Feedback from OASIS UBL TC to Draft Core Components Specification 1.8

	document id
	
	
	

	Version
	0.2
	editor
	Bill Burcham

	
	April 18, 2002
	
	Sterling Commerce

The UBL group believe that, whilst the current CCTS provides a strong basis for good semantic modeling and definition of Core Components and Basic Information Entities, some modifications and clarifications would make it even better.

Some of these modifications may appear significant, but we feel it necessary to raise these matters sooner rather than later, whilst the implementations of ebXML Core Component libraries (such as UBL) are still under development.

To simplify the reading of our comments, we will refer only to Core Components (CCs). In reality these comments apply to both CCs and Basic Information Entities (BIEs). The issue of context is not covered in our comments.

Specifically, the areas the UBL team wish to comment on relate to:

1. Properties and their terms

2. Representation Terms and Core Component Types

3. The use of Codes and Identifiers

1. Properties and their terms

There appears to be an imprecise treatment of “properties” in the UN Core Components Technical Specification [CC-UN]. While that specification does talk extensively about “property terms” – which are part of a “dictionary entry name” for a “data element” (a la [NAMING-ISO]), we are left to infer the existence and makeup of the concept of “property”. It would be easier to apply a name for a property if we knew what we meant by property.

The term “property” is used often in that specification
, but it is never formally defined. Additionally, the term “child field” is used in some of the examples in that specification. That term is used synonymously to “property”, and is also left undefined. Further, it never appears in any of the conceptual diagrams.

We are trying to give “property terms” to things. What things are we trying to give them to?

We would like to propose the following changes to the CCTS:

Proposal 1
The CC model should include the concept of property.

Property is the model element named by a property term. This is similar to the same way a Core Component’s “activity or object”
 is the model element named by an object class.

This concept (Property) corresponds to “field” in database models, “attribute” in ER modeling, “member” in Java, “local element” in XML, etc.

Proposal 2
Specify that the name of a property (i.e. Property Term) describes the use of a Basic Core Component by an Aggregate Core Component.

This proposition formalizes the prose already in the specification.

“Property Term - This identifies one of the characteristics belonging to the Object Class.”
, and

“… represents the distinguishing characteristic or property…”

Knowing its property allows us to identify (name) a Basic Core Component within the Aggregate Core Component(s) that contain it. That is, this property’s relationship to the other elements of the CC meta-model.

2. Representation terms and Core Component Types

It is becoming clear that the differentiation between Representation Term and Core Component Type is confusing and does not add any semantic meaning to definitions.

Proposal 3

We suggest that only ‘Representation Term’ be used for CC definitions and that Core Component Types become redundant. This requires that the re-definition of Representation Term to encompass both the role of Representation Term and Core Component Type, e.g.

“The term describing the form of valid values in which the information is expressed for an entity. This term has no business meaning on its own. For example, date on its own has no business meaning, whereas the date of birth, the contact date and the delivery date do express business meaning.”

Proposal 4

Have a set of Representation Terms, which function as "semantic primitives," as originally intended by the CC group in ebXML. (The list may need to be altered slightly to include some missing types, but will not undergo wholesale expansion). This indicates what the business purpose of the data is, in an abstract sense, wholly separate from how it will be represented when syntax bound.

2.1 The use of Representation Terms for Aggregate Core Components

The current Core Component Types (or Representation terms if we adopt the proposal above) are aggregate data structures. These are re-used in many different Basic Core Components (as codes, amounts, etc.).

It would seem that we could view our Aggregate Core Components in the same manner. When we define an Aggregate Core Component we are actually establishing new aggregate data structures suitable for re-use (e.g. Address, Period, Contact, etc).

They could be treated as larger aggregations of the Basic Core Component Representation Terms. This simplifies the defining and naming Aggregate Core Components, especially where they are used within other Aggregate Core Components.

Proposal 5

Consider Aggregate Core Components to be similar to Representation Terms/Core Component Types. Whenever these Aggregate Core Components are re-used, they would have a Representation Term that reflected ‘the type of valid values’
 rather than the meaningless ‘Details’ currently required.

As an example, where the Aggregate Core Component of ‘Address’ is re-used within a ‘Party’ its Property Term and its Representation Term would be ‘Address’. This conforms with the idea that “a [Representation Term] represents the [Property Qualifier,Property Term] of the Object Class.” i.e. “an address represents the Address of the Party.”

3. The use of Codes and Identifiers

Whilst being simplified by accepting the proposal to eliminate Core Component Types, the issue of when to declare a Basic Core Component a Code or an Identifier still needs clarification. This is not a meta-model issue, it is an issue of content.

No one issue has caused as many problems as the application of these two concepts.

Codes

Definitions…

CCTS: A character string (letters, figures or symbols) that for brevity and / or language independence may be used to represent or replace a definitive value or text of an attribute.

UDEF: A character string used to replace a definitive value.

ISO/IEC18022: Data representation in different forms according to a pre-established set of rules.

Two Types of Code?

Before looking at the difference between Codes and Identifiers, we need to be clear on the current practice for the use of codes.

Some codes define content (good) and others define meta-data (to be avoided).

For example, ISO 3166.1 defines a set of valid Country Codes (i.e. a content code). So, if I wanted to unambiguously specify that the country of destination was Australia I would use the ISO 3166.1 code ‘AU’.

However, EDIFACT 2005 (Date or time or period function code qualifier) defines the function of a date, i.e. it defines meta-data. These are the codes that tell you what kind of thing you are dealing with
. So, if I wanted to use a generic date field within an Order, I could qualify it by accompanying the date with a code of ‘4’ meaning that the date is the ‘date when an order is issued’. This is an alternative to defining the order date object explicitly. The same principle applies to the many qualifier and function codes used throughout EDI messages. This concept goes to extremes with things like EDIFACT 1131 (Code List Identification code), defining meta-meta-data – an interoperability nightmare.

None of these meta-data codes represent Core Components, they provide clues to properties or perhaps contexts for Core Components. They are not Core Component codes as required by the CCTS. In fact, they attempt to convey semantic meaning via coded references rather than in the Library itself and are unnecessary and dangerous in the ebXML core component library.

Identifiers

Definitions…

CCTS: A character string used to establish the identity of, and distinguish uniquely, one instance of an object within an identification scheme from all other objects within the same scheme.

UDEF: A character string used to identify and distinguish uniquely.

ISO/IEC18022: An unambiguous, unique and a linguistically neutral value, resulting from the application of a rule-based identification process.
Whereas a code is shortened way of representing data, an identifier provides unambiguous identification of an object. The two are separate ideas.

The confusion arises because we often use codes to identify things, but we can also use informal strings of text (e.g. names) and unbounded sets of values (e.g. unique ID numbers). All these are identifiers. The value tells you which thing in a set of similar things you're talking about.

The issue is further confused because when we maintain code lists we must use identifiers for our codes. For example, within the set of Country Codes, the value ‘AU’ is the unique identification of Australia. It is a code used as an identifier. Of course, when applied to other object classes, such as Shipping Location, then ‘AU’ will not be unique – it is still a code, but not an identifier of the Shipping Location.

Proposal 6

The use of Identifier as a Representation Term (and Core Component Type if they still exist) should be discontinued. The property of ‘Identifier’ should exist as a Property Term where appropriate and the Representation of this may be as a Code, Text, Number, or any other Representation Term.

References

	CC-UN
	UN/CEFACT Draft Core Components Specification, Part 1, 8 February, 2002, version 1.8
	

	NAMING-ISO
	ISO/IEC 11179, Final committee draft, Parts 1-6.
	

� CCTS Section 5.6 lines 838-851; section 5.6.2 lines 892-914

� CCTS lines 2162-2163

� CCTS lines 2167-2168

� CCTS lines 1115-1116

� CCTS lines 1241-1242

� Gait Boxman –ebTWG list on 10th April 2002

� Gait Boxman –ebTWG list on 10th April 2002

