
[image: image1.png]
Universal Business Language (UBL)
Naming and Design Rules

Working Draft 09, 29 May 2002

Document identifier:

wd-ublndrsc-ndrdoc-09 (Word, PDF)

Location:

 http://www.oasis-open.org/committees/ubl/ndrsc/drafts
Editors:

Mavis Cournane, Cognitran Ltd <mavis.cournane@cognitran.com>

Mark Crawford, LMI <MCRAWFORD@lmi.org>

Arofan Gregory, CommerceOne <arofan.gregory@commerceone.com>

Eve Maler, Sun Microsystems <eve.maler@sun.com>

Contributors:

Bill Burcham, Sterling Commerce

Fabrice Desré, France Telecom

Matt Gertner, Schemantix

Phil Griffin, Griffin Consulting

Eduardo Gutentag, Sun Microsystems

Sue Probert, CommerceOne

Gunther Stuhec, SAP

Paul Thorpe, OSS Nokalva

Abstract:

This specification documents the naming and design rules and guidelines for the construction of XML components for the UBL vocabulary.

Status:

This is a draft document and is likely to change on a weekly basis.
If you are on the ubl-ndrsc@lists.oasis-open.org list for NDR subcommittee members, send comments there. If you are not on that list, subscribe to the ubl-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright © 2001, 2002 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

51
Terminology

62
Relationship to External Sources

73
XML Constructs

73.1
Introduction

73.2
UBL Documentation

73.2.1
The UBL Dictionary

73.2.2
Other UBL Documentation

73.3
General Naming Rules for XML Constructs

83.4
General Overview of Types

83.5
Elements and Attributes

83.5.1
Rules for UBL Elements

103.5.2
Rules for the Naming and Definition of Attributes and Types

123.6
Rules for Namespace structure

133.7
Rules for Module structure

133.8
Rules for Versioning

133.9
Rules for Context

144
Guidance to the UBL Modeling Process

155
Requirements for a Schema Solution for Code Lists

176
Contenders

176.1
Enumerated List Method

176.1.1
Instance

176.1.2
Schema Definitions

186.1.3
Derivation Opportunities

186.1.4
Assessment

196.2
QName in Content Method

196.2.1
Instance

196.2.2
Schema Definitions

206.2.3
Derivation Opportunities

206.2.4
Assessment

216.3
Instance Extension Method

216.3.1
Instance

226.3.2
Schema Definitions

226.3.3
Derivation Opportunities

226.3.4
Assessment

236.4
Single Type Method

236.4.1
Instance

236.4.2
Schema Definitions

256.4.3
Derivation Opportunities

256.4.4
Assessment

266.5
Multiple UBL Types Method

266.5.1
Instance

266.5.2
Schema Definitions

276.5.3
Derivation Opportunities

276.5.4
Assessment

296.6
Multiple Namespaced Types Method

296.6.1
Instance

296.6.2
Schema Definitions

306.6.3
Derivation Opportunities

306.6.4
Assessment

327
Analysis and Recommendation

338
References

338.1
Normative

34Appendix A. Notices

Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [CCTS1.8]
TBS

[ISO 11179]
TBS

[RFC2119]
.

1 Relationship to External Sources

Naming and Design Rules in this document refer to the following concepts taken from [CCTS1.8]
TBS

[ISO 11179]
 and used subsequently in the ebXML Core Components work [CCTS1.8]:
· Object Class

· Property Term

· Qualifier

· Representation Term (RT)

· Core Component Type (CCT)

2 XML Constructs

2.1 Introduction

In W3C XML Schema (known as XSD in this document), elements are defined in terms of complex or simple types and attributes are defined in terms of simple types. The rules in this section govern the consistent naming and structuring of these constructs and the manner of unambiguously and thoroughly documenting them.

2.2 UBL Documentation

2.2.1 The UBL Dictionary

The primary component of the UBL documentation is its dictionary. The entries in the dictionary fully define the pieces of information available to be used in UBL business messages. Each dictionary entry has a full name that ties the information to its standardized semantics, while the name of the corresponding XML element or attribute is only a shorthand for this full name. The rules for element and attribute naming and dictionary entry naming are different.

Each dictionary entry defines one fully qualified path (FQP) for an element or attribute. The fully qualified path anchors the use of that construct to a particular location in a business message. The dictionary definition identifies any semantic dependencies that the FQP has on other elements and attributes within the UBL library that are not otherwise enforced or made explicit in its structural definition. The dictionary serves as a traditional data dictionary, and also serves some of the functions of traditional implementation guides in this way.

2.2.2 Other UBL Documentation

Additional components of the UBL documentation include definitions of:

· XSD complex and simple types in the UBL library, including whether and how that type maps to a core component type

· The top-level elements in UBL that contain whole UBL messages

· Global attributes

· Summaries of Code Lists

· UBL-specific Core Component Types

· UBL-specific representation terms
The UBL documentation should be automatically generated to the extent possible, using embedded documentation fields in the structural definitions.

2.3 General Naming Rules for XML Constructs

The following are the naming rules that apply to all names of XML constructs in UBL:

1. Names must use Oxford English.

2. Names of XML constructs must not use non-alphabetic delimiters.

3. Names must not use acronyms, abbreviations, or other word truncations, with the exception of Identifier.

4. The Representation Term Identifier MUST be represented in XML names as ID.
5. Names must not contain non-letter characters unless required by language rules.
6. Names must be in singular form unless the concept itself is plural (example: Goods).

7. Names for XML constructs must use “camel-case” capitalization, such that each internal word in the name begins with an initial capital followed by lowercase letters (example: AmountContentType). As noted below, all XML constructs other than attributes use “upper camel-case”, with the first word initial-capitalized, while attributes use “lower camel-case”, with the first word all in lowercase. Exceptions are as follows:

DUNS for Dun & Bradstreet numbers

2.4 General Overview of Types

In XSD, elements are declared to have types, and most types (those complex types that are defined to have “complex contents”) are defined as a pattern of subelements and attributes. Thus, XSD has an indirect nesting structure of elements and types (where, for example, Type 1 below is the parent type of Element A and where Type 2 is the parent type of Element B and the type bound to Element A):

· Type 1

· Element A

· Type 2

· Element B…

In UBL, types are all named and therefore “top-level”, whereas most elements are declared locally inside complex types and are therefore “lower-level”. In terms of ebXML Core Components, UBL complex types are Object Classes, subelements declared within them are Properties of those Object Classes, and the types bound to those subelements are themselves Object Classes which have their own Properties.

UBL has no anonymous types; all types are assigned a name in their definition. In the UBL structural definitions, all complex type definitions should be grouped together, and all simple types similarly grouped together, for ease of reference.

2.5 Elements and Attributes

2.5.1 Rules for UBL Elements

These rules distinguish the following constructs within the structural definitions of messages and their component parts. Note that some of these distinctions are specific to UBL and are not part of the formal definition of XML or XSD.

· Elements:

· Top-level elements: Globally declared root elements, functioning at the level of a whole business message.

· Lower-level elements: Locally declared elements that appear inside a business message.

· Intermediate elements: Elements not at the top level that are of a complex type, only containing other elements and attributes.

· Leaf elements: Elements containing only character data (though they may also have attributes). Note that, because of the XSD mechanisms involved, elements that contain only character data but also have attributes must be declared with complex types, but such elements with no attributes may be declared with simple types or complex types.

· Mixed-content elements: Elements that allow both element content and data in their content models, and which may have attributes.

· Empty elements: Elements that contain nothing (though they may have attributes).
2.5.1.1 Rules for the Naming and Definition of Top-Level Elements

Each UBL business message has a single root element that is a UBL top-level element. This element MUST be globally declared in a UBL root schema (which may contain definitions of additional root elements for other related messages in a functional area; see the Modularity, Namespaces, and Versioning paper) with a reference to a named type definition. Only top-level elements are declared globally.

Top-level elements are named according to the portion of the business process that they initiate. Example: <Order>, <AdvanceShipNotice>.

2.5.1.2 Naming and Definition of Lower-Level Elements

2.5.1.2.1 General Rules

Lower-level elements (as well as attributes) are considered Properties of the Object Class represented by their parent type.

Lower-level elements must be locally declared as namespace-unqualified elements by reference to a named type, whether complex or simple, and be accompanied by documentation in the form of an <xsd:annotation> element with an <xsd:documentation> element that has a source attribute value of “Use”. The documentation specifies the use of the element within its parent type.

There are several kinds of lower-level elements, each with distinct naming rules.

2.5.1.2.2 Rules for Intermediate Elements

The names of intermediate elements must contain the Property Term describing the element and MAY be preceded by an appropriate Qualifier term as necessary to create semantic clarity at that level. The Object Class may be used as a qualifier.

[Qualifier] + PropertyTerm

2.5.1.2.3 Rules for Leaf Elements

Leaf elements are named as follows:

[Qualifier] + PropertyTerm + RepresentationTerm

The naming of leaf elements follows these exceptions:

· The Representation Term Text is always removed.

· Leaf elements with substantially similar Property Terms and Representation Terms must remove the Property Term.
Examples: If the Object Class is Goods, the Property Term is DeliveryDate, and the Representation Term is Date, the element name is truncated to
<GoodsDeliveryDate>; the element name for an identifier of a party <PartyIdentificationIdentifier> is truncated to <PartyIdentifier> – and then to <PartyID> because of the truncation rule.

2.5.1.2.4 Rules for Mixed-content elements

Mixed content in business documents is undesirable for a variety of reasons:

· White space is difficult to handle and complicates processing.

· Mixed content models allow little useful control over cardinality of elements.

For now mixed-content elements should have a Representation Term of Prose. This is currently under discussion with the LC SC.

2.5.1.2.5 Rules for Empty Elements

Empty elements are not permitted in UBL.

2.5.1.2.6 Rules Governing Elements of the Same Name and Their Respective Types

2.5.2 Rules for the Naming and Definition of Attributes and Types

2.5.2.1 General Overview

There are two types of attribute:

· Global attributes: Attributes that have common semantics on the multiple elements on which they appear. These might be fixed attributes expressing an XML architectural form, attributes for assigning a unique element identifier, or attributes containing natural-language information (such as xml:lang).

· Local attributes: Attributes that are specific to the element on which they appear. Most attributes are local.

Attributes, like lower-level elements, are Properties of the Object Class represented by their parent type. They are named identically to leaf elements, except that they use lower camel-case rather than upper camel-case e.g. amountCurrencyIDCode.
2.5.2.2 Rules for GLobal Attributes

A global attribute should be used only when its semantics are absolutely unchanged no matter what element it's used on, AND it's made available on every single element. This rule applies to both external and UBL-specific global attributes. This allows common attributes that are everywhere but are not global, and that need documentation of their meaning in each XML environment in which they're used.

UBL-specific global attributes should be named just like regular attributes and sub-elements (i.e. as properties of an object class). Hence, by definition, the name of such a property must be consistent across all objects.

2.5.2.3 Rules for Local Attributes

All attributes that are not globally declared in UBL are considered to be local attributes.

2.5.2.4 Rules for the Naming and Definition of Types

2.5.2.4.1 General Rules

All types must have names (i.e. they are not anonymous) and must appear as top-level constructs in UBL schema modules (i.e. they are not embedded within element or attribute declarations). The type name is the Object Class name, with “Type” appended and with a Qualifier optionally prepended:

[Qualifier] + ObjectClass + “Type”

Example: CodeNameType.
The definition must contain a structured set of XSD annotations in an <xsd:annotation> element with <xsd:documentation> elements that have source attribute values indicating the names of the documentation fields below:

· UBL UID: The unique identifier assigned to the type in the UBL library.

· UBL Name: The complete name (not the tag name) of the type per the UBL library.

· Object Class: The Object Class represented by the type.

· UBL Definition: Documentation of how the type is to be used, written such that it addresses the type’s function as a reusable component.

· Code Lists/Standards: A list of potential standard code lists or other relevant standards that could provide definition of possible values not formally expressed in the UBL structural definitions.

· Core Component UID: The UID of the Core Component on which the Type is based.

· Business Process Context: A valid value describing the Business Process contexts for which this construct has been designed. Default is “In All Contexts”.

· Geopolitical/Region Context: A valid value describing the Geopolitical/Region contexts for which this construct has been designed. Default is “In All Contexts”.

· Official Constraints Context: A valid value describing the Official Constraints contexts for which this construct has been designed. Default is “None”.

· Product Context: A valid value describing the Product contexts for which this construct has been designed. Default is “In All Contexts”.

· Industry Context: A valid value describing the Industry contexts for which this construct has been designed. Default is “In All Contexts”.

· Role Context: A valid value describing the Role contexts for which this construct has been designed. Default is “In All Contexts”.

· Supporting Role Context: A valid value describing the Supporting Role contexts for which this construct has been designed. Default is “In All Contexts”.

· System Capabilities Context: A valid value describing the Systems Capabilities contexts for which this construct has been designed. Default is “In All Contexts”.

The following is an extended example of the documentation fields for the type:

<xsd:complexType name=”PartyType”>

 <xsd:annotation>

 <xsd:documentation source=”UBL UID” xml:lang=”en”>PS1

 </xsd:documentation>

 <xsd:documentation source=”xCBL Name” xml:lang=”en”>Party

 </xsd:documentation>

 <xsd:documentation source=”Object Class” xml:lang=”en”>Party

 </xsd:documentation>

 <xsd:documentation source=”UBL Definition”

 xml:lang=”en”>

 </xsd:documentation>

 <xsd:documentation source=”Code Lists/Standards”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Core Component UID”

 xml:lang=”en”>[None]

 </xsd:documentation>

 <xsd:documentation source=”Business Process Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Geopolitical/Region Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Official Constraints Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Product Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Industry Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Supporting Role Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”System Capabilities Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 </xsd:annotation>

 …

</xsd:complexType>
2.5.2.4.2 Rules for Complex Types

Complex XSD types in UBL declare (usually) a set of local elements and (possibly) some attributes. These types correspond to Object Classes, with the local elements and the attributes corresponding to Properties of that Object Class.

2.6 Rules for Namespace structure

The namespace name should use the OASIS URN namespace.

The core and functional areas should have namespaces.

2.7 Rules for Module structure

2.8 Rules for Versioning

Each namespace should have a version.

2.9 Rules for Context

3 Code Lists

3.1 Guidance to the UBL Modeling Process

Where possible, UBL should identify external code lists rather than design its own internal code lists. Potential reasons for designing an internal code list include the need to combine multiple existing external code lists, or the lack of any suitable external code list. The lack of “easy-to-read” or “easy-to-understand” codes in an otherwise suitable code list is not sufficient reason to define an internal code list.

The UBL documentation must identify, for each UBL construct containing a code, the one or more code lists that must be minimally supported when the construct is used. Our recommendations for how to represent code lists in UBL schema modules have the effect of encapsulating this information in schema form as well.

3.2 Requirements for a Schema Solution for Code Lists

Following are our major requirements on potential code list schemes for use in the UBL library and customizations of that library. For convenience, a weighted point system is used for scoring the solutions against the requirements.

· Semantic clarity

The ability to “dereference” the ultimate normative definition of the code being used. The supplementary components for “Code.Type” CCTs are the expected way of providing this clarity, but there are many ways to supply values for these components in XML, and it’s even possible to supply values in some non-XML form that can then be referenced by the XML form.

Points: Low = 0, Medium = 2, High = 4

· Interoperability

The sharing of a common understanding of the limited set of codes that are expected to be used. There is a continuum of possibilities here. For example, a schema datatype that allows only a hard-coded enumerated list of code values provides “hard” (but inflexible) interoperability. On the other hand, merely documenting the intended shared values is more flexible but somewhat less interoperable, since there are fewer penalties for private arrangements that go outside the standard boundaries. This requirement is related to, but distinct from, validatability and context rules friendliness.

Points: Low = 0, Medium = 2, High = 4

· External maintenance

The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that allows UBL to reuse them without modification on anyone’s part. Some standards bodies are already starting to do this, though we recognize that others may never choose to create such modules.

Points: Low = 0, Medium = 2, High = 4

· Validatability

The ability to use XSD to validate that a code appearing in an instance is legitimately a member of the chosen code list. For the purposes of the analysis presented here, “validatability” will not measure the ability for non-XSD applications (for example, based on perl or Schematron) to do validation.

Points: Low = 0, Medium = 2, High = 4

· Context rules friendliness

The ability to use expected normal mechanisms of the context methodology for allowing codes from additional lists to appear (extension) and for subsetting the legitimate values of existing lists (subsetting), without adding custom features just for code lists. This has lower point values because we expect it to be easy to design custom features for code lists. For example, the following is a mock-up of one approach that could be used:

<CodeList fromType="LocaleCodeType" toCode="MyCodeType">

<Add>JP</Add>

<Remove>DE</Remove>

</CodeList>
Points: Low = 0, Medium = 1, High = 2

· Upgradability

The ability to begin using a new version of a code list without the need for upgrading, modifying, or customizing the schema modules being used. This has lower point values because requirements related to interoperability take precedence over a “convenience requirement”.

Points: Low = 0, Medium = 1, High = 2

· Readability

A representation in the XML instance that provides code information in a clear, easily readable form. This is a subjective measurement, and it has lower point values because although we want to recognize readability when we find it, we don’t want it to become more important than requirements related to interoperability.

Points: Low = 0, Medium = 1, High = 2

3.3 Contenders

The methods for handling code lists in schemas are as follows:

· The enumerated list method, using the classic method of statically enumerating the valid codes corresponding to a code list in an XSD string-based type internally in UBL

· The QName in content method, involving the use of XML Namespaces-based “qualified names” in the content of elements, where the namespace URI is associated with the supplementary components

· The instance extension method, where a code is provided along with a cross-reference to somewhere in the same instance to the necessary supplementary information

· The single type method, involving a single XSD type that sets up attributes for supplying the supplementary components directly on all elements containing codes

· The multiple UBL types method, where each element dedicated to containing a code from a particular code list is bound to a unique UBL type, which external organizations must derive from

· The multiple namespaced types method, where each element dedicated to containing a code from a particular code list is bound to a unique type that is qualified with a (potentially external) namespace

Throughout, an element LocaleCode defined as part of the complex type LanguageType is used as an example element in a sample instance, and UBL library schema definitions are demonstrated along with potential opportunities for XSD-style derivation. Each method is assessed to see which requirements it satisfies.

3.3.1 Enumerated List Method

The enumerated list method is the “classic” approach to defining code lists in XML and, before it, SGML. It involves creating a type in UBL that literally lists the allowed codes for each code list.

3.3.2 Instance

The enumerated list method results in instance documents with the following structure.

<LocaleCode>code</LocaleCode>

3.3.3 Schema Definitions

The schema definitions to support this might look as follows.

<xs:simpleType name="LocaleCodeType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="DE"/>

 <xs:enumeration value="FR"/>

 <xs:enumeration value="US"/>

 . . .

 </xs:restriction>

</xs:simpleType>

<xs:element name="LocaleCode" type="LocaleCodeType"/>

3.3.4 Derivation Opportunities

Using the XSD feature for creating unions of simple types, it is possible to extend the valid values of such an enumeration. However, it seems that we can't restrict the list of valid values. This is because <xs:enumeration> is not a type construction mechanism, but a facet.

The base schema shown above could be extended to support new codes as follows:

<xs:simpleType name="OtherCodeType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="SP"/>

 <xs:enumeration value="DK"/>

 <xs:enumeration value="JP"/>

 . . .

 </xs:restriction>

</xs:simpleType>

<xs:element name="MyLocalCode">

 <xs:simpleType>

 <xs:union memberTypes="LocaleCodeType OtherCodeType"/>

 </xs:simpleType>

</xs:element>

3.3.5 Assessment

Spelling out the valid values assures validatability, but defining all the necessary code lists in UBL itself defeats our hope that code lists can be defined and maintained in a decentralized fashion.

	Requirement
	Score
	Rank

	Semantic clarity
	0
	Low

The supplementary components of the code list could be provided as schema annotations, but they are not directly accessible as first-class information in the instance or schema.

	Interoperability
	4
	High

The allowed values are defined by a closed list defined in the schema itself.

	External maintenance
	0
	Low

We have to modify the type union in the base schema to "import" the new codes.

	Validatability
	4
	High

The allowed values are defined by a closed list defined in the schema itself.

	Context rules friendliness
	0
	Low

The allowed values are defined in the middle of a simple type, whereas the context methodology so far only knows about elements and attributes.

	Upgradability
	0
	Low

A schema extension would be needed to add any new codes defined in a new version.

	Readability
	2
	High

The instance is as compact as it can be, with no extraneous information hindering the visibility of the code itself.

	Total
	11
	

3.3.6 QName in Content Method

The QName method was proposed in V04 of the code lists paper.

3.3.6.1 Instance

With the QName method, the code is an XML qualified name, or “QName”, consisting of a namespace prefix and a local part separated by a colon. Following is an example of a QName used in the LocaleCode element, where “iso3166” is the namespace prefix and “US” is the local part. The “iso3166” prefix is bound to a URI by means of an xmlns:iso3166 attribute (which could have been on any ancestor element).

<LocaleCode

 xmlns:iso3166=”http://www.oasis-open.org/committees/ubl/ns/iso3166”>

iso3166:US

</LocaleCode>

The intent is for the namespace prefix in the QName to be mapped, through the use of the xmlns attribute as part of the normal XML Namespace mechanism, to a URI reference that stands for the code list from which the code comes. The local part identifies the actual code in the list that is desired.

The namespace URI shown here is just an example. However, it is likely that the UBL library itself would have to define a set of common namespace URIs in all cases where the owners of external code lists have not provided a URI that could sensibly be used as a code list namespace name.

3.3.6.2 Schema Definitions

QNames are defined by the built-in XSD simple type called QName. The schema definition in UBL should make reference to a UBL type based on QName wherever a code is allowed to appear, so that this particular use of QNames in UBL can be isolated and documented. For example:

<xs:simpleType name=”CodeType”>

 <xs:restriction base=”QName”/>

</xs:simpleType>

<xsd:complexType name="LanguageType" id="UBL000013">

 <xsd:sequence>

 <xsd:element name="IdentificationCode" . . .></xsd:element>

 <xsd:element name="Name" . . .></xsd:element>

 <xsd:element name="LocaleCode"

 type="cct:CodeType" id="UBL000016" minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

The documentation for the LocaleCode element should indicate the minimum set of code lists that are expected to be used in this attribute. However, the attribute can contain codes from any other code lists, as long as they are in the form of a QName.

Applications that produce and consume UBL documents are responsible for validating and interpreting the codes contained in the documents.

3.3.6.3 Derivation Opportunities

The QName type does have several facets: length, minLength, maxLength, pattern, enumeration, and whiteSpace. However, since namespace prefixes are ideally changeable, depending only on the presence of a correct xmlns namespace declaration, the facets (which are merely lexical in nature) are not a sure bet for controlling values.

3.3.6.4 Assessment

The idea of using XML namespaces to identify code lists is potentially useful, but because this method uses namespaces in a hard-to-process (and somewhat non-standard) manner, both semantic clarity and validatability suffer.

	Requirement
	Score
	Rank

	Semantic clarity
	1.5
	Low to medium

You have to go through a level of indirection, and a complicated one at that (because QNames in content are pseudo-illegitimate and are not supported properly in many XML tools), in order to refer back to the namespace URI. Further, the namespace URI might not resolve to any useful information. However, in cases where the URI is meaningful or sufficient documentation of the code list exists (something we could dictate by fiat), clarity can be achieved.

	Interoperability
	0
	Low

The shared understanding of minimally supported code lists would have to be conveyed only in prose.

	External maintenance
	0
	Low

There is no good way to define a schema module that controls QNames in content.

	Validatability
	0
	Low

All validation is pushed off to the application.

	Context rules friendliness
	0
	Low

This method is similar to the single type method in this respect. If extensions and subsets are to be managed by means of a context rules document at all, there would need to be a code list-specific mechanism added to reflect this method. If extensions and subsets don’t need to be managed by means of context rules because everything happens in the downstream application, there is no need to do anything at all.

	Upgradability
	2
	High

You need to have a different URI for each version of a code list, but if you do this, using a new version is easy: You just use a prefix that is bound to the URI for the version you want. However, there is no magic in namespace URIs that allows version information to be recognized as such; the whole URI is just an undifferentiated string.

	Readability
	1
	Medium

The representation is very compact because the supplementary component details are deferred to another place (and format) entirely, but the QName format and the need for the xmlns: attribute make the information a little obscure.

	Total
	4.5
	

3.3.7 Instance Extension Method

In the instance extension method, a code is provided along with a cross-reference to the ID of an element in the same instance that provides the necessary code list supplementary information. One XML instance might contain many code list declarations.

3.3.7.1 Instance

The instance extension method results in instance documents with something like the following structure. The CodeListDecl element sets up the supplementary information for a code list, and then an element provides a code (here, LocaleCode) also refers to the ID of the relevant declaration.

<CodeListDecl ID=”ID-LocaleCode”

 CodeListIdentifier=”ISO3166”

 CodeListAgencyIdentifier=”ISO”

 CodeListVersionIdentifier=”1.0”/>

. . .

<LocaleCode IDRef=”ID-LocaleCode”>

US

</LocaleCode>

3.3.7.2 Schema Definitions

The schema definitions to support this might look as follows.

<xs:element name=”CodeListDeclaration” type=”CodeListDeclType”/>

<xs:complexType name=”CodeListDeclType”>

 <xs:attribute name="CodeListIdentifier" type="xs:token"/>

 <xs:attribute name="CodeListAgencyIdentifier" type="xs:token"/>

 <xs:attribute name="CodeListVersionIdentifier" type="xs:token">

</xs:complexType>

. . .

<xs:element name=LocaleCode” type=”LocaleCodeType”/>

<xs:complexType name=”LocaleCodeType”>

 <xs:simpleContent>

 <xs:extension base="xs:token">

 <xs:attribute name="IDRef" type="xs:IDREF"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

3.3.7.3 Derivation Opportunities

Since code lists are declared in the instance document, there are not many opportunities for schema type derivation. Additional attributes for supplementary components could be added by this means, though this is unlikely to be needed.

3.3.7.4 Assessment

This method allows for great flexibility, but leaves validatability and interoperability nearly out of the picture.

	Requirement
	Score
	Rank

	Semantic clarity
	3
	Medium to high

All of the necessary information is present in the code list declaration, but retrieving it must be done somewhat indirectly.

	Interoperability
	1
	Low to medium

Standard XML entities could be provided that define the desired code lists, but there is no a machine-processable way to ensure that they get associated with the right code-usage elements.

	External maintenance
	2
	Medium

Using XML entities, external organizations could create and maintain their own code list declarations.

	Validatability
	0
	Low

Using XSD, there is no way to validate that the usage of a code matches the valid codes in the referenced code list.

	Context rules friendliness
	0
	Low

Since this method resides primarily in the instance and not the schema, the context rules have little opportunity to operate on code list definitions.

	Upgradability
	2
	High

It is easy to declare a code list with a higher version directly in the instance.

	Readability
	1.5
	Medium to high

The instance looks fairly clean, but the code list choice is a bit opaque.

	Total
	9.5
	

3.3.8 Single Type Method

The single type method is currently being used in UBL, as a result of a perl script running over the Library Content SC’s modeling spreadsheet. The script makes use of our decision to use attributes for supplementary components of a CCT and elements for everything else.

3.3.8.1 Instance

The single type method results in instance documents with the following structure.

<LocaleCode

 CodeListIdentifier=”ISO3166”

 CodeListAgencyIdentifier=”ISO”

 CodeListVersionIdentifier=”1.0”>

US

</LocaleCode>

3.3.8.2 Schema Definitions

The relevant UBL library schema definitions are as follows in V0.64 (leaving out all annotation elements). Notice that CodeType is a complex type that sets up a series of attributes (the supplementary components for a code) on an element that has simple content of CodeContentType (the code itself). Also note that, although a CodeName attribute is defined along with its corresponding type, this is a duplicate component for the code itself, and need not be used in the instance.

<xs:simpleType name="CodeContentType" id="000091">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListAgencyIdentifierType" id="000093">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListIdentifierType" id="000092">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListVersionIdentifierType" id="000099">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeNameType" id="000100">

 <xs:restriction base="string"/>

</xs:simpleType>

<xs:simpleType name="LanguageCodeType" id="000075">

 <xs:restriction base="language"/>

</xs:simpleType>

<xs:complexType name="CodeType" id="000089">

 <xs:simpleContent>

 <xs:extension base="cct:CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="cct:CodeListIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeListAgencyIdentifier"

 type="cct:CodeListAgencyIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeListVersionIdentifier"

 type="cct:CodeListVersionIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeName" type="cct:CodeNameType">

 </xs:attribute>

 <xs:attribute name="LanguageCode"

 type="cct:LanguageCodeType">

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

<xsd:complexType name="LanguageType" id="UBL000013">

 <xsd:sequence>

 <xsd:element name="IdentificationCode" . . .></xsd:element>

 <xsd:element name="Name" . . .></xsd:element>

 <xsd:element name="LocaleCode" type="cct:CodeType"

 id="UBL000016"

 minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

3.3.8.3 Derivation Opportunities

While it is possible to derive new simple types that restrict other simple types (including built-in types such as xs:token, used here for the actual code and other components), it is not possible to use such derived simple types directly in a UBL attribute such as CodeListVersionIdentifier without defining a whole new element structure. This is because you need to use the XSD xsi:type attribute to “swap in” the derived type for the ancestor, and you can’t put an attribute on an attribute in XML.

3.3.8.4 Assessment

This method is strong on semantic clarity because of the attributes for supplementary components, but it loses interoperability and schema flexibility because it is using a single type for everything.

	Requirement
	Score
	Rank

	Semantic clarity
	4
	High

The various supplementary components for the code are provided directly on the element that holds the code, allowing the code to be uniquely identified and looked up.

	Interoperability
	0
	Low

The shared understanding of minimally supported code lists would have to be conveyed only in prose.

	External maintenance
	0
	Low

There is no particular XSD formalism provided for encoding the details of a code list; thus, there is no way for external organizations to create a schema module that works smoothly with the UBL library. However, there are no barriers to creating a code list (in some other form) for use in any code-based UBL element.

	Validatability
	0
	Low

There is no XSD structure for testing the legitimacy of any particular codes. All validation would have to happen at the application level (where the application uses the attribute values to find some code list in which it can do a lookup of the code provided).

	Context rules friendliness
	0
	Low

If extensions and subsets are to be managed by means of a context rules document at all, there would need to be a code list-specific mechanism added to reflect this method. If extensions and subsets don’t need to be managed by means of context rules because everything happens in the application, there is no need to do anything at all.

	Upgradability
	2
	High

A document creator could merely change the CodeListVersionIdentifier value and supply a code available only in the new version.

	Readability
	1.5
	Medium to high

The code is accompanied by “live” supplementary components in the instance, which swells the size of instance. However, the latter are only in attributes, and it is nonetheless very clear what information is being provided.

	Total
	7.5
	

3.3.9 Multiple UBL Types Method

In this method, each list is associated with a unique element, whose content is a code from that list. The element is bound to a type that is declared in the UBL library; the type ensures that the Code.Type supplementary components are documented.

3.3.9.1 Instance

The multiple UBL types method results in instance documents with the following structure.

<LocaleCode>

<ISO3166Code>code</ISO3166Code>

</LocaleCode>

The LocaleCode element doesn’t contain the code directly; instead, it contains a subelement that is dedicated to codes from a particular list. If codes from multiple lists are allowed here, the element could contain any one of a choice of subelements, each dedicated to a different code list.

3.3.9.2 Schema Definitions

There are many different ways that UBL can define the ISO3166Code element, but it probably makes sense to base it on something like the single type method (for the supplementary component attributes) and to use the enumerated type method where practical (for the primary component). Thus, the optimal form of the multiple UBL types method is really a hybrid method.

The schema definition of the types governing the ISO3166Code element might look like this:

<xs:simpleType name=”ISO3166CodeContentType”>

 <xs:extension base=”token”>

 <xs:enumeration value=”DE”/>

 <xs:enumeration value=”FR”/>

 <xs:enumeration value=”US”/>

 . . .

 </xs:extension>

</xs:simpleType>

<xsd:complexType name=”ISO3166CodeType”>

 <simpleContent>

 <xs:extension base=" ISO3166CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="cct:CodeListIdentifierType" fixed=”ISO3166”/>

 <xs:attribute name="CodeListAgencyIdentifier"

 type="cct:CodeListAgencyIdentifierType"

 fixed=”ISO”/>

 <xs:attribute name="CodeListVersionIdentifier"

 type="cct:CodeListVersionIdentifierType"

 default=”1.0”/>

 <xs:attribute name="LanguageCode"

 type="cct:LanguageCodeType"

 use=”optional”/>

 </simpleContent>

</xsd:complexType>

Such a definition does several things:

· It enumerates the possible values of the code itself. An alternative would be just to allow the code to be a string or token, or to specify a regular expression pattern that the code needs to match.

· It provides a default value for the version of the code list being used, with the possiblity that the default could be overridden in an instance of a UBL message to provide a different version (though, since the codes are enumerated statically, if new codes were added to a new version they could not be used with this element as currently defined). Some alternatives would be to fix the version and to require the instance to set the version value.

· It fixes the values of the code list identifier and code list agency identifier for the code list, such that they could not be changed in an instance of a UBL message. Some alternatives would be to provide changeable defaults and to require that the instance set these values.

· It makes the language code optional to provide in the instance.
3.3.9.3 Derivation Opportunities

Because a whole element is dedicated to the code for each code list, the derivation opportunities are more plentiful. A derived type could be created that does any of the following:

· Adds to the enumerated list of values by means of the XSD union technique

· Adds defaults where there were none before

· Adds fixed values where there were none before
In addition, the element containing the dedicated code list subelement can be modified to allow the appearance of additional code list subelements.

3.3.9.4 Assessment

This method is quite strong on most requirements; it falls down only on external maintenance.

	Requirement
	Score
	Rank

	Semantic clarity
	4
	High

The supplementary components are always accessible, either through the instance or (through defaulting or fixing of values) the schema.

	Interoperability
	4
	High

Each code-containing construct in UBL can indicate, through schema constraints, exactly what is expected to appear there.

	External maintenance
	0
	Low

In order to work with the UBL library, the code lists maintained by external organizations would have to derive from the UBL type, which creates a circular dependency (UBL needs to include an external schema module, but the external module needs to derive from UBL). Alternatively, the UBL library has to do all the work of setting up all the desired code list types.

	Validatability
	4
	High

The constraint rules can range from very tight to very loose, and anyone who wants to subset or extend the valid values can express this in XSD terms fairly easily. The limitations are only due to XSD’s capabilities.

	Context rules friendliness
	2
	High

Since there is a dedicated element for a code, it can be added or subtracted like a regular element – something that is already assumed to be part of the power of the context rules language.

	Upgradability
	1.5
	Medium to high

Depending on how the constraint rules have been set up, it might be required to define a new (possibly derived) type to allow for a new version of a code list. However, in many cases, it will be desirable to design the schema module to avoid the need for this.

	Readability
	1.5
	Medium to high

Because there is an element dedicated to the list “source” for the code, the code itself is relatively readable. However, the supplementary components are likely to be hidden away from the instance, which makes their values a bit obscure.

	Total
	17
	

3.3.10 Multiple Namespaced Types Method

This method is very similar to the multiple UBL types method, with one important change: The UBL elements that each represent a code from a particular list are bound to types that may have come from an external organization’s schema module.

3.3.10.1 Instance

The namespaced type method results in instance documents with the following structure. This is identical to the multiple UBL types method, because the element dedicated to a single code list is still a UBL-native element.

<LocaleCode>

<ISO3166Code>code</ISO3166Code>

</LocaleCode>

3.3.10.2 Schema Definitions

The schema definitions to support the content of LocaleCode might look as follows. Here, three code list options are offered for a locale code. The xmlns: attributes that provide the namespace declarations for the iso3166:, xxx:, and yyy: prefixes are not shown here. It is assumed that an external organization (presumably ISO) has created a schema module that defines the iso3166:CodeType complex type and that this module has been imported into UBL.

<xsd:complexType name="LanguageType">

 <xsd:sequence>

 <xsd:element name="IdentificationCode" . . .></xsd:element>

 <xsd:element name="Name" . . .></xsd:element>

 <xsd:element name="LocaleCode"

 type="cct:LocaleCodeType" minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”LocaleCodeType” id=”. . .”>

 <xsd:choice>

 <xsd:element name=”ISO3166Code” type=”iso3166:CodeType”/>

 <xsd:element name=”XXXCode” type=”xxx:CodeType”/>

 <xsd:element name=”YYYCode” type=”yyy:CodeType”/>

 </xsd:choice>

</xsd:complexType>

Just as for the multiple UBL types method, there are many different ways that the iso3166:CodeType complex type can be defined, but it probably makes sense to base it on something like the single type method (for the supplementary component attributes) and to use the enumerated type method where practical (for the primary component). Thus, the optimal form of the multiple namespaced types method is really a hybrid method. For example, the definition might look like this:

<xs:simpleType name=”iso3166:CodeContentType”>

 <xs:extension base=”token”>

 <xs:enumeration value=”DE”/>

 <xs:enumeration value=”FR”/>

 <xs:enumeration value=”US”/>

 . . .

 </xs:extension>

</xs:simpleType>

<xsd:complexType name=”iso3166:CodeType”>

 <simpleContent >

 <xs:extension base="iso3166:CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="cct:CodeListIdentifierType"

 fixed=”xxx”/>

 <xs:attribute name="CodeListAgencyIdentifier"

 type=" iso3166:CodeListAgencyIdentifierType"

 fixed=”yyy”/>

 <xs:attribute name="CodeListVersionIdentifier"

 type=" iso3166:CodeListVersionIdentifierType"

 default=”1.0”/>

 <xs:attribute name="LanguageCode"

 type=" iso3166:LanguageCodeType"

 use=”optional”/>

 </simpleContent>

</xsd:complexType>

Because the UBL library would not have direct control over the quality and semantic clarity of the datatypes defined by external organizations, it would be important to document UBL’s expectations on these external code list datatypes.

3.3.10.3 Derivation Opportunities

Just as for multiple UBL types, because a whole element is dedicated to the code for each code list, the derivation opportunities are more plentiful.

Also, if the external organization failed to meet our expectations about semantic clarity and didn’t add the supplementary component attributes, we could add them ourselves by defining our own complex type whose primary component (the element content) is bound to their type, or by deriving a UBL type from their external type.

3.3.10.4 Assessment

This is a strong contender in every area.

	Requirement
	Score
	Rank

	Semantic clarity
	4
	High

The supplementary components are always accessible to the parser, either through the instance or (through defaulting or fixing of values) the schema. This assumes that UBL’s high expectations on external types are met, but this is a reasonable assumption.

	Interoperability
	4
	High

Each code-containing construct in UBL can indicate, through schema constraints, exactly what is expected to appear there.

	External maintenance
	4
	High

External organizations can freely create schema modules that define elements dedicated to their particular code lists, and can even make the constraint rules as flexible or as draconian as they want.

	Validatability
	4
	High

The constraint rules can range from very tight to very loose, and anyone who wants to subset or extend the valid values can express this in XSD terms fairly easily. The limitations are only due to XSD’s capabilities.

	Context rules friendliness
	2
	High 2

Since there is a dedicated element for a code, it can be added or subtracted like a regular element – something that is already assumed to be part of the power of the context rules language.

	Upgradability
	1.5
	Medium to high

Depending on how the constraint rules have been set up, it might be required to define a new (possibly derived) type to allow for a new version of a code list. However, in many cases, the organization maintaining the code list might design the schema module in such a way as to avoid the need for this.

	Readability
	1.5
	Medium to high

Because there is an element dedicated to the list “source” for the code, the code itself is relatively readable. However, the supplementary components are likely to be hidden away from the instance, which makes their values a bit obscure.

	Total
	21
	

3.4 Analysis and Recommendation

Following is a summary of the scores of the different methods.

	Method
	Score
	Comments

	Enumerated list
	11
	Spelling out the valid values assures validatability, but defining all the necessary code lists in UBL itself defeats our hope that code lists can be defined and maintained in a decentralized fashion.

	QName in content
	4.5
	The idea of using XML namespaces to identify code lists is potentially useful, but because this method uses namespaces in a hard-to-process (and somewhat non-standard) manner, both semantic clarity and validatability suffer.

	Instance extension
	9.5
	This method allows for great flexibility, but leaves validatability and interoperability nearly out of the picture.

	Single type
	7.5
	This method is strong on semantic clarity because of the attributes for supplementary components, but it loses interoperability and schema flexibility because it is using a single type for everything.

	Multiple UBL types
	17
	This method is quite strong on most requirements; it falls down only on external maintenance.

	Multiple namespaced types
	21
	This is a strong contender in every area.

We recommend the multiple namespaced types method, with the addition of strong documented expectations on the external organizations that define schema modules for code lists in order to ensure maximum semantic clarity and validatability.

Note that is is possible that the UBL library will not have many external schema modules to choose from initially, and some external organizations may choose never to create schema modules for their code lists. Thus, UBL might be in the position of having to create dummy datatypes for some of the code lists it uses. In these cases, at least UBL will achieve most of the benefits, while having to balance the costs of maintenance against these benefits. It may be that UBL can even “kick-start” the interest of some external organizations in producing such a deliverable by supplying a starter schema module.

4 References

4.1 Normative

[CCTS1.8]
TBS

[ISO 11179]
TBS

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

Appendix A. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

14

wd-ublndrsc-ndrdoc-09
wd-ublndrsc-ndrdoc-09

15

