Position Paper: Code Lists

Author: Eve Maler (eve.maler@sun.com)

Date: 20 February 2002

Filename: draft-maler-codelists-03.doc

1Position Paper: Code Lists

21
Summary

22
Design Principles for Code Lists

33
External Code List Handling

33.1
Identification and Versioning

43.2
Schema Representation

43.3
Subsetting

43.4
Extension

53.4.1
Extension Option 1: Custom Keyword

53.4.2
Extension Option 2: Custom Flag

63.4.3
Recommendation

64
Internal Code List Handling

64.1
Code List Design, Identification, and Versioning

74.2
Schema Representation

74.3
Subsetting and Extension

75
Control of Custom Codes

85.1
Custom Code Semantics Option 1: Prose

85.2
Custom Code Semantics Option 2: URI Reference

85.3
Custom Code Semantics Option 3: QName

Summary

As defined in the Core Components specification, V1.8, a code is:

“A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute. Codes usually are maintained in code lists per attribute type (e.g. colour).”

It has the core component type Code. Type; however, this type assignment does not require it to be handled in any particular way in syntax bindings, such as in XSD by an enumeration of strings.

A code list, for our purposes, is a closed set of codes (possibly with a provision for indicating custom codes) that is defined and maintained by an organization along with documentation of the meaning of each code.

An external code list, for our purposes, is a code list that is maintained by an organization other than the UBL SC and incorporated into UBL by reference. An internal code list, for our purposes, is a code list that is defined in the body of the UBL set of specifications. Thus, a code list that is considered internal from the perspective of ANSI X12 might be considered external from the perspective of UBL.

On 13 February 2002, the NDR SC agreed to the following proposal:

“We should use external code lists as much as possible, and in those cases leave validation and subsetting up to the application (except perhaps for pattern matching). We should create our own validatable code lists sparingly. This is a short-term solution. In the long term, we would have the option to use validatable forms of the external code lists provided by external organizations.”

This position paper proposes a specific formulation of this solution that is designed to be suitable for use in the NDR document.

Note: All naming and markup design in examples in this paper is ad hoc and does not necessarily adhere to the NDR rules developed to date.

1 Design Principles for Code Lists

The definition and management of code lists in UBL adheres to the following design principles:

· Semantic clarity

It must be possible to interpret the meaning of any non-custom code accurately and consistently. Thus, it must be possible to uniquely identify the relevant code list for each UBL markup construct that contains a code, and as a corollary, it must be possible to distinguish between different versions of the “same” code list in case of backwards-incompatible changes.

· Management of code list maintenance costs

It is expensive to maintain internal versions of code lists that already exist externally. Also, it is expensive to develop new code lists. UBL should try to leverage existing work where possible.

· Validation

It should be possible to validate that a legitimate code from a code list is being used, but some or all of this validation may happen at run time, using application-specific means.

· Subsetting

It should be possible to restrict the legitimate codes available by using the UBL context methodology.

· Extension

If an external code list has a built-in way of allowing custom codes, UBL should honor it. UBL may need to allow custom codes even in its internal code lists. There should be one consistent way of handling extensions in the design of UBL.

2 External Code List Handling

External code lists are the preferred method for handling codes, if such can be identified. External code lists will be incorporated into UBL “by reference” rather than “by value”. An informal system of identifying external code lists will be used. Validation and subsetting will be treated relatively informally.

In the future, if any of the organizations that maintain UBL-referenced code lists choose to offer a schema-based representation of the code lists that can be incorporated into UBL for greater validation, UBL will consider incorporating them. Such a change might have consequences for the management of subsetting and extension, not to mention UBL modularity.

2.1 Identification and Versioning

UBL must maintain documentation of a list of external code lists and the locations in UBL markup where codes from these lists are expected to appear. The code lists must be identified by some unique name and, if necessary, by version.

If an external code list is updated without a corresponding update to UBL and new codes have been added to the list, these new codes may legitimately be used in UBL documents (with an expectation that document recipients may not be configured to handle them). However, existing codes are to be interpreted strictly as in the version of the code list identified in the UBL documentation. If any codes change in a backwards-incompatible fashion, it is an error to interpret a code in the sense defined by the new version until UBL itself is updated.

2.2 Schema Representation

External code lists must be encoded in UBL schema modules in a way that does not enumerate all of the possible values, but rather documents the external source of legitimate values.

<xsd:simpleType name=”UN-ECECountryCodeType”>

 <xsd:annotation>

 <xsd:documentation>

UN/ECE Recommendation No. 3

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base=”xsd:string”>

 </xsd:restriction>

</xsd:simpleType>

…

<xsd:element name=”CountryCode” type=”UN-ECECountryCodeType”/>

A corresponding instance would look like this:

<CountryCode>US</CountryCode>

The schema definition may use pattern-matching restrictions to provide partial syntactic validation. For example:

<xsd:simpleType name=”UN-ECECountryCodeType”>

…

 <xsd:restriction base=”xsd:string”>

 <xsd:pattern value=”[A-Z]{2}”/>

 </xsd:restriction>

</xsd:simpleType>

A corresponding valid instance would look the same as above. Invalid instances such as the following would be caught through schema validation:

<CountryCode>USA</CountryCode>

2.3 Subsetting

Individual implementations that produce and consume UBL documents are responsible for fully validating and interpreting the actual codes that populate markup constructs such as <CountryCode>.

The context methodology should be used to define subsets of external code lists. It should be possible to define a subset “by value” (listing the codes as an internal code list subset) or “by reference” (naming a subsetted code list defined by an external organization as an external code list subset). It is the responsibility of the Context Methodology Subcommittee to design this mechanism.

2.4 Extension

External code lists often build in a way to provide custom codes. Even in cases where no custom code mechanism is provided by the external code list, UBL may provide the mechanism itself.

The NDR SC needs to decide between the following design options for doing custom-code extension. Both options involve a combination of two fields: a field to hold the new code and a field to indicate that the new code should be heeded by software.

2.4.1 Extension Option 1: Custom Keyword

With this option, the field that is normally intended to hold the code is assigned a special code. This is a signal that a second field should be accessed to find the custom code. For example:

<xsd:simpleType name=”IceCreamFlavorCodeType”>

 <xsd:annotation>

 <xsd:documentation>

Baskin-Robbins Recommendation No. 31. If the code is

“Custom”, then IceCreamFlavorCustomCode must be supplied.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base=”xsd:string”/>

</xsd:simpleType>

…

<xsd:element name=”IceCreamDetails”>

 <xsd:attribute

 name=”IceCreamFlavorCode”

 type=”IceCreamFlavorCodeType” use=”required”/>

 <xsd:attribute

 name=”IceCreamFlavorCustomCode”

 type=”xsd:string” use=”optional”/>

</xsd:element>

A corresponding instance with a custom code would look like this:

<IceCreamDetails

 IceCreamFlavorCode=”Custom”

 IceCreamFlavorCustomCode=”MixIn” />

2.4.2 Extension Option 2: Custom Flag

With this option, the field that is normally intended to hold the code is assigned whatever regular or custom code is desired. A second field indicates whether the first field holds a regular or a custom code. For example:

<xsd:simpleType name=”IceCreamFlavorCodeType”>

 <xsd:annotation>

 <xsd:documentation>

Baskin-Robbins Recommendation No. 31. Check the value of

IceCreamFlavorCustomFlag to know whether the value is

custom or regular. 0 (the default) means regular. 1 means

custom.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base=”xsd:string”/>

</xsd:simpleType>

…

<xsd:element name=”IceCreamDetails”>

 <xsd:attribute

 name=”IceCreamFlavorCode”

 type=”IceCreamFlavorCodeType” use=”required”/>

 <xsd:attribute

 name=”IceCreamFlavorCustomFlag”

 type=”xsd:boolean” default=”0”/>

</xsd:element>

A corresponding instance with a custom code would look like this:

<IceCreamDetails

 IceCreamFlavorCode=”MixIn”

 IceCreamFlavorCustomFlag=”1” />

2.4.3 Recommendation

I recommend Option 1. It has the following benefits not shared by Option 2:

· Many external code lists already build in a custom code mechanism by defining a “custom” or “zz” code keyword. This mechanism leverages that design.

· It is easier to do application-level validation of the regular code field if its list of possible values is truly closed. A “custom” keyword achieves this.

· Any pattern-matching or other partial validation that applies to the regular codes might not apply to the custom codes. This mechanism allows for the two kinds of codes to have independent sets of constraints put on their respective syntaxes. (See Section 5 for a reason why this might be desirable.)

And Option 1 has only the following downside that I can see:

· The code needed by an application might be in one of two places, rather than being reliably found in a single field.

3 Internal Code List Handling

Internal code lists will be defined in UBL “by value” as enumerated lists, with identification and versioning handled by XML-native means. Strict validation of codes will be possible through normal XSD validation. Subsetting will be subjected to the UBL context methodology.

3.1 Code List Design, Identification, and Versioning

Where possible, external code lists should be used in preference to internal code lists. Potential reasons for designing an internal code list include the need to “union” multiple existing external code lists, or the lack of any suitable external code list. The lack of “easy-to-read” or “easy-to-understand” codes in an otherwise suitable code list is not sufficient reason to define an internal code list.

Where possible, the initial design and documentation of internal code lists must be based on xCBL. If the code list is based on one or more external code lists, the derivation must be documented.

In the case that UBL-internal code lists are useful for other purposes (for example, in other non-UBL schemas), it must be possible to uniquely refer to them. They must be referred to by identifiers of the following construction:

relevant-UBL-namespace#ID-of-simple-type

Each version of a namespaced UBL schema module that contains (or includes, directly or indirectly) definitions of internal code lists will be considered the governing namespace for those code lists. Each UBL simple type that defines an internal code list must assign a value to the id attribute of the <simpleType> element that is identical to the name of the simple type. For example:

<xsd:simpleType name=”ASNPurposeCodeType” id=”ASNPurposeCodeType”>

…

</xsd:simpleType>

The identifier of the UBL-internal code list for ASN purpose codes would thus be as follows:

relevant-UBL-namespace#ASNPurposeCodeType

3.2 Schema Representation

Schema modules must define named simple types utilizing XSD enumeration for internal code lists. For example:

<xsd:simpleType name=”ASNPurposeCodeType” id=”ASNPurposeCodeType”>

 <xsd:annotation>

 <xsd:documentation>

This code identifies the purpose of the ASN message. This is

a subset code list derived from EDIFACT 1225 (Message Function,

Coded) and X12 353 (Transaction Set Purpose Code) and 587

(Acknowledgement Type Code).

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base=”xsd:string”>

 <xsd:enumeration>Original</xsd:enumeration>

 <xsd:enumeration>Confirm</xsd:enumeration>

 <xsd:enumeration>Duplicate</xsd:enumeration>

 <xsd:enumeration>Replace</xsd:enumeration>

 <xsd:enumeration>Cancel</xsd:enumeration>

 </xsd:restriction>

</xsd:simpleType>

…

<xsd:element name=”PurposeCode” type=”ASNPurposeCodeType”/>

3.3 Subsetting and Extension

Custom codes for extending internal code lists should be handled the same as for external code lists. See Section 3.3.

Subsetting of internal code lists must use the context methodology mechanism, just as for external code lists.

4 Control of Custom Codes

One of the hardest problems in dealing with code lists is allowing for flexibility without compromising interoperability and semantic clarity. One way to mitigate the problem is to try to require all custom codes to come with a definition. Following are some options for doing this. All the options rely on the goodwill of UBL users to actually provide these definitions, but some of the options use syntactic methods of tying the code back to a definition.

4.1 Custom Code Semantics Option 0: Nothing

With this option, we let custom codes be any string at all, and we don’t state any expectations at all about the semantics behind the codes.

4.2 Custom Code Semantics Option 1: Prose

With this option, we let custom codes be any string at all, but we use the UBL documentation to normatively require that the custom code be documented.

4.3 Custom Code Semantics Option 2: URI Reference

With this option, we require that custom code be, not ordinary strings, but URI references that, in principle, are resolvable to some document that explains the meaning of the code. For example:

<xsd:simpleType name=”IceCreamFlavorCodeType”>

 <xsd:annotation>

 <xsd:documentation>

Baskin-Robbins Recommendation No. 31. If the code is

“Custom”, then IceCreamFlavorCustomCode must be supplied.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base=”xsd:string”/>

</xsd:simpleType>

…

<xsd:element name=”IceCreamDetails”>

 <xsd:attribute

 name=”IceCreamFlavorCode”

 type=”IceCreamFlavorCodeType” use=”required”/>

 <xsd:attribute

 name=”IceCreamFlavorCustomCode”

 type=”xsd:anyURI” use=”optional”/>

</xsd:element>

A corresponding instance with a custom code would look like this:

<IceCreamDetails

 IceCreamFlavorCode=”Custom”

 IceCreamFlavorCustomCode=”http://www.example.com/ublcodes#MixIn” />

It would be expected that anyone resolving the URI reference http://www.example.com/ublcodes#MixIn by means of a web browser would find documentation of MixIn.

4.4 Custom Code Semantics Option 3: QName

With this option, we require that custom code be, not ordinary strings or URI references, but “QNames” – qualified names roughly in the sense of XML Namespaces. The namespace prefix would need to be mapped through an xmlns: attribute to a namespace URI. The rest of the string would be the custom code proper. For example:

<xsd:simpleType name=”IceCreamFlavorCodeType”>

 <xsd:annotation>

 <xsd:documentation>

Baskin-Robbins Recommendation No. 31. If the code is

“Custom”, then IceCreamFlavorCustomCode must be supplied.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base=”xsd:string”/>

</xsd:simpleType>

…

<xsd:element name=”IceCreamDetails”>

 <xsd:attribute

 name=”IceCreamFlavorCode”

 type=”IceCreamFlavorCodeType” use=”required”/>

 <xsd:attribute

 name=”IceCreamFlavorCustomCode”

 type=”xsd:QName” use=”optional”/>

</xsd:element>

A corresponding instance with a custom code would look like this:

<IceCreamDetails

 xmlns:my=”http://www.example.com/ublcodes”

 IceCreamFlavorCode=”Custom”

 IceCreamFlavorCustomCode=”my:MixIn” />

While XML namespace URIs are not necessarily resolvable to any resource, it would be expected whatever documentation applies to the namespace http://www.example.com/ublcodes#MixIn would contain documentation of MixIn.

4.5 Recommendation

I prefer Option 2.

Option 0 gives in to the forces of darkness.

Option 1 provides only an easily-missed reminder to document custom semantics, and we’re really looking for more interoperability from UBL than this.

Option 3 is prettier than Option 2, but it is problematic in XML terms because a supposed “namespace prefix” in an attribute value is nothing more than an application-level convention, and it doesn’t layer cleanly on top of other namespace processing, which only knows about namespace prefixes in tag names and attribute names. Also, since namespace URIs are (by design) not necessarily resolvable to a resource, it makes the connection to any documentation more tenuous than it need be.

Option 2’s only big downside is that it makes for ugly custom codes. But perhaps this will be an incentive, however slight, for UBL document creators to try to find non-custom codes that meet their needs.

PAGE
9

