
1 Code Lists

This section recommends how to handle code lists in the UBL library. See the position paper on code lists for the rationale behind these recommendations.

1.1 Guidance to the UBL Modeling Process

Where possible, the UBL design should identify external code lists rather than develop its own internal code lists. Potential reasons for designing an internal code list include the need to combine multiple existing external code lists, or the lack of any suitable external code list. The lack of “easy-to-read” or “easy-to-understand” codes in an otherwise suitable code list is not sufficient reason to define an internal code list.

The UBL documentation must identify, for each UBL construct containing a code, the one or more code lists that must be minimally supported when the construct is used. Our recommendations for how to represent code lists in UBL schema modules have the effect of encapsulating this information in schema form as well. It is assumed that whole code lists, and not subsets of those code lists, are to be identified; however, users of the UBL library may customize these code lists by subsetting them.

1.2 Handling Code Lists in UBL Schema Modules

We recommend handling codes in UBL by defining a unique XSD complex type/simple type pair for each code list, so that the complex type (a code list type) can be bound to a UBL element (a code element) and the simple type (its corresponding code content type) can be bound to the element’s contents. The UBL library will have occasion to define a few such type pairs for UBL-native code lists; mostly we recommend that UBL identify external code lists – and bind its own code-related elements to types defined schema modules owned by external agencies, where such schema modules (code list modules) exist.

In some cases, while an external code list may have been defined, an XSD schema module may not yet (or may not ever) be created and maintained by the code list’s owning agency. In these cases, UBL will have to define a schema module on behalf of the agency. It is expected that these orphaned code list modules will not have the same validating power, nor be maintained with as much alacrity, as other code list modules with proper owners.

The recommendations here are designed to encourage the creation and maintenance of code list modules by their proper owners as much as possible.

Since the UBL library is based on the ebXML Core Components, the supplementary components identified for the Code. Type core component type are assumed to be sufficient for fully identifying a code list and any code used from it. Following are the components associated with Code.Type (as defined in V1.8 of the CCTS) and the recommended representation in UBL form. Note that, because of the NDR recommendation on when to use elements vs. attributes, the supplementary components are all recommended to be attributes.

	Component Name
	Component Definition
	Recommended UBL Form

	Code. Content
	A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute
	The content of the code element. The element is bound to the code list type and the element’s content is bound to the code content type.

	Code List. Identifier
	The name of a list of codes
	An attribute on the code element, defined as part of the code list type.

	Code List. Agency. Identifier
	An agency that maintains one or more code lists
	An attribute on the code element, defined as part of the code list type.

	Code List. Version. Identifier
	The version of the code list
	An attribute on the code element, defined as part of the code list type.

	Code. Name
	The textual equivalent of the code content
	Not used. This is the equivalent of the Code. Content component.

	Language. Code
	The identifier of the language used in the corresponding text string (in ISO 639 form)
	An optional attribute on the code element, applying to the content of the element itself. It is defined as part of the code list type.

There are two parts to the handling of code lists in UBL: the creation of code list modules and the binding of code list types and code content types to UBL elements.

1.2.1 Creating Code List Modules

Following are strong recommendations for defining code list types and their corresponding code content types:

· Name the types and define a named namespace in which they are defined. If possible, define the types in their own schema module (XSD file).

· ISSUE: Should we supply a standalone UBL schema module that they can use for slurping up the simple types for things like CodeListIdentifierType and CodeListAgencyIdentifierType (see Gunther’s CodeComponentTypes.xsd file as an example), or should we tell them to make these attributes just be xs:token etc., or what?

· Define the Code. Content component as the element content. Define attributes for the Code List. Identifier, Code List. Agency. Identifier, and Code List. Version. Identifier components. Do not define an attribute for the Code. Name component. The definition of the Language. Code component is optional.

· Make the XSD definitions as “tight” as you can, defining value defaults or fixed values for supplementary components and circumscribing the valid values of the code content as much as possible without compromising your own maintainability goals.

· ISSUE: Do we want to define canonical XSD documentation elements for code list modules? Even if we don’t recommend such for external code list modules, should we have them in UBL-native modules or in orphan code list modules?

Following is a minimal template to follow. This hypothetical ISO 3166 code list for locale codes is used merely as an example. For different code lists, it might make sense not to use enumeration but rather to use pattern-matching regular expressions or to avoid strict code validation entirely.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

 targetNamespace="{namespace for ISO 3166 code list module}"

 xmlns=”http://www.w3.org/2001/XMLSchema”

 xmlns:iso3166="{namespace for ISO 3166 code list module}"

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

 <xs:simpleType name=”iso3166:CodeContentType”>

 <xs:extension base=”xs:token”>

 <xs:enumeration value=”DE”/>

 <xs:enumeration value=”FR”/>

 <xs:enumeration value=”US”/>

 . . .

 </xs:extension>

 </xs:simpleType>

 <xsd:complexType name=”iso3166:CodeType”>

 <simpleContent>

 <xs:extension base="iso3166:CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="???" fixed=”ISO 3166 Locale Code”/>

 <xs:attribute name="CodeListAgencyIdentifier"

 type="???" fixed=”ISO”/>

 <xs:attribute name="CodeListVersionIdentifier"

 type="???" fixed=”1.0”/>

 </simpleContent>

 </xsd:complexType>

</xs:schema>

1.3 Binding Code List Types and Code Content Types to UBL Elements

No matter whether type pairs for code lists are defined by UBL or by an external agency, the UBL library must define its own elements for the provision of the actual codes in an instance. Such an element must be bound to the code list type (a complex type), and the element’s contents must be bound to the code content type (a simple type). This creates a unique element for each kind of code.

Following is an example of this binding is created. Here, a UBL LocaleCode element, of type LocaleCodeType, is assumed to require a code from the hypothetical ISO 3166 locale code list defined in the previous section. Thus, it needs to contain an ISO3166LocaleCode element bound to the iso3166:LocaleCodeType type.

<xsd:complexType name="{LocaleCode element’s parent}">

 <xsd:sequence>

 . . .

 <xsd:element name="LocaleCode" type="ubl:LocaleCodeType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”LocaleCodeType” id=”. . .”>

 <xsd:element name=”ISO3166Code” type=”iso3166:CodeType”/>

</xsd:complexType>

If the UBL library allows a choice of codes from different lists in any one location, it will do this by allowing a choice of elements in that location. There is no problem with the interpretation of clashing codes from different lists because the surrounding code element distinguishes them. For example, if locale codes from two different code lists – ISO 3166 and the Codes “R” Us locale code list – are allowed, following is how to allow them in the UBL library.

<xsd:complexType name="{LocaleCode element’s parent}">

 <xsd:sequence>

 . . .

 <xsd:element name="LocaleCode" type="ubl:LocaleCodeType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”LocaleCodeType” id=”. . .”>

 <xs:choice>

 <xsd:element name=”ISO3166Code” type=”iso3166:CodeType”/>

 <xsd:element name=”CodesRUsCode” type=”codesrus:CodeType”/>

 </xs:choice>

</xsd:complexType>

PAGE
3

