Random Thoughts: Code Lists

Author: Eve Maler (eve.maler@sun.com)

Date: 16 April 2002

Filename: draft-maler-codelists-random-00.doc

1Random Thoughts: Code Lists

31
Requirements

32
Contenders

32.1
Current UBL Method

32.1.1
Instance

42.1.2
Schema Definitions

52.1.3
Derivation Opportunities

52.1.4
Assessment

62.2
QName Method

62.2.1
Instance

62.2.2
Schema Definitions

72.2.3
Derivation Opportunities

72.2.4
Assessment

72.3
Namespaced Element Method

72.3.1
Instance

82.3.2
Schema Definitions

82.3.3
Derivation Opportunities

82.3.4
Assessment

82.4
Enumerated List Method

82.4.1
Instance

82.4.2
Schema Definitions

92.4.3
Derivation Opportunities

92.4.4
Assessment

92.5
Instance Extension Method

92.5.1
Instance

92.5.2
Schema Definitions

92.5.3
Derivation Opportunities

92.5.4
Assessment

103
Summary of Strengths and Weaknesses

104
Recommendation

Requirements

Here are the criteria that we used to measure potential code list schemes in Barcelona, in my rough guess at a priority order:

1. Semantic clarity: The ability to “dereference” the ultimate normative definition of the code being used

2. External maintenance: The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that allows UBL to reuse them without manual modification

3. Validatability: The ability to use XSD to validate that the code used is legitimately a member of the chosen code list

4. Context rules friendliness: The ability to use expected normal mechanisms of the context methodology for allowing codes from additional lists to appear (extension) and for subsetting the legitimate values of existing lists (subsetting), without the addition of custom features just for code lists

5. Upgradability: The ability to begin using a new version of a code list without the need for (subjectively) excessive schema gymnastics

6. Compactness: A representation in the XML instance that is not (subjectively) excessive

1 Contenders

Here are the methods I’ve seen proposed so far for handling code lists. Throughout, an element LocaleCode defined as part of the complex type LanguageType is used as an example element in a sample instance, and UBL library schema definitions are demonstrated along with potential opportunities for XSD-style derivation. Finally, each method is assessed to see which requirements it satisfies.

1.1 Current UBL Method

The current UBL method is a result of Gunther’s perl script running over the Library Content SC’s spreadsheet. The script uses our tentative decision about using attributes for supplementary components.

1.1.1 Instance

The current UBL method results in instance documents with the following structure.

<LocaleCode

 CodeListIdentifier=”token”

 CodeListAgencyIdentifier=”token”

 CodeListVersionIdentifier=”token”

 CodeName=”string”

 LanguageCode=”language”>

token

</LocaleCode>

1.1.2 Schema Definitions

The relevant UBL library schema definitions are as follows in V0.64 (leaving out all annotation elements).

<xs:simpleType name="CodeContentType" id="000091">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListAgencyIdentifierType" id="000093">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListIdentifierType" id="000092">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListVersionIdentifierType" id="000099">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeNameType" id="000100">

 <xs:restriction base="string"/>

</xs:simpleType>

<xs:simpleType name="LanguageCodeType" id="000075">

 <xs:restriction base="language"/>

</xs:simpleType>

<xs:complexType name="CodeType" id="000089">

 <xs:simpleContent>

 <xs:extension base="cct:CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="cct:CodeListIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeListAgencyIdentifier"

 type="cct:CodeListAgencyIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeListVersionIdentifier"

 type="cct:CodeListVersionIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeName" type="cct:CodeNameType">

 </xs:attribute>

 <xs:attribute name="LanguageCode" type="cct:LanguageCodeType">

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

<xsd:complexType name="LanguageType" id="UBL000013">

 <xsd:sequence>

 <xsd:element name="IdentificationCode" . . .></xsd:element>

 <xsd:element name="Name" . . .></xsd:element>

 <xsd:element name="LocaleCode" type="cct:CodeType" id="UBL000016"

 minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

1.1.3 Derivation Opportunities

[TBS. Can new simple types be derived and used successfully without the use of xsi:type (which you can’t use on attributes since it’s an attribute)? Can defaults be provided in a derivation? Can facets be set? Would TAAT work here?]

1.1.4 Assessment

Here is how the current UBL method ranks against the requirements. It doesn’t look too good!

	Semantic clarity
	High

The various supplementary components for the code are provided directly on the element that holds the code, allowing the code to be uniquely identified and looked up.

	External maintenance
	Low

There is no particular XSD formalism provided for encoding the details of a code list; thus, there is no way for external organizations to create a schema module that works smoothly with the UBL library. However, there are no barriers to creating a code list (in some other form) for use in any code-based UBL element.

	Validatability
	Low

There is no XSD structure for testing the legitimacy of any particular codes. All validation would have to happen at the application level (where the application uses the attribute values to find some code list in which it can do a lookup of the code provided).

	Context rules friendliness
	Low?

If extensions and subsets are to be managed by means of a context rules document at all, there would need to be a code list-specific mechanism added to reflect this method. If extensions and subsets don’t need to be managed by means of context rules because everything happens in the application, there is no need to do anything at all.

	Upgradability
	High

A document creator could merely change the CodeListVersionIdentifier value and supply a code available only in the new version.

	Compactness
	Medium to high

The code is accompanied by “live” supplementary components in the instance, which swells the instance. However, the latter are in attributes, which is a more efficient way of providing that metadata than elements, which would require end-tags that essentially duplicate the start-tags.

1.2 QName Method

The QName method was proposed in V04 of the code lists paper.

1.2.1 Instance

With the QName method, the code is an XML qualified name, or “QName”, consisting of a namespace prefix and a local part separated by a colon. Following is an example of a QName used in the LocaleCode element, where “iso3166” is the namespace prefix and “US” is the local part [Is this a correct example?]. The “iso3166” prefix is bound to a URI by means of an xmlns:iso3166 attribute (which could have been on a parent element, but is shown here as being on LocaleCode).

<LocaleCode

 xmlns:iso3166=”http://www.oasis-open.org/committees/ubl/ns/iso3166”>

iso3166:US

</LocaleCode>

1.2.2 Schema Definitions

QNames are defined by the built-in XSD simple type called QName. The schema definition in UBL must make reference to a UBL type based on QName wherever a code is allowed to appear. For example:

<xs:simpleType name=”CodeType”>

 <xs:restriction base=”QName”/>

</xs:simpleType>

<xsd:complexType name="LanguageType" id="UBL000013">

 <xsd:sequence>

 <xsd:element name="IdentificationCode" . . .></xsd:element>

 <xsd:element name="Name" . . .></xsd:element>

 <xsd:element name="LocaleCode" type="cct:CodeType" id="UBL000016"

 minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

The intent is for the namespace prefix in the QName to be mapped, through the use of the xmlns attribute as part of the normal XML Namespace mechanism, to a URI reference that stands for the code list from which the code comes. The local part identifies the actual code in the list that is desired.

The namespace URI shown in Section 2.2.1 is just an example. However, note that it is likely that the UBL library itself would have to define a set of common namespace URIs in all cases where the owners of external code lists have not provided a URI that could sensibly be used as a code list namespace name.

The documentation for the LocaleCode element must indicate the minimum set of code lists that are expected to be used in this attribute. However, the attribute is allowed to contain codes from additional code lists, as long as they are in the form of a QName.

Applications that produce and consume UBL documents are responsible for validating and interpreting the codes contained in the documents.

1.2.3 Derivation Opportunities

[TBS.]

1.2.4 Assessment

Here is how the QName method ranks against the requirements.

	Semantic clarity
	Low to medium

You have to go through a level of indirection, and a complicated one at that (because QNames in content are pseudo-illegitimate and are not supported properly in many XML tools), in order to refer back to the namespace URI. Further, the namespace URI might not resolve to any useful information. However, in cases where the URI is meaningful or sufficient documentation of the code list exists, clarity is achieved.

	External maintenance
	Low

There is no good way to define a schema module that controls QNames in content. [Right?]

	Validatability
	Low

All validation is pushed off to the application.

	Context rules friendliness
	Low?

This method is similar to the current UBL method in this respect. If extensions and subsets are to be managed by means of a context rules document at all, there would need to be a code list-specific mechanism added to reflect this method. If extensions and subsets don’t need to be managed by means of context rules because everything happens in the application, there is no need to do anything at all.

	Upgradability
	High

You need to have a different URI for each version of a code list, but if you do this, using a new version is easy: You just use a prefix that is bound to the URI for the version you want.

	Compactness
	High

The representation is extremely compact because the supplementary component details are deferred to another place (and format) entirely.

1.3 Namespaced Element Method

My understanding is that the namespaced element method is used in the UCC ebXML-based schemas.

1.3.1 Instance

The namespaced element method results in instance documents with the following structure.

<LocaleCode

 xmlns:iso3166=”. . .”>

<iso3166:code>code</iso3166:code>

</LocaleCode>

1.3.2 Schema Definitions

The schema definitions to support this might look as follows.

TBS

1.3.3 Derivation Opportunities

[TBS.]

1.3.4 Assessment

Here is how the namespaced element method ranks against the requirements.

	Semantic clarity
	

	External maintenance
	

	Validatability
	

	Context rules friendliness
	

	Upgradability
	

	Compactness
	

1.4 Enumerated List Method

The enumerated list method is the “classic” approach to defining code lists in XML and, before it, SGML.

1.4.1 Instance

The enumerated list method results in instance documents with the following structure.

TBS

1.4.2 Schema Definitions

The schema definitions to support this might look as follows.

TBS

1.4.3 Derivation Opportunities

[TBS.]

1.4.4 Assessment

Here is how the enumerated list method ranks against the requirements.

	Semantic clarity
	

	External maintenance
	

	Validatability
	

	Context rules friendliness
	

	Upgradability
	

	Compactness
	

1.5 Instance Extension Method

The instance extension method is apparently used in the ACORD DTDs.

1.5.1 Instance

The instance extension method results in instance documents with the following structure.

TBS

1.5.2 Schema Definitions

The schema definitions to support this might look as follows.

TBS

1.5.3 Derivation Opportunities

[TBS.]

1.5.4 Assessment

Here is how the instance extension method ranks against the requirements.

	Semantic clarity
	

	External maintenance
	

	Validatability
	

	Context rules friendliness
	

	Upgradability
	

	Compactness
	

2 Summary of Strengths and Weaknesses

Here is a summary of the strengths and weaknesses of the different methods.

	Requirement
	Current UBL
	QName
	Namespaced Element
	Instance Extension

	Semantic clarity
	High
	Low to medium
	
	

	External maintenance
	Low
	Low
	
	

	Validatability
	Low
	Low
	
	

	Context rules friendliness
	Low?
	Low?
	
	

	Upgradability
	High
	High
	
	

	Compactness
	Medium to high
	High
	
	

3 Recommendation

PAGE
7

