Position Paper: Code Lists

Author: Eve Maler (eve.maler@sun.com)

Date: 19 February 2002

Filename: draft-maler-codelists-02.doc (note: the filename for the previous version was draft-rawlins-codelists-01.doc)

1Position Paper: Code Lists

21
Summary

22
Principles

33
External Code List Handling

33.1
Identification and Versioning

33.2
Schema Representation

43.3
Subsetting and Extension

44
Internal Code List Handling

54.1
Identification and Versioning

54.2
Schema Representation

64.3
Subsetting and Extension

Summary

As defined in the Core Components specification, V1.8, a code is “A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute. Codes usually are maintained in code lists per attribute type (e.g. colour).” It has the core component type Code. Type; however, this type assignment does not require it to be handled in any particular way in syntax bindings, such as in XSD by an enumeration of strings.

A code list, for our purposes, is a closed set of codes that is defined and maintained by an organization along with documentation of the meaning of each code.

An external code list, for our purposes, is a code list that is maintained by an organization other than the UBL SC and incorporated into UBL by reference. An internal code list, for our purposes, is a code list that is defined in the body of the UBL set of specifications. Thus, a code list that is considered internal from the perspective of ANSI X12 might be considered as external from the perspective of UBL.

On 13 February 2002, the NDR SC agreed to the following proposal:

“We should use external code lists as much as possible, and in those cases leave validation and subsetting up to the application (except perhaps for pattern matching). We should create our own validatable code lists sparingly. This is a short-term solution. In the long term, we would have the option to use validatable forms of the external code lists provided by external organizations.”

This position paper proposes a specific formulation of this solution that is designed to be suitable for use in the NDR document.

1 Design Principles for Code Lists

The definition and management of code lists in UBL adheres to the following design principles:

· Identification and versioning

It must be possible to uniquely identify the relevant code list for each UBL markup construct that contains a code, and as a corollary, it must be possible to distinguish between different versions of the “same” code list.

· Management of code list maintenance costs

It is expensive to maintain internal versions of code lists that already exist externally. Also, it is expensive to develop new code lists. UBL should try to leverage existing work where possible.

· Validation

It should be possible to validate that a legitimate code from a code list is being used, but some or all of this validation may happen at run time, using application-specific means.

· Subsetting

It should be possible to restrict the legitimate codes available by using the UBL context methodology. [THIS IS a guess.]
· Extension

If an external code list has a built-in way of allowing extension, UBL should honor it. Extension of internal code lists should be avoided where possible. Extension does not have to be done through the UBL context methodology. [THIS IS a guess.]
2 External Code List Handling

External code lists are the preferred method for handling codes. External code lists will be incorporated into UBL “by reference” rather than “by value”. An informal system of identifying external code lists will be used. Validation and subsetting will be treated relatively informally.

2.1 Identification and Versioning

UBL must maintain documentation of a list of external code lists and the locations in UBL markup where codes from these lists are expected to appear. The code lists must be identified by some unique name and, if necessary, by version. If an external code list is updated without a corresponding update to UBL and new codes are added, these new codes may legitimately be used in UBL documents (with an expectation that document recipients may not be configured to handle them). However, codes are to be interpreted strictly as in the version of the code list identified in the UBL documentation; if any codes change in a backwards-incompatible fashion, it is an error to interpret a code in the sense defined by the new version until UBL itself is updated.

2.2 Schema Representation

External code lists must be encoded in UBL schema modules in a way that does not enumerate all of the possible values, but rather documents the external source of legitimate values. The schema definition may use pattern-matching restrictions to provide partial syntactic validation. For example:

Note: All naming is ad hoc and does not necessarily adhere to the tag structure rules. Also, the “design decision” to make an element called CountryCode is just for illustration.

<xsd:simpleType name=”UN-ECECountryCodeType”>

 <xsd:annotation>

 <xsd:documentation>

UN/ECE Recommendation No. 3

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base=”xsd:string”>

 <xsd:pattern value=”[A-Z]{2}”/>

 </xsd:restriction>

</xsd:simpleType>

…

<xsd:element name=”CountryCode” type=”UN-ECECountryCodeType”/>

2.3 Subsetting and Extension

Individual implementations that produce and consume UBL documents are responsible for controlling and interpreting the actual codes that populate markup constructs such as <CountryCode>. If a subset is desired, corresponding to some context, this will be handled “out of band”. [OR is there some way to let people use the context methodology mechanism to at least document their expectations?]

Extension of external code lists is not allowed unless the code list itself documents a way to provide custom values. In these cases, the schema representation must account for whatever escape hatch exists. For example, if it is possible according to the setup of a code list to provide a “zz” escape-hatch code and then supply an additional custom value, the schema must allow for the custom value and document the circumstances under which the custom value may appear:

<xsd:simpleType name=”IceCreamFlavorCodeType”>

 <xsd:annotation>

 <xsd:documentation>

Baskin-Robbins Recommendation No. 31. If the code is

“Custom”, then IceCreamFlavorCustomCode must be supplied.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base=”xsd:string”/>

</xsd:simpleType>

…

<xsd:element name=”IceCreamDetails”>

 <xsd:attribute

 name=”IceCreamFlavorCode”

 type=”IceCreamFlavorCodeType” use=”required”/>

 <xsd:attribute

 name=”IceCreamFlavorCustomCode”

 type=”xsd:string” use=”optional”/>

</xsd:element>

[DO WE need to dictate the methods needed for each kind of custom/escape-hatch idiom?]

In the future, if any of the organizations that maintain UBL-referenced code lists choose to offer a schema-based representation of the code lists that can be incorporated into UBL for greater validation, UBL will consider incorporating them. Such a change might have consequences for the management of subsetting and extension.

3 Internal Code List Handling

Internal code lists will be defined in UBL “by value” as enumerated lists, with identification and versioning handled by XML-native means. Strict validation of codes will be possible through normal XSD validation. Subsetting will be subjected to the UBL context methodology.

3.1 Code List Design, Identification, and Versioning

Where possible, external code lists should be used in preference to internal code lists. Potential reasons for designing an internal code list include the need to “union” multiple existing external code lists, or the lack of any suitable external code list. The lack of “easy-to-read” or “easy-to-understand” codes in an otherwise suitable code list is not sufficient reason to define an internal code list.

Where possible, the initial design and documentation of internal code lists must be based on xCBL. If the code list is based on one or more external code lists, the derivation must be documented.

In the case that UBL-internal code lists are useful for other purposes (for example, in other non-UBL schemas), it must be possible to uniquely refer to them. They must be referred to by identifiers of the following construction:

relevant-UBL-namespace#ID-of-simple-type

Each version of a namespaced UBL schema module that contains (or includes, directly or indirectly) definitions of internal code lists will be considered the governing namespace for those code lists. [THIS assumes that we are versioning our namespaces.] Each UBL simple type that defines an internal code list must assign a value to the id attribute of the <simpleType> element that is identical to the name of the simple type. For example:

<xsd:simpleType name=”ASNPurposeCodeType” id=”ASNPurposeCodeType”>

…

</xsd:simpleType>

The identifier of the UBL-internal code list for ASN purpose codes would thus be as follows:

Relevant-UBL-namespace#ASNPurposeCodeType

3.2 Schema Representation

Schema modules must define named simple types utilizing XSD enumeration for internal code lists. For example:

<xsd:simpleType name=”ASNPurposeCodeType” id=”ASNPurposeCodeType”>

 <xsd:annotation>

 <xsd:documentation>

This code identifies the purpose of the ASN message. This is

a subset code list derived from EDIFACT 1225 (Message Function,

Coded) and X12 353 (Transaction Set Purpose Code) and 587

(Acknowledgement Type Code).

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base=”xsd:string”>

 <xsd:enumeration>Original</xsd:enumeration>

 <xsd:enumeration>Confirm</xsd:enumeration>

 <xsd:enumeration>Duplicate</xsd:enumeration>

 <xsd:enumeration>Replace</xsd:enumeration>

 <xsd:enumeration>Cancel</xsd:enumeration>

 </xsd:restriction>

</xsd:simpleType>

…

<xsd:element name=”PurposeCode” type=”ASNPurposeCodeType”/>

3.3 Subsetting and Extension

Custom codes for extending internal code lists, when absolutely needed, should be handled the same as for external code lists. See Section 3.3. These must be the only methods for allowing code list extension; extension through the context methodology mechanism is not allowed. [CORRECT? I’m making this up and a lot depends on the output of the CM SC.]
Subsetting of internal code lists must use the context methodology mechanism.

PAGE
6

