
[image: image1.png]
Universal Business Language (UBL)
Naming and Design Rules

Working Draft 11, 29 May 2002

Document identifier:

wd-ublndrsc-ndrdoc-011 (Word, PDF)

Location:

 http://www.oasis-open.org/committees/ubl/ndrsc/drafts
Editors:

Mavis Cournane, Cognitran Ltd <mavis.cournane@cognitran.com>

Mark Crawford, LMI <MCRAWFORD@lmi.org>

Arofan Gregory, CommerceOne <arofan.gregory@commerceone.com>

Eve Maler, Sun Microsystems <eve.maler@sun.com>

Contributors:

Bill Burcham, Sterling Commerce

Fabrice Desré, France Telecom

Matt Gertner, Schemantix

Phil Griffin, Griffin Consulting

Eduardo Gutentag, Sun Microsystems

Sue Probert, CommerceOne

Gunther Stuhec, SAP

Paul Thorpe, OSS Nokalva

Abstract:

This specification documents the naming and design rules and guidelines for the construction of XML components for the UBL vocabulary.

Status:

This is a draft document and is likely to change on a weekly basis.
If you are on the ubl-ndrsc@lists.oasis-open.org list for NDR subcommittee members, send comments there. If you are not on that list, subscribe to the ubl-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright © 2001, 2002 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

41
Terminology

52
Relationship to External Sources

63
XML Constructs

63.1
Introduction

63.2
UBL Documentation

63.2.1
The UBL Dictionary

63.2.2
Other UBL Documentation

63.3
General Naming Rules for XML Constructs

73.4
General Overview of Types

73.5
Elements and Attributes

73.5.1
Rules for UBL Elements

93.5.2
Rules for the Naming and Definition of Attributes and Types

113.6
Rules for Namespace structure

123.7
Rules for Module structure

123.8
Rules for Versioning

123.9
Rules for Context

134
Code Lists

134.1
Guidance to the UBL Modeling Process

134.2
Handling Code Lists in UBL Schema Modules

144.2.1
Creating Code List Modules

154.3
Binding Code List Types and Code Content Types to UBL Elements

17Appendix A. Notices

Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [CCTS1.8]
TBS

[ISO 11179]
TBS

[RFC2119]
.

1 Relationship to External Sources

Naming and Design Rules in this document refer to the following concepts taken from [CCTS1.8]
TBS

[ISO 11179]
 and used subsequently in the ebXML Core Components work [CCTS1.8]:
· Object Class

· Property Term

· Qualifier

· Representation Term (RT)

· Core Component Type (CCT)

2 XML Constructs

2.1 Introduction

In W3C XML Schema (known as XSD in this document), elements are defined in terms of complex or simple types and attributes are defined in terms of simple types. The rules in this section govern the consistent naming and structuring of these constructs and the manner of unambiguously and thoroughly documenting them.

2.2 UBL Documentation

2.2.1 The UBL Dictionary

The primary component of the UBL documentation is its dictionary. The entries in the dictionary fully define the pieces of information available to be used in UBL business messages. Each dictionary entry has a full name that ties the information to its standardized semantics, while the name of the corresponding XML element or attribute is only a shorthand for this full name. The rules for element and attribute naming and dictionary entry naming are different.

Each dictionary entry defines one fully qualified path (FQP) for an element or attribute. The fully qualified path anchors the use of that construct to a particular location in a business message. The dictionary definition identifies any semantic dependencies that the FQP has on other elements and attributes within the UBL library that are not otherwise enforced or made explicit in its structural definition. The dictionary serves as a traditional data dictionary, and also serves some of the functions of traditional implementation guides in this way.

2.2.2 Other UBL Documentation

Additional components of the UBL documentation include definitions of:

· XSD complex and simple types in the UBL library, including whether and how that type maps to a core component type

· The top-level elements in UBL that contain whole UBL messages

· Global attributes

· Summaries of Code Lists

· UBL-specific Core Component Types

· UBL-specific representation terms
The UBL documentation should be automatically generated to the extent possible, using embedded documentation fields in the structural definitions.

2.3 General Naming Rules for XML Constructs

The following are the naming rules that apply to all names of XML constructs in UBL:

1. Names must use Oxford English.

2. Names of XML constructs must not use non-alphabetic delimiters.

3. Names must not use acronyms, abbreviations, or other word truncations, with the exception of Identifier.

4. The Representation Term Identifier MUST be represented in XML names as ID.
5. Names must not contain non-letter characters unless required by language rules.
6. Names must be in singular form unless the concept itself is plural (example: Goods).

7. Names for XML constructs must use “camel-case” capitalization, such that each internal word in the name begins with an initial capital followed by lowercase letters (example: AmountContentType). As noted below, all XML constructs other than attributes use “upper camel-case”, with the first word initial-capitalized, while attributes use “lower camel-case”, with the first word all in lowercase. Exceptions are as follows:

DUNS for Dun & Bradstreet numbers

2.4 General Overview of Types

In XSD, elements are declared to have types, and most types (those complex types that are defined to have “complex contents”) are defined as a pattern of subelements and attributes. Thus, XSD has an indirect nesting structure of elements and types (where, for example, Type 1 below is the parent type of Element A and where Type 2 is the parent type of Element B and the type bound to Element A):

· Type 1

· Element A

· Type 2

· Element B…

In UBL, types are all named and therefore “top-level”, whereas most elements are declared locally inside complex types and are therefore “lower-level”. In terms of ebXML Core Components, UBL complex types are Object Classes, subelements declared within them are Properties of those Object Classes, and the types bound to those subelements are themselves Object Classes which have their own Properties.

UBL has no anonymous types; all types are assigned a name in their definition. In the UBL structural definitions, all complex type definitions should be grouped together, and all simple types similarly grouped together, for ease of reference.

2.5 Elements and Attributes

2.5.1 Rules for UBL Elements

These rules distinguish the following constructs within the structural definitions of messages and their component parts. Note that some of these distinctions are specific to UBL and are not part of the formal definition of XML or XSD.

· Elements:

· Top-level elements: Globally declared root elements, functioning at the level of a whole business message.

· Lower-level elements: Locally declared elements that appear inside a business message.

· Intermediate elements: Elements not at the top level that are of a complex type, only containing other elements and attributes.

· Leaf elements: Elements containing only character data (though they may also have attributes). Note that, because of the XSD mechanisms involved, elements that contain only character data but also have attributes must be declared with complex types, but such elements with no attributes may be declared with simple types or complex types.

· Mixed-content elements: Elements that allow both element content and data in their content models, and which may have attributes.

· Empty elements: Elements that contain nothing (though they may have attributes).
2.5.1.1 Rules for the Naming and Definition of Top-Level Elements

Each UBL business message has a single root element that is a UBL top-level element. This element MUST be globally declared in a UBL root schema (which may contain definitions of additional root elements for other related messages in a functional area; see the Modularity, Namespaces, and Versioning paper) with a reference to a named type definition. Only top-level elements are declared globally.

Top-level elements are named according to the portion of the business process that they initiate. Example: <Order>, <AdvanceShipNotice>.

2.5.1.2 Naming and Definition of Lower-Level Elements

2.5.1.2.1 General Rules

Lower-level elements (as well as attributes) are considered Properties of the Object Class represented by their parent type.

Lower-level elements must be locally declared as namespace-unqualified elements by reference to a named type, whether complex or simple, and be accompanied by documentation in the form of an <xsd:annotation> element with an <xsd:documentation> element that has a source attribute value of “Use”. The documentation specifies the use of the element within its parent type.

There are several kinds of lower-level elements, each with distinct naming rules.

2.5.1.2.2 Rules for Intermediate Elements

The names of intermediate elements must contain the Property Term describing the element and MAY be preceded by an appropriate Qualifier term as necessary to create semantic clarity at that level. The Object Class may be used as a qualifier.

[Qualifier] + PropertyTerm

2.5.1.2.3 Rules for Leaf Elements

Leaf elements are named as follows:

[Qualifier] + PropertyTerm + RepresentationTerm

The naming of leaf elements follows these exceptions:

· The Representation Term Text is always removed.

· Leaf elements with substantially similar Property Terms and Representation Terms must remove the Property Term.
Examples: If the Object Class is Goods, the Property Term is DeliveryDate, and the Representation Term is Date, the element name is truncated to
<GoodsDeliveryDate>; the element name for an identifier of a party <PartyIdentificationIdentifier> is truncated to <PartyIdentifier> – and then to <PartyID> because of the truncation rule.

2.5.1.2.4 Rules for Mixed-content elements

Mixed content in business documents is undesirable for a variety of reasons:

· White space is difficult to handle and complicates processing.

· Mixed content models allow little useful control over cardinality of elements.

For now mixed-content elements should have a Representation Term of Prose. This is currently under discussion with the LC SC.

2.5.1.2.5 Rules for Empty Elements

Empty elements are not permitted in UBL.

2.5.1.2.6 Rules Governing Elements of the Same Name and Their Respective Types

2.5.2 Rules for the Naming and Definition of Attributes and Types

2.5.2.1 General Overview

There are two types of attribute:

· Global attributes: Attributes that have common semantics on the multiple elements on which they appear. These might be fixed attributes expressing an XML architectural form, attributes for assigning a unique element identifier, or attributes containing natural-language information (such as xml:lang).

· Local attributes: Attributes that are specific to the element on which they appear. Most attributes are local.

Attributes, like lower-level elements, are Properties of the Object Class represented by their parent type. They are named identically to leaf elements, except that they use lower camel-case rather than upper camel-case e.g. amountCurrencyIDCode.
2.5.2.2 Rules for GLobal Attributes

A global attribute should be used only when its semantics are absolutely unchanged no matter what element it's used on, AND it's made available on every single element. This rule applies to both external and UBL-specific global attributes. This allows common attributes that are everywhere but are not global, and that need documentation of their meaning in each XML environment in which they're used.

UBL-specific global attributes should be named just like regular attributes and sub-elements (i.e. as properties of an object class). Hence, by definition, the name of such a property must be consistent across all objects.

2.5.2.3 Rules for Local Attributes

All attributes that are not globally declared in UBL are considered to be local attributes.

2.5.2.4 Rules for the Naming and Definition of Types

2.5.2.4.1 General Rules

All types must have names (i.e. they are not anonymous) and must appear as top-level constructs in UBL schema modules (i.e. they are not embedded within element or attribute declarations). The type name is the Object Class name, with “Type” appended and with a Qualifier optionally prepended:

[Qualifier] + ObjectClass + “Type”

Example: CodeNameType.
The definition must contain a structured set of XSD annotations in an <xsd:annotation> element with <xsd:documentation> elements that have source attribute values indicating the names of the documentation fields below:

· UBL UID: The unique identifier assigned to the type in the UBL library.

· UBL Name: The complete name (not the tag name) of the type per the UBL library.

· Object Class: The Object Class represented by the type.

· UBL Definition: Documentation of how the type is to be used, written such that it addresses the type’s function as a reusable component.

· Code Lists/Standards: A list of potential standard code lists or other relevant standards that could provide definition of possible values not formally expressed in the UBL structural definitions.

· Core Component UID: The UID of the Core Component on which the Type is based.

· Business Process Context: A valid value describing the Business Process contexts for which this construct has been designed. Default is “In All Contexts”.

· Geopolitical/Region Context: A valid value describing the Geopolitical/Region contexts for which this construct has been designed. Default is “In All Contexts”.

· Official Constraints Context: A valid value describing the Official Constraints contexts for which this construct has been designed. Default is “None”.

· Product Context: A valid value describing the Product contexts for which this construct has been designed. Default is “In All Contexts”.

· Industry Context: A valid value describing the Industry contexts for which this construct has been designed. Default is “In All Contexts”.

· Role Context: A valid value describing the Role contexts for which this construct has been designed. Default is “In All Contexts”.

· Supporting Role Context: A valid value describing the Supporting Role contexts for which this construct has been designed. Default is “In All Contexts”.

· System Capabilities Context: A valid value describing the Systems Capabilities contexts for which this construct has been designed. Default is “In All Contexts”.

The following is an extended example of the documentation fields for the type:

<xsd:complexType name=”PartyType”>

 <xsd:annotation>

 <xsd:documentation source=”UBL UID” xml:lang=”en”>PS1

 </xsd:documentation>

 <xsd:documentation source=”xCBL Name” xml:lang=”en”>Party

 </xsd:documentation>

 <xsd:documentation source=”Object Class” xml:lang=”en”>Party

 </xsd:documentation>

 <xsd:documentation source=”UBL Definition”

 xml:lang=”en”>

 </xsd:documentation>

 <xsd:documentation source=”Code Lists/Standards”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Core Component UID”

 xml:lang=”en”>[None]

 </xsd:documentation>

 <xsd:documentation source=”Business Process Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Geopolitical/Region Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Official Constraints Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Product Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Industry Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Supporting Role Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”System Capabilities Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 </xsd:annotation>

 …

</xsd:complexType>
2.5.2.4.2 Rules for Complex Types

Complex XSD types in UBL declare (usually) a set of local elements and (possibly) some attributes. These types correspond to Object Classes, with the local elements and the attributes corresponding to Properties of that Object Class.

2.6 Rules for Namespace structure

The namespace name should use the OASIS URN namespace.

The core and functional areas should have namespaces.

2.7 Rules for Module structure

2.8 Rules for Versioning

Each namespace should have a version.

2.9 Rules for Context

3 Code Lists

This section recommends how to handle code lists in the UBL library. See the position paper on code lists for the rationale behind these recommendations.

3.1 Guidance to the UBL Modeling Process

Where possible, the UBL design should identify external code lists rather than develop its own internal code lists. Potential reasons for designing an internal code list include the need to combine multiple existing external code lists, or the lack of any suitable external code list. The lack of “easy-to-read” or “easy-to-understand” codes in an otherwise suitable code list is not sufficient reason to define an internal code list.

The UBL documentation must identify, for each UBL construct containing a code, the one or more code lists that must be minimally supported when the construct is used. Our recommendations for how to represent code lists in UBL schema modules have the effect of encapsulating this information in schema form as well. It is assumed that whole code lists, and not subsets of those code lists, are to be identified; however, users of the UBL library may customize these code lists by subsetting them.

3.2 Handling Code Lists in UBL Schema Modules

We recommend handling codes in UBL by defining a unique XSD complex type/simple type pair for each code list, so that the complex type (a code list type) can be bound to a UBL element (a code element) and the simple type (its corresponding code content type) can be bound to the element’s contents. The UBL library will have occasion to define a few such type pairs for UBL-native code lists; mostly we recommend that UBL identify external code lists – and bind its own code-related elements to types defined schema modules owned by external agencies, where such schema modules (code list modules) exist.

In some cases, while an external code list may have been defined, an XSD schema module may not yet (or may not ever) be created and maintained by the code list’s owning agency. In these cases, UBL will have to define a schema module on behalf of the agency. It is expected that these orphaned code list modules will not have the same validating power, nor be maintained with as much alacrity, as other code list modules with proper owners.

The recommendations here are designed to encourage the creation and maintenance of code list modules by their proper owners as much as possible.

Since the UBL library is based on the ebXML Core Components, the supplementary components identified for the Code. Type core component type are assumed to be sufficient for fully identifying a code list and any code used from it. Following are the components associated with Code.Type (as defined in V1.8 of the CCTS) and the recommended representation in UBL form. Note that, because of the NDR recommendation on when to use elements vs. attributes, the supplementary components are all recommended to be attributes.

	Component Name
	Component Definition
	Recommended UBL Form

	Code. Content
	A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute
	The content of the code element. The element is bound to the code list type and the element’s content is bound to the code content type.

	Code List. Identifier
	The name of a list of codes
	An attribute on the code element, defined as part of the code list type.

	Code List. Agency. Identifier
	An agency that maintains one or more code lists
	An attribute on the code element, defined as part of the code list type.

	Code List. Version. Identifier
	The version of the code list
	An attribute on the code element, defined as part of the code list type.

	Code. Name
	The textual equivalent of the code content
	Not used. This is the equivalent of the Code. Content component.

	Language. Code
	The identifier of the language used in the corresponding text string (in ISO 639 form)
	An optional attribute on the code element, applying to the content of the element itself. It is defined as part of the code list type.

There are two parts to the handling of code lists in UBL: the creation of code list modules and the binding of code list types and code content types to UBL elements.

3.2.1 Creating Code List Modules

Following are strong recommendations for defining code list types and their corresponding code content types:

· Name the types and define a named namespace in which they are defined. If possible, define the types in their own schema module (XSD file).

· ISSUE: Should we supply a standalone UBL schema module that they can use for slurping up the simple types for things like CodeListIdentifierType and CodeListAgencyIdentifierType (see Gunther’s CodeComponentTypes.xsd file as an example), or should we tell them to make these attributes just be xs:token etc., or what?

· Define the Code. Content component as the element content. Define attributes for the Code List. Identifier, Code List. Agency. Identifier, and Code List. Version. Identifier components. Do not define an attribute for the Code. Name component. The definition of the Language. Code component is optional.

· Make the XSD definitions as “tight” as you can, defining value defaults or fixed values for supplementary components and circumscribing the valid values of the code content as much as possible without compromising your own maintainability goals.

· ISSUE: Do we want to define canonical XSD documentation elements for code list modules? Even if we don’t recommend such for external code list modules, should we have them in UBL-native modules or in orphan code list modules?

Following is a minimal template to follow. This hypothetical ISO 3166 code list for locale codes is used merely as an example. For different code lists, it might make sense not to use enumeration but rather to use pattern-matching regular expressions or to avoid strict code validation entirely.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

 targetNamespace="{namespace for ISO 3166 code list module}"

 xmlns=”http://www.w3.org/2001/XMLSchema”

 xmlns:iso3166="{namespace for ISO 3166 code list module}"

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

 <xs:simpleType name=”iso3166:CodeContentType”>

 <xs:extension base=”xs:token”>

 <xs:enumeration value=”DE”/>

 <xs:enumeration value=”FR”/>

 <xs:enumeration value=”US”/>

 . . .

 </xs:extension>

 </xs:simpleType>

 <xsd:complexType name=”iso3166:CodeType”>

 <simpleContent>

 <xs:extension base="iso3166:CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="???" fixed=”ISO 3166 Locale Code”/>

 <xs:attribute name="CodeListAgencyIdentifier"

 type="???" fixed=”ISO”/>

 <xs:attribute name="CodeListVersionIdentifier"

 type="???" fixed=”1.0”/>

 </simpleContent>

 </xsd:complexType>

</xs:schema>

3.3 Binding Code List Types and Code Content Types to UBL Elements

No matter whether type pairs for code lists are defined by UBL or by an external agency, the UBL library must define its own elements for the provision of the actual codes in an instance. Such an element must be bound to the code list type (a complex type), and the element’s contents must be bound to the code content type (a simple type). This creates a unique element for each kind of code.

Following is an example of this binding is created. Here, a UBL LocaleCode element, of type LocaleCodeType, is assumed to require a code from the hypothetical ISO 3166 locale code list defined in the previous section. Thus, it needs to contain an ISO3166LocaleCode element bound to the iso3166:LocaleCodeType type.

<xsd:complexType name="{LocaleCode element’s parent}">

 <xsd:sequence>

 . . .

 <xsd:element name="LocaleCode" type="ubl:LocaleCodeType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”LocaleCodeType” id=”. . .”>

 <xsd:element name=”ISO3166Code” type=”iso3166:CodeType”/>

</xsd:complexType>

If the UBL library allows a choice of codes from different lists in any one location, it will do this by allowing a choice of elements in that location. There is no problem with the interpretation of clashing codes from different lists because the surrounding code element distinguishes them. For example, if locale codes from two different code lists – ISO 3166 and the Codes “R” Us locale code list – are allowed, following is how to allow them in the UBL library.

<xsd:complexType name="{LocaleCode element’s parent}">

 <xsd:sequence>

 . . .

 <xsd:element name="LocaleCode" type="ubl:LocaleCodeType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”LocaleCodeType” id=”. . .”>

 <xs:choice>

 <xsd:element name=”ISO3166Code” type=”iso3166:CodeType”/>

 <xsd:element name=”CodesRUsCode” type=”codesrus:CodeType”/>

 </xs:choice>

</xsd:complexType>

Appendix A. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

2

wd-ublndrsc-ndrdoc-011
wd-ublndrsc-ndrdoc-0

17

