespaces are often given names denoting a hierarchy. XML processing tools may or may not use this hierarchy information. This sort of hierarchical naming though can be useful for the human reader.

As with other significant software artifacts, schemas can become large. In addition to the logical taming of complexity that namespaces provide, we might like to also divide the physical realization of that schema into multiple operating system files.

Schemas change over time. UBL will be no exception. What sort of version information (if any) will a schema carry? How shall that information be carried so as to conveniently support the needs of users operating on document instances with XML processing tools.

This position paper will address these three topics related to namespaces:

1. Namespace Structure: What shall be the mapping between namespaces and XML Schema constructs (e.g. type definitions)?

2. Module Structure: What shall be the mapping between namespaces and XML Schema constructs and operating system files?

3. Versioning: What support for versioning of schema shall be provided?

In subsequent sections, we’ll examine each topic in turn, presenting first the options, then a recommendation.

2 Assumptions

Much of this discussion will be based on the expected complexity of the UBL vocabulary. We structure systems into components in order to manage complexity.

2.1 Problem Size

How big will UBL be? How interconnected?

One source for complexity estimation is xCBL. TBD: how many type definitions, element declarations, “instance roots” in xCBL?
Another source for estimation is X12 that according to [NDR-MSG-88] has:

a bit over 1,000 data elements (…) a smaller number of segments, and
300 or so transaction sets

Also from [NDR-MSG-88] we have EDIFACT:

· There are just under 650 data elements which are

· used in approx 200 composite structures (sort of equivalent to low level Aggregate Core Components (ACCs)).

· These elements and composites are reused within just over 150 segment structures (sort of equivalent to higher level ACCs).

· Combinations of all the above make up just under 200 messages (doc types).

So an estimate of 1000 types and 250 message types seems reasonable for UBL.

2.2 Optimal Component Size

We don’t want to define 1000 types all in one XML namespace, nor would we want to define them all in one file. Such an approach would lack structure necessary for understanding both by maintainer and users. Additionally, performance would be far from optimal for instance documents that needed only a subset of the UBL types.

For these reasons we presume that we need to structure and divide UBL into a hierarchy of components. We will strive to balance coupling and cohesion between the components in order to:

· Manage the complexity of each component while not creating too many components

· Provide for useful subsetting of components

We envision that many useful instance documents (messages) will be possible that require only a fraction of the overall UBL schema. In those cases it should be possible to avoid processing of the unneeded parts.

3 Options: Namespace Structure

In this section we’ll explore some mappings between XML Schema structures and namespaces.

3.1 Option 1: One Big Namespace

We could have one big namespace for UBL. On the plus side, it would be fairly easy to remember. The downside is that we would forfeit the opportunity to use hierarchical namespaces to communicate the structure of the vocabulary.

3.2 Option 2: One Namespace Per Type

This approach represents the other end of the spectrum. If you’ve got a namespace per type then why not just use the type name. The namespace fails to be shorthand for anything. It fails to be memorable, or to group related types together.

3.3 Option 3: Core Plus “Functional” Namespaces

This option represents a space between 4.1 and 4.2. There would be one namespace for “core” types and there would be namespaces for each of the TBD functional areas e.g. Order, Invoice.

Should we use URI’s or OASIS URN’s for namespace identifiers? Do we need to present the options for this, or can we just pick one?
	Purpose
	namespace

	Core
	TBD

	Order
	TBD

	Invoice
	TBD

	TBD
	TBD

This represents a top-level decomposition of the vocabulary into multiple vertical (functional) slices and a single (horizontal) slice – the so-called core namespace.

The downside of this approach is that with seven or so functional namespaces, they are going to get awfully “crowded” (on the order of one hundred types per namespace).

3.4 Option 4: Core Plus “Functional” Namespaces Plus Internal Structure as Needed

A refinement on 4.3 this option frees each of the functional and core namespaces to have their own hierarchy as necessary in order to further manage complexity.

4 Recommendation: Namespace Structure

	
	Pro
	Con

	Option 1: one big namespace
	Easy to remember namespace
	When anything in UBL changes, all processing code must be changed (at a minimum to use new namespace name)

	Option 2: namespace per type
	Total compartmentalization
	Why use namespaces at all? With this option the namespace ceases to provide useful contextualization.

	Option 3: core plus “functional” namespaces
	Allows parts of UBL to change independently. When a functional area changes, processing code depending on core needn’t change.
	Doesn’t allow for intermediate structure. What if the functional namespaces may require further subdivision?

	Option 4: core plus “functional” namespaces plus internal structure as needed
	(same as Option 3)
	By allowing intermediate namespaces, they will certainly flourish. Design rules must be developed to avoid regressing toward Option 2 over time.

Option 3 is recommended. We reserve the right to revisit this decision when we are further along in the process of defining types. If we find that we need more structure, we can move to option 4.

4.1 Into What Namespace Do Extensions Go

Extensions (by users) go into user-defined namespaces outside of UBL.

5 Options: Module Structure

TBD: what are some other options?
6 Recommendation: Module Structure

The UBL vocabulary consists of a set of instance roots and root schemas. The instance roots comprise a ready-to-use set of business document types. The instance roots import type definitions from root schemas.

Each root schema defines a BIE. If a root schema is large, it may be broken up into multiple schema modules. The schema modules are imported in a root schema.

Here is a depiction of the component structure:

[image: image1.wmf]«SchemaModule»

InstanceRoot

«SchemaModule»

RootSchema

0..*

-imported

1

«SchemaModule»

SchemaModule

1

-included

0..*

0..*

0..*

Namespace

1

1

InstanceDocument

-imported

1

-conforms

0..*

6.1 Recursive Composition

A schema module, or by extension, a root schema, may depend upon other root schemas for its definition.

[image: image2.wmf]core

Order

A

invoicing

Invoice

X

Order

mgmt

Schema

module

Root

schema

Instance

root

6.2 Instance Root Types

If preferring type definitions over global element definitions is good, why not take it to the extreme [NDR-MSG-70]. The type of the root element in an instance root is a global type (not an anonymous type).

6.3 Number of Instance Roots

In some cases, various actions in the protocol (create vs. delete) will have totally different document structure requirements. But in some cases (create vs. update), the content might be identical. However, we still think we should design in favor of more document types rather than less, e.g. one for each transmission (a la RosettaNet). It avoids confusion on the part of developers to have a separate document type for each thing. We might then decide to optimize some of them by merging them together.

7 Options: Versioning

[XFRNT-VER] does a great job of laying out the problem and solution space for schema versioning as it is traditionally practiced. The options presented in that document are not really disjoint rather they are building blocks. If you look at the recommendations in that document, you will see that the options are used in concert.

7.1 Option XF-1: Change the (internal) schema “version” attribute

7.2 Option XF-2: Create a “schemaVersion” attribute on the root element

7.2.1 Usage A: Conformance enforced by validator

7.2.2 Usage B: Conformance enforced by an extra processing pass

7.3 Option XF-3: Change the schema’s target namespace

7.4 Option XF-4: Change the name/location of the schema

7.5 Option 5: Schema Version as Context Classifier

In [NDR-MSG-13] the point was made that schema version might just be another context classifier.

8 Recommendations: Versioning

Each namespace should have a version. Other things shouldn’t (e.g. schema modules shouldn’t).

Each of core and functional areas will have a version. How shall we communicate compatibility/incompatibility?

One approach is to follow a convention whereby a schema’s version identifier consists of two parts: a major number and a minor number. The major number changes when a backward-incompatible change is made:

· changing a default value (legal issue)

· adding a new required element

· removing a required or optional element

The minor number changes when a backward-compatible change is made:

· adding an optional element

How do we communicate version compatibility between core and functional areas:

· between core and f/a’s

· between f/a’s

TBD: Include input from SAML versioning paper (to be released 1-10-02)
The following table summarizes the tradeoffs between the options.

	
	Pro
	Con

	Option XF-1: Change the (internal) schema “version” attribute
	
	Not enforced by validator

	Option XF-2-A: Create a “schemaVersion” attribute on the root element -- Conformance enforced by validator
	
	Conformance requires exact match on version string

	Option XF-2-B: Create a “schemaVersion” attribute on the root element -- Conformance enforced by an extra processing pass
	
	Extra processing step.

	Option XF-3: Change the schema’s target namespace
	
	With this approach, instance documents will not validate until they are changed to designate the new targetNamepsace. However, one does not want to force

all instance documents to change, even if the change to the schema is really

minor and would not impact an instance.

+Include problems.

	Option XF-4: Change the name/location of the schema
	
	Ugh!

	Option 5: Schema Version as Context Classifier
	Leverages the context machinery
	Requires the context machinery

9 Definitions

Backward compatibility – TBD.

BIE – Business Information Entity. A description of a business concept. Represented as an XML schema by a root schema.

extension a.k.a. customization – specification of new BIE’s with well-defined, enforced relationships to old BIE’s. Relationship types include: restriction, extension. In some cases processing logic will need to treat the base and the extension as the same, in other cases it will need to distinguish between them.

Forward compatibility – TBD

instance root, a.k.a. doctype -- This is still mushy. The transitive closure of all the declarations imported from whatever namespaces are necessary. A doctype may have several namespaces used within it.

Namespace – a name that scopes a related group of XML type definitions.

processing logic – software logic that operates on BIE instances to achieve some business function

root schema – A schema module that directly, or via inclusion of other schema modules, defines all types for a particular namespace. This is the XML Schema representation of a BIE. (Compare that definition, with the one we came up with last week in Menlo Park: A schema document corresponding to a single namespace, which is likely to pull in (by including or importing) schema modules. Issue: Should a root schema always pull in the "meat" of the definitions for that namespace, regardless of how small it is?)
schema document – as defined by the XSD specification – per that specification, a schema document defines types into exactly one namespace, the target namespace.

schema module – A schema document. A schema module need not define all types in a particular namespace. Contrast with root schema. (Compare that definition, with last week’s: A "schema document" (as defined by the XSD spec) that is intended to be taken in combination with other such schema documents to be used.)

versioning – reification of revisions to BIE’s in order to support coexistence in a system, of two or more revisions of a BIE.

10 References

	NDR-MSG-13
	schema version as context classifier, Burcham, Bill; Maler, Eve; a post to the UBL-NDR mailing list.
	http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00013.html

	NDR-MSG-70
	Fwd: Straw Man on Namespaces, Schema Module Architecture,etc., Rawlins, Mike; a post to the UBL-NDR mailing list.
	http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00070.html

	NDR-MSG-88
	Fwd: Straw Man on Namespaces,Schema Module Architecture, etc., Probert, Sue; Maler, Eve.; a post to the UBL-NDR mailing list.
	http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00088.html

	SEVEN-TWO
	The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for Processing Information, George A. Miller, Psychological Review, 63, 81-97.
	http://psychclassics.yorku.ca/Miller/

	XFRNT-VER
	XML Schema Versioning, MITRE Corporation and xml-dev list group members.
	http://www.xfront.com/Versioning.pdf

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� The “seven plus or minus two” rule [� REF SEVEN_TWO \h ��SEVEN-TWO�] is a good, general rule of thumb. It’s especially useful when you don’t have any other rule. It says that if you want people to be able to keep a set of concepts in mind, then you are limited to about seven concepts. Implications for XML for example might be: a type would define no more than seven (or so) elements, a namespace would define no more than about seven types, etc.

PAGE
2

_1072534848.vsd
�

�

�

�

�

�

Static Structure�

�

�

�SchemaModule�
InstanceRoot�

�

�

�

�SchemaModule�
RootSchema�

�

�

�

0..*�

-imported�

1�

�

�

�SchemaModule�
SchemaModule�

�

�

�

1�

-included�

0..*�

�

�

0..*�

�

0..*�

�

�

Namespace�

�

�

�

1�

�

1�

�

�

InstanceDocument�

�

�

-imported�

1�

-conforms�

0..*�

_1066620425.vsd
�

Schema module�

�

Root schema�

Order mgmt�

core�

�

Instance root�

Order A�

invoicing�

Invoice X�

