Position Paper: Modeling Roles in UBL

Author: Bill Burcham (bill_burcham@stercomm.com)

Date: 2/4/02

Filename: draft-burcham-rolemodel-02.doc

21
Summary

22
Problem Description

33
Option 1: if tag names match then types must match

44
Option 2: if types match then tag names must match

45
Option 3: 1-1 Correspondence Between Types and Tag Names

46
Duplicate Options (not considered)

57
Recommendation

57.1
Enter: Properties and Roles

98
Appendix: Sample UBL Modeling Artifact Schema

109
References

Summary

TODO: normalize voice throughout document.
There was much discussion NDRSC during the recent face-to-face meetings regarding possible rules regarding the cardinality between Tag Names and Types. Various options were explored and candidate rules were put to straw poll. The exercise did not result in firm resolution. At least one candidate rule is still on the docket for further discussion.

In this position paper I attempt to present a fairly complete exploration of the options. The exploration results in the conclusion that none of the candidate rules are viable.

That result (the absence of rule providing guidance in this area) has been termed “anarchy” by some NDR SC members. A new concept, that of a role, is introduced to address the issue. Rules relating to the identification and definition of roles in UBL are presented.

1 Problem Description

The problem, as it originally arose in the NDR SC seemed to center on the cardinality between tag names and types. In this section we consider various combinations of tag name/type name uniqueness.

In thinking about it some more I see four top-level cases:

1. If tag names match then…

2. If tag names don’t match then…

3. If types match then…

4. If types don’t match then…

Then for each there are three sub-cases, e.g.

a. If tag names match then type names must match

b. If tag names match then type names must not match

c. If tag names match then we can draw no conclusion regarding types (don’t care)

Combining these cases (cross product) we arrive at 12 possibilities:

	case
	Role
	Match
	Role
	Must Match
	Must Not Match
	Don’t care

	1
	Tag name
	(
	Type
	(
	
	

	2
	Tag name
	(
	Type
	
	(
	

	3
	Tag name
	(
	Type
	
	
	(

	4
	Tag name
	
	Type
	(
	
	

	5
	Tag name
	
	Type
	
	(
	

	6
	Tag name
	
	Type
	
	
	(

	7
	Type
	(
	Tag name
	(
	
	

	8
	Type
	(
	Tag name
	
	(
	

	9
	Type
	(
	Tag name
	
	
	(

	10
	Type
	
	Tag name
	(
	
	

	11
	Type
	
	Tag name
	
	(
	

	12
	Type
	
	Tag name
	
	
	(

Cases 3, 6, 9, 12 correspond to the absence of any design rule – the default case should we decide to make no rule. Those cases encompass the “may match” and “may not match” cases as well. I’ve grayed those cases to show that I will not consider them further.

Case 2: “if tag names match then type must not match” can be eliminated intuitively.

Cases 4, 8, 10 can be eliminated similarly. I’ve grayed those as well.

This leaves for candidate rules, cases: 1, 5, 7, 11. Each of those options will be explored in subsequent sections.

2 Option 1: if tag names match then types must match

(from Case 1) would dictate that for each type there would be a set of reserved tag names, usable only for elements of that type. It would be ok for two elements of the same type to have different tag names so long as both names came from the list for that type.

This option would preclude any reuse of tag names across types.

3 Option 2: if types match then tag names must match

(from Case 7
) would dictate that for each type there would be a single tag name. Every element of that type would use that tag name. However, two types would be allowed to share a tag name.

This option would preclude the creation/use of tag names tailored for their role in a particular type. Instead, given the type of the element, you’d be stuck with a particular tag name. An outcome of this would be that if an element contained two elements of the same type, you’d have to either break the rule (and give one element a different tag name), or use position to distinguish the meaning of the two elements (in the context of the type).

This option allows for elements of two different types to share tag names.

4 Option 3: 1-1 Correspondence Between Types and Tag Names

We can also express these situations simply in terms of their cardinality. For instance in Case 1 the cardinality is: type (1-0..*) tag name, and for Case 7: : type (1..*-0..1) tag name.

In order to arrive at a 1-1 cardinality we would have to take these two rules together.

(from Case 1 and 7 taken together): each tag name corresponds to one Type and all elements of a particular Type share the same tag name.

This option is tantamount to global tag names. That option has already been rejected by the SC.

5 Duplicate Options (not considered)

Case 5 is hard for me to understand… it says: “if the tag names do not match, then the types must be different”.. with some more thought, here is what I’ve concluded:

Case 5: would dictate that there can be only one tag name for each type but that two types may share a tag name. Which is a restatement of Case 7.

Case 5: is equivalent to Case 7.
And similarly…

Case 11 is equivalent to Case 1.

We won’t discuss these cases further.

6 Recommendation

During the face-to-face there was some discussion of high level design drivers. Three important ones that kept coming up were:

· Readability of an instance document

· Ease of instance construction

· Ease of instance processing

I think we bounced around between those implicitly quite a bit – to the detriment of productivity. However, when considered against those three drivers, I don’t think any of the candidate rules has significant value.

Since Option 1 would preclude any reuse of tag names across types I feel like we ought to reject that one.

I don’t really think that Option 2 gives us anything. In fact by itself it would actually confuse people. If we were going to pick Option 2 then I’d say just go with Option 3 which is tantamount to global elements names – which the group has already decided against.

Perhaps the story doesn’t end there though. While I took a position against global element names, I do understand that there is a need to capture recurring patterns of structure use. The problem with global element names is that in our zeal to capture usage patterns we enforce everywhere the overhead of formulating a globally unique and meaningful name.

We already capture recurring structures/semantics with XML types (corresponding to CC ABIE’s). Is there a way to capture (and identify) recurring usage patterns while not imposing the use of a globally unique name for every single element in the schema?

6.1 Enter: Properties and Roles

Roles
 are an essential part of many modeling languages, such as UML and Entity Relationship or ER. Unfortunately roles and associations seem to be absent in the UBL model , and the UN Core Components [CC-UN] and ISO 11179 [NAMING-ISO] models upon which it is based.

A simple example will illustrate the role concept. The following picture depicts a motorcycle with two wheels, front and rear.

[image: image1.wmf]Class

PK

id

FK1,U1

package

U1

name

description

FK3

authority

FK2

repterm

Package

PK

id

U1

name

U1

namespace-identifier

Property

PK

id

U1

name

description

FK1,I1,U1

enclosing-class

FK2

type

FK3

role

RepresentationTerm

PK

id

U1

name

Role

PK

id

U1

name

description

StandardizingBody

PK

id

U1

name

It is common practice when realizing a model including roles (in a modeling language such as UML or ER), in particular implementation language (such as XSD, Java or SQL) to use the role name in the implementation. This mapping is very natural, for instance:

· In Java, role names become names of fields (of reference types) (see section 23.4.2 on page 300 of [UML-APPLY])

· In SQL, role names become names of foreign key fields

· In XML role names become element names (see section Mapping UML Compositions on page 107 of [XML-UML])

So mapping the UML model into XML might yield a scheme like this:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:complexType name="Motorcycle">

<xs:all>

<xs:element name="FrontWheel" type="Wheel"/>

<xs:element name="RearWheel" type="Wheel"/>

</xs:all>

</xs:complexType>

<xs:simpleType name="Wheel">

<xs:restriction/>

</xs:simpleType>
</xs:schema>
Notice how type Motorcycle has e.g. an element called FrontWheel of type Wheel. Notice also, how the role name “frontWheel” from the model was used to arrive at the element name “FrontWheel” in the schema.

I think much of the contention over element naming in UBL stems from the imprecise treatment of “properties” in UN Core Components Technical Specification [CC-UN]. While that specification does talk extensively about “property terms” – which are part of a “dictionary entry name” for a “data element” (a la [NAMING-ISO]), we are left to infer the existence and makeup of a “first class” property concept.

The term “property” is used often in that specification, but it is never formally defined
. Further, it never appears in any of the conceptual diagrams. Little wonder therefore, that the concept of role as discussed here would be entirely absent, tied up as it is with the concept of property.

So here we are (in particular the LC SC) trying to build analysis artifacts. We are trying to give “property terms” to things. What things are we trying to give them to? Well CC doesn’t tell us! So I propose:

P0: The UBL model must include the concept of property. Property is the model element named by a property term in the same way as a BIE or a CC is the model element named by an object class (name).

Further, once we identify and describe these properties, what shall we call them? Could a set of rules around role definition satisfy our need to capture recurring component usage patterns (and name them)? Perhaps the central tenet would be:

P1: Role-based element/property naming: an element’s tag name should reflect the role played by that element’s content relative to the XSD type in which that element is declared.

In this way, roles are divorced from types. Then we might make rules like this:

P2: A catalog of roles will be maintained. Each role will be uniquely named and described.

For instance, we might have roles: Header, Summary and Detail in such a catalog. When these came up in NDR SC it was amazing to me how polarized we were. One faction believed that since Order and Invoice both have these components that they should be called the same thing in both situations. The other thought that would be confusing since an OrderHeader is different from an InvoiceHeader. Both factions felt that their approach would be less confusing.

This catalog need not require an entry for every element/property/child field. Such a requirement would cause devolution into an element catalog, which is not what we’re after. It would also dilute the strength of the more powerful entries such as Header, Summary, Detail.

P3: Candidacy for this catalog could be left to a matter of taste, or we could come up with a metric that e.g. only roles occurring or expected to occur more than once are candidates. It will boil down to a combination of experience and taste.

I realize P3 is wishy-washy – it’s a placeholder until we can hammer out something stronger.
Then where these roles occur in the analysis model, we could use the role name to induce the tag name:

P4: When naming an element/property consider its role. Reconcile against the role catalog.

The roles would be linked to the element catalog. Where appropriate, a (local) element definition would refer to the (cataloged) role represented by that element.

P5: The element catalog would associate an element with its role (if any).

The following conceptual class diagram sums up the recommendation:

[image: image2.wmf]Motorcycle

Wheel

1

-frontWheel

1

1

-rearWheel

1

I propose the addition of the property and role concepts to our model, along with a role catalog and accompanying design rules. I believe constitutes a nice middle ground between what some call “anarchy” and what I call a “flat namespace” for properties/elements. This will allow us to capture recurring usage patterns of structures while allowing for efficient construction of property names appropriate to their use.
Appendix: Sample UBL Modeling Artifact Schema

[image: image3.wmf]XML Implementation

XML Instance

XML Schema

Analysis Model

“With known business semantics”

“Without business semantics”

CCT

CCTCatalog

ABIE

RepresentationTerm

0..*

1..*

BBIE

-represents

0..*

1

Property

1

0..*

1..*

1

RepTermCatalog

1

0..*

1

0..*

This concept is not

explicitly present in the

CC specification. It is

mentioned extensively,

but never really defined.

TypeDefinition

ElementDeclaration

-describes

1

0..*

-contains

1

-defines

0..*

-models

1

-realizes

0..1

-models

1

-realizes

0..1

Element

-parent

1

-child

0..*

Type

1

-defines

1

-defines

1

-implements

0..*

TypeName

1

-identifies

1

TagName

1..*

-describes

1

0..*

-describes

1

I’ve shown ABIE as a

kind of BBIE. This is

strictly different from the

letter of the CC spec.

However, for our

purposes I think it works

better.

Role

1..*

0..1

RoleCatalog

1

0..*

BIECatalog

0..*

1

Just for fun I put together a schema to capture roles and properties. Here is that toy schema:

References

	CC-UN
	UN/CEFACT Draft Core Components Specification, Part 1, 15 January, 2002, version 1.75
	

	NAMING-ISO
	ISO/IEC 11179, Final committee draft, Parts 1-6.
	

	UML-APPLY
	Applying UML and Patterns: An Introduction to Object Oriented Analysis and Design
	

	XML-UML
	Modeling XML Applications with UML: Practical e-Business Applications, David Carlson, 2001, Addison-Wesley.
	

	
	
	

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� In the NDRSC we were discussing case 7 (disguised as it’s twin – case 5). When it is worded as in 5 I think it’s harder to understand. I think that’s why it almost got voted up.

� There is a difference between a role and an association. Generally, a role is one side of an association. A role is a one-way mapping. An association is usually 2-way, but may in general be n-way. The “arity” of the association corresponds to the number of roles in that association. Also an association in most modeling methods may also carry its own data and is usually given a “first class” identifier whereas roles generally are simply named (and described) concepts.

� Additionally, the term “child field” is used in some of the examples in that specification. That term is used synonymously to “property”, and is also left undefined.

PAGE
2

_1073709594.vsd
�

�

�

�

�

�

Drag the side handles to change the width of the text block.�

�

�

CCT�

�

Static Structure�

�

�

CCTCatalog�

�

�

�

ABIE�

�

This concept is not explicitly present in the CC specification. It is mentioned extensively, but never really defined.�

Analysis Model�

�

�

RepresentationTerm�

�

�

�

TypeDefinition�

�

�

�

Property�

�

�

�

�

0..*�

�

1..*�

�Without business semantics��

�

1�

�

0..*�

�

�

�

ElementDeclaration�

�

�

-describes�

1�

�

0..*�

�

-contains�

�

�

BBIE�

�

�

�

�

1..*�

�

-represents�

0..*�

�

1�

�

1�

�

�

RepTermCatalog�

�

�

�

1�

�

0..*�

�

�

1�

�

0..*�

�With known business semantics��

1�

-defines�

0..*�

�

-models�

1�

-realizes�

0..1�

�

-models�

1�

-realizes�

0..1�

XML Implementation�

�

�

Element�

�

�

-parent�

1�

-child�

0..*�

�

�

Type�

�

�

�

1�

-defines�

1�

�

-defines�

1�

-implements�

0..*�

XML Schema�

XML Instance�

�

�

TypeName�

�

�

�

1�

-identifies�

1�

�

�

TagName�

�

�

�

1..*�

-describes�

1�

�

�

0..*�

-describes�

1�

I�ve shown ABIE as a kind of BBIE. This is strictly different from the letter of the CC spec. However, for our purposes I think it works better.�

�

�

Role�

�

�

�

1..*�

�

0..1�

�

�

RoleCatalog�

�

�

�

1�

�

0..*�

�

�

BIECatalog�

�

�

�

0..*�

�

1�

_1074314517.vsd
text�

�

�

Table�

�

�

Class�

PK	id

FK1,U1	package
U1	name
 	description
FK3	authority
FK2	repterm�

Package�

PK	id

U1	name
U1	namespace-identifier�

Property�

PK	id

U1	name
 	description
FK1,I1,U1	enclosing-class
FK2	type
FK3	role�

RepresentationTerm�

PK	id

U1	name�

Role�

PK	id

U1	name
 	description�

StandardizingBody�

PK	id

U1	name�

�

�

�

�

�

�

_1073673625.vsd
�

�

�

�

�

�

Motorcycle�

�

�

�

Wheel�

�

�

�

1�

-frontWheel�

1�

�

�

1�

-rearWheel�

1�

