
UBL Schema Naming and Design Rules Checklist 
 
General Comments: 

Make all the MUST and mustMUST the same.  Either italics or uppercase, don’t mix. 
1.“We formally accepted the proposal to use elements for everything, except for using attributes for supplementary components” 

Find rule 
1.2. 

 
Last modified:  8/5/2003 9:17 PM7/21/2003 10:25 AM 
 
Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

[R 1] All UBL schema design rules MUST be 
based on the W3C XML Schema 
Recommendations: XML Schema Part 1: 
Structures and XML Schema Part 2: 
Datatypes. 

 ACCEPTED
Yes 

ACCEPTED. 

[R 2] All UBL schemata and messages 
mustMUST be based on the W3C suite of 
technical specifications holding 
recommendation status. 

7/10/0
3 DUE  
7/17/0
3 

ACCEPTED ACCEPTED with change. 
 
Change wording to schemas not schemata. 
 
Tony Coates: The W3C XML Schema group have 
always insisted that "Schemas" is the correct plural for 
W3C XML Schemas, not withstanding that "schemata" is 
appropriate for some other kinds of schema things in the 
universe. 

[R 3] Each dictionary entry name mustMUST 
define one and only one fully qualified path 
(FQP) for an element or attribute.  

7/10/0
3 DUE 
7/17/0
3 

ACCEPTED
Yes 

ACCEPTED. 
 
CK: Seems to suggest that dictionary entry name use 
XPath, but then current usage of dictionary entry name 
doesn't do that.  So which is which? 

[R 4] Names mustMUST be in the English 
language, using the primary English 
spellings provided in the Oxford English 
Dictionary. 

 YesACCEPT
ED 

ACCEPTED. 

[R 5] XML names constructed from dictionary 
entry names mustMUST not include 
periods, spaces, or other separators. 
 
 
[R5a]  “UBL XML element, attribute and 
type names MUST be taken from CCTS 
conformant dictionary entry names.   
 
[R5b] UBL XML element, attribute and type 
names constructed from 
CCTS:DictionaryEntryNames MUST not 
include periods, spaces, other separators, 
or characters not allowed by W3C XML 1.0 
for XML Names”   
 
[R5c]  In conformance with 
ISO/IETF/ITU/UNCEFACT Memorandum of 
Understanding Management Group 
(MOUMG) Resolution 01/08 
(MOU/MG01n83) as agreed to by OASIS, 
all UBL XML SHOULD be expressed using 
UTF-8.   

7/10/0
3 DUE 
7/17/0
3 

HOLD Rewritten, to be submitted 7/29/03 
 
This is another rule LCSC has been asking for, should 
we clarify? 
 
The regular expression is not quite right, but we agree.  
We want clarification, we don’t want difficulty in 
translation or programming within other environments. 
 
CK: Underscores (_) used as first character to denote 
"internal usage of some sort" need not be considered 
separators, but should presumably fall under this 
guidance of usage avoidance. So suggest that 
"separators" be replaced by  "any other character than 
the 52 upper and lower case alphabets and the 10 digit 
characters.  In other words, the XML names in UBL 
should be drawn from the regular expression set [a-zA-
Z]+[a-zA-Z0-9]*" Note: this would also help mapping to 
the namespaces of other  languages such as Java. 
 
Correction from Dan Vint: Change regular expression to: 
[a-zA-Z][a-zA-Z0-9]* 
 
Dan Vint:  How about combining the two so a business 
person can understand as well as the programmer 
types? So something like this: 
 
[R 5]  XML names mustMUST start with a letter (a to z or 
A to Z) optionally followed by any number of letters or 
digits (0 to 9, a to z, and A to Z). They may not  include 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

periods, spaces, or other separators. As a regular 
expression this is represented as:  [a-zA-Z][a-zA-Z0-9]* 
 
Chee-Kai Chin:  That's a good idea, Dan. 
 
Agree with suggested wording, except 2nd sentence 
which somewhat weakens it again.  May I tap on your 
wordings to suggest: 
 
[R 5]  XML names mustMUST start with a letter (a to z or 
A to Z) optionally followed by any number of letters or 
digits (0 to 9, a to z, and A to Z). Other characters not 
described here, such as punctuations, periods, spaces, 
or other separators MUST NOT appear in XML names. 
As a regular expression this is represented as:  [a-zA-
Z][a-zA-Z0-9]* 
 
Mark:  This is overcomplicating a very simple rule that 
covers converting CCTS Dictionary Entry Names into 
XML names.  We should not regurgitate existing 
XML/XSD Rules, but focus on what we are doing here.  
The original regular expression “XML names constructed 
from dictionary entry names mustMUST not include 
periods, spaces, or other separators.” focuses 
exclusively on XML names taken from CCTS BIE 
dictionary entry names.  Perhaps what is really needed 
here are two rules: 
[Rxxa]  “UBL XML element, attribute and type names 
MUST be taken from CCTS conformant dictionary entry 
names.   
[Rxxb] UBL XML element, attribute and type names 
constructed from CCTS dictionary entry names 
mustMUST not include periods, spaces, other 
separators, or characters not allowed by W3C XML 1.0 
for XML Names”   
 
7/29 – We refocused rule to its original intent and split in 
two.  To be sent to list for 5 day comment period. 
 

[R 6] UBL XML nNames mustMUST notMUST 
NOT use acronyms, abbreviations, or other 
word truncations, with the following list of 
exceptions: 

 DELETE DELETE 
 
See R87, is this the same? 
 
Need list of exceptions. 
 
CK: Sentence incomplete.  What are the exceptions? 
 
Currently, in Reusable.xsd, there are definitions of 
  <xsd:element name="BuyersID" 
type="cct:IdentifierType" />  
  <xsd:element name="CV2" type="cct:TextType" />  
  <xsd:element name="UNDGCode" 
type="cct:CodeType" />  
 
which contain an abbreviations.  Are these elements 
invalid? Or should [R6] be relaxed a little?  Though listing 
them in the list of exceptions may solve existing usage, 
what about cases when within individual user's context, 
certain abbreviations are standard usages within their 
industry or consortiums but not listed in the exceptions 
here? 
 

[R 7] Names mustMUST not contain non-letter 
characters unless required by language-
specific rules. 

 DELETE DELETE 
 
See R5, we thought this should be combined with that 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

rule to cover all naming. 
 
CK: Made redundant by [R5] modification above. 
 
Dan Vint:  Based upon Rule 5, this is not a valid option. 
So we either need to modify rule 5 or not allow "non-
letter characters" - whatever they are! 
 
. 7/29 – we agree this is redundant.  Delete 

[R 8] Names mustMUST MUST be in singular 
form unless the concept itself is plural 
(example: Goods). 

 ACCEPTED
Yes 

ACCEPTED. 
 
CK: Please define a measure of "clarity". 

[R 9] Upper-camel-case (UCC) MUST be used 
for naming elements and types. 

 YesACCEPT
ED 

ACCEPTED. 
 
Standards document that describes the Upper and 
Lower case, we need reference there. 

[R 10] Lower-camel-case (LCC) MUST be used 
for naming attributes. 

 YesACCEPT
ED 

ACCEPTED. 

[R 11] Every UBL business message mustMUST  
have a single corresponding top-level 
element. 

 ACCEPTED ACCEPTED WITH CHANGE:  
Change to: “every UBL business document mustMUST 
have a single root element” 
 

[R 12] Every top-level element mustMUST be 
named according to the portion of the 
business process that it initiates. 

 ACCEPTED ACCEPTED WITH CHANGE:  
Change to:  “every root element in a UBL document 
mustMUST be named according to the portion of the 
business process that it ….” 
 

[R 
13b] 

[R13a] UBL Models MUST define classes 
based on UN/CEFACT Basic Business 
Information Entities and Aggregate 
Business Information Entities. 
 
[R13b] For every object class identified in 
the syntax-neutral modelUBL model, a 
named complex type MUST be definitioned. 
 
[r13c] For every class identified in the UBL 
model, a and a corresponding global 
element bound to the corresponding 
complex type MUST be declared. 
declaration bound to that type mustMUST 
be created. 
 
[R13d] For every primary representation 
term used in the UBL model, a named 
complex type MUST be defined. 
 
[R13e] For every secondary representation 
term used in the UBL model, a named 
complex type MUST be defined. 
 
 

 HOLD Somehow tie to the UBL model diagrams. 
 
Can we add this as a reference? 
 
Syntax-neutral model is not enough information. 
 
7/29 – split into three rules.  Send to Dave for 
concurrence of wording, and then send to list. 

[R 14] [R14a] The name of a complex type based 
on an objecta class mustMUST be the 
name of the object class, with the 
separators removed and with the "Details" 
suffix replaced with "Type". 
 
[R14b] A UBL complex type name based 
on an ABIE MUST be the CCTS dictionary 
entry name with the separators removed 
and with the “Details” suffix replaced with 
“Type”  
 
[R14c] A UBL complex type name based on 

 ACCEPTED We recommend an appendix that groups the rules all 
together by type. 
 
Examples should be linked either in appendix or by 
reference. 
 
7/29 – reworded.  Adopted 
7/30  corrected R14d and R14e and added R14f. 
 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

a BBIE MUST be the CCTS dictionary entry 
name property term and qualifiers and 
representation term, with the separators 
removed and with the “Type” suffix 
appended after the representation term.   
 
[R14d] A UBL complex type name based 
on a primary representation term used in 
the UBL model MUST be the name of the 
corresponding CCTS:CCT, with the 
separators removed and with the “Type” 
suffix appended after the primary 
representation term name. 
 
[R14e] A UBL complex type name based 
on a secondary representation term used in 
tthe UBL model MUST be the name of the 
secondary representation term, with the 
separators removed and with the “Type” 
suffix appended after the secondary 
representation term name. 
 
[R14f] A UBL complex type name based on 
a CCTS:CCT MUST be the Dictionary Entry 
name of the CCTS:CCT, with the 
separators removed.  
 
 
 
 

[R 
15a] 

An element name in a global element 
declaration based on an object class 
mustMUST be the name of the object class, 
with the separators removed and with 
"Details" removed. 
[R15a] A UBL global element name based 
on an ABIE MUST be the same as the 
name of the corresponding complex type to 
which it is bound, with the word “Type” 
removed. 
 
[R15b] A UBL global element name based 
on a BBIE MUST be the same as the name 
of the corresponding complex type to which 
it is bound, with the word “Type” removed. 
 
[R15c] A UBL global element name based 
on an ASBIE MUST be declared and bound 
to the complex type of its associated ABIE. 
 
 
[R15d] A UBL global element name based 
on an ASBIE MUST be the CCTS ASBIE 
dictionary entry name property term and 
qualifiers; and the object class term and 
qualifiers of its associated ABIE.  All CCTS 
Dictionary Entry Name separators MUST 
be removed.  Redundant words in the 
ASBIE Property Term or Qualifiers and  the 
associated ABIE object class term or 
qualifiers MUST be dropped. 
 

 ACCEPTED See comment above. 
7/29 - Reworded for clarification and correction.  Will be 
submitted to full list for approval. 
 
 
[ 
 

[R 16] For every complex type definition based on 
an object class, its content model 
mustMUST be defined such that it reflects 

 ACCEPTED Group together like rules, Complex-types together, 
elements together. 
 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

each property of the object class as an 
element declaration, with its cardinality and 
positioning within the content model 
determined by the details of the syntax-
neutral model. 
Every ABIE complex type definition content 
model MUST use the XSD: Sequence 
element with appropriate global element 
references, or local element declarations in 
the case of ID and Code, to reflect each 
property of its class as defined in the 
corresponding UBL model. 
 
[R16b] The XSD:all element MUST NOT be 
used. 
 
[R16c] The XSD:Choice element MUST 
NOT be used. 
 
[R16d] Every BBIE complex type definition 
content model MUST use the 
XSD:SimpleContent element.  
 
[R16e] Every BBIE ComplexType content 
model SimpleContent element MUST 
consist of an  XSD:Extension element.   
 
[R16f] Every BBIE ComplexType content 
model XSD:Extension element MUST use 
the XSD:Base attribute to define the basis 
of each primary or secondary 
representation term. 
 
[R16g] Every BBIE ComplexType Content 
Model  XSD:Base attribute value MUST be 
the CCT of the primary representation term 
or the datatype of the secondary 
representation term as appropriate.   
 
 
 
 
 
 
 

Syntax-neutral model is not enough information, we need 
a better way to reference this. 
 
7/29 – Reworded and accepted. No further action. 

[R 17] An element name in an element declaration 
[TBD: ref= or name=?] based on a property 
mustMUST be the full dictionary name of 
the property in the syntax-neutral model, 
with the separators and object class term 
removed, and with the property term 
removed if it is identical or similar to the 
representation term. 

 DELETE Group together like rules, Complex-types together, 
elements together. 
 
Syntax-neutral model is not enough information, we need 
a better way to reference this. 
 
7/29 – deleted.  This rule is no long requred as it is 
duplicitive of the new rules contained in 14, 15, and 16. 
 

[R 18] If the object class term would have been 
helpful in the resulting XML name for 
clarity, or if needed to differentiate the 
element and allow it to have a different type 
association, it should be repeated in the 
property qualifier field.  

 DELETE Group together like rules, Complex-types together, 
elements together, etc. 
 
Change to: 
 
“The object class term may be repeated in the property 
qualifier field, where it is deemed helpful for reasons of 
either XML naming clarity or if needed to differentiate the 
element and allow it to have a different type association.” 
 
7/29 – Deleted as no longer necessary given the new 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

versions of rules 14, 15, and 16. 
[R 19] Every element declaration corresponding to 

a property mustMUST be bound to a type 
corresponding to the property's 
representation term. Where the 
representation term corresponds to an 
object class (aggregate BIE), the complex 
type corresponding to that object class 
mustMUST be used. Where the 
representation term corresponds to a Core 
Component Type, the complex type 
corresponding to that Core Component 
Type mustMUST be used.  

 DELETE Should this be broken down to different rules for each 
piece? 
7/30 After further review, we think this rule is about 
binding and we have reinstated the rule pending further 
review. 
 
8/1 – deleted.  not necessary given the other rules we 
have written. 
 
 

[R 20] A namespace schema module dedicated to 
defining types corresponding to the Core 
Component Types mustMUST be created. 
[R20a] A schema module defining all CCTS 
Core Component Types MUST be created. 
   
[R20b] The Core Component Type Schema 
Module MUST be named “CCTS CCT 
Schema Module” 
 
[R20c] The CCTS CCT Schema Module 
MUST reside in its own namespace. 
 
[R20d] The CCTS CCT Schema Module 
namespace MUST be represented by the 
token “cct”  
 
[R20e] The XSD Facet feature MUST not 
be used in the CCTS CCT Schema Module. 
 
[R20g] A schema module defining all CCTS 
Primary and Secondary Representation 
Terms MUST be created. 
 
[R20h] The Representation Term Schema 
Module MUST be named “CCTS 
Representation Term” Schema Module 
 
[R20i] The CCTS Representation Term 
Schema Module MUST reside in its own 
namespace 
 
[R20j] The CCTS Representation Term 
Schema Module namespace MUST be 
represented by the token “rt”  
 
[R20k] A schema module defining all UBL 
Datatypes MUST be created. 
[R20l] The UBL Datatypes Schema Module 
MUST be named “UBL Datatypes” schema 
module 
[R20m]The UBL Datatypes Schema 
Module MUST reside in its own namespace 
[R20n] The UBL Datatypes Schema 
Module namespace MUST be represented 
by the token “dt” 
 
 

 HOLD FOR 
REVIEW 

Again, should this be groups with Namespace rules? 
 
8/1/03 - Reworded for clarification and correction.  
Requires review by full SC 

[R 21] Each CCT mustMUST have at least one 
corresponding unique complex type and 
simple type, where the element's content 
(governed by the xs:simpleContent 

 HOLD FOR 
REVIEW 

CK: Use of "xs:simpleContent" conflicts with [R 107] 
 
7/30 – still working this. 
 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

construct and the CCT's simple type) 
represents the content component of the 
CCT and whose attributes (defined in the 
complex type) each represent a 
supplementary component of the CCTs. 
 
[R21a] User defined attributes SHOULD 
NOT be used.  When used, user defined 
attributes MUST only convey CCT 
Supplementary Component information. 
 
[R21b] For every CCTS CCT whose 
supplementary components are equivalent 
to the properties of a built-in XSD datatype, 
the Supplementary Components MUST not 
be expressed as attributes, and the CCT 
MUST be defined as a named Simple Type 
in the CCTS CCT Schema Module. 
 
[R21c] For every CCTS CCT whose 
supplementary components are not 
equivalent to the properties of a built-in 
XSD:Datatype, the CCT MUST be defined 
as a named Complex Type in the CCTS 
CCT Schema Module. 
 
[R21d] CCTS:CCT simple and complex 
types MUST only be bound to leaf 
elements. 
 
[r21e] each CCTS:CCT Complex Type 
definition MUST contain one 
XSD:simpleContent element 
 
[R21f]  The CCTS:CCT ComplexType 
definition XSD:simpleContent element 
MUST contain one XSD:extension element.  
This XSD:extension element MUST include 
an XSD:base attribute that defines the 
specific XSD:built-in datatype required for 
the CCTS:ContentComponent of the CCT. 
 
[R21g] Within the CCTS:CCT 
XSD:extension element an XSD:attribute 
MUST be declared for each 
CCTS:SupplementaryComponent 
pertaining to that CCTS:CCT. 
 
[R21h] Each 
CCT:SupplementaryComponent 
XSD:attribute “name” MUST be the 
CCTS:SupplementaryComponent 
dictionary entry name property term and 
representation term, with the separators 
removed. 
  
[R21i] Each 
CCT:SupplementaryComponent 
xsd:attribute “type” MUST define the 
specific XSD:Built-in Datatype or the user 
defined simpleType for the 
CCTS:SupplementaryComponent of the 
CCT.  
 
[R21j] Each 

 <xs:complexType name="BinaryObjectType"> 
  <xs:simpleContent> 
   <xs:extension base="xs:base64Binary"> 
    <xs:attribute name="format" type="xs:token" 
use="optional"/> 
    <xs:attribute name="mimeCode" 
type="xs:token" use="optional"/> 
    <xs:attribute name="characterSetCode" 
type="xs:token" use="optional"/> 
    <xs:attribute name="URI" type="xs:anyURI" 
use="optional"/> 
    <xs:attribute name="filename" 
type="xs:token" use="optional"/> 
   </xs:extension> 
  </xs:simpleContent> 
[ </xs:complexType> 
 
[note for r21i – the user defined simpleType is the same 
simpleType enumerated list from the appropriate code list 
schema module for that type. 
 
Rewritten to reflect current CCT paper and XSD.  We 
have combined other rules as appropriate to be all 
encompassing. 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

CCTS:SupplementaryComponent 
XSD:attribute user-defined simpleType 
MUST only be used when the 
CCTS:SupplementaryComponent is based 
on a standardized code list for which a UBL 
conformant code list schema module has 
been created.   
 
[R21k] Each 
CCTS:SupplementaryComponent 
XSD:attribute user defined simpleType 
MUST be the same simpleType from the 
appropriate UBL conformant code list schema 
module for that type. 
 
[R21l] Each CCTS:Supplementary 
Component XSD:attribute “use” MUST 
define the occurance of that 
CCTS:SupplementaryComponent as either 
“required”, or “optional.  
 
 

[R 22] The complex type name corresponding to a 
CCT mustMUST be the CCT name, with 
the periods and spaces removed.  

 DELETE CK: Make all name-construction guidances point to the 
modified [R 5]. So it reads something like: "[R 22] The 
complex type name corresponding to a CCT mustMUST 
be the CCT name, an XML name constructed following 
[R 5]". 
31/07 Deleted in favor of rule 14f 

[R 23] The name of the simple type corresponding 
to the content component of a CCT 
mustMUST be the content component 
name, with the periods and spaces 
removed and with "Type" added to the end. 
 
[R23a] Each CCTS:CCT simpleType 
definition name MUST be the CCTS:CCT 
dictionary entry name with the separators 
removed. 
 
[R23b] For each CCTS:CCT simpleType, 
an XSD:Restriction element MUST be 
declared. 
 
[R23c] For each CCTS:CCT simpleType 
XSD:Restriction element, a base attribute 
MUST be declared. 
 
[R23d] Each CCTS:CCT simpleType 
XSD:Restriction element base attribute 
value MUST be set to the appropriate XSD 
datatype. 
 

 DELETE CK: Guidance on "with the periods and spaces removed" 
should point back to [R 5].  So all name construction 
rules are standardized leaving no gray area to individual 
references to name construction. 
 
xs:simpleType name="DateTimeType"> 
  <xs:restriction base="xs:dateTime"/> 
 </xs:simpleType> 
 
 
 

[R 24] The name of the attribute corresponding to 
a supplementary component mustMUST be 
the name of the supplementary component, 
with the periods and spaces removed. The 
first field (the "object class" field) may be 
truncated, reworded, or removed as 
necessary for brevity and clarity. If the final 
field (the "representation term" field) is 
"Text", it mustMUST be removed. If the 
final field is "Identifier", it mustMUST be 
replaced with "ID".  

 DELETE CK: Guidance on "with the periods and spaces removed" 
should point back to [R 5].  So all name construction 
rules are standardized leaving no gray area to individual 
references to name construction. 
 
7/31 – replaced with R21h 

[R 25] Mixed-content elements should not be 
used.  
 

 DELETE See R97 
 
DELETE R25, keep R97 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

Note that mixed content in business 
documents is undesirable because white 
space in mixed content is difficult to handle 
and complicates processing, and because 
mixed-content models allow little useful 
control over the cardinality of elements. 

 
 

[R 26] The CCT schema module may define a set 
of one or more common attributes that 
apply to all UBL elements. 
 
[R26a] If a 
CCTS:SupplementaryComponent 
XSD:attribute is common to all UBL 
elements, it MUST be declared as part of a 
global attribute group in the CCTS:CCT 
Schema Module. 
 
[R26b] If a UBL XSD:SchemaExpression 
contains one or more common attributes 
that apply to all UBL elements contained or 
included or imported therein, the common 
attributes MUST be declared as part of a 
global attribute group. 
 

 ACCEPTED This rule is unclear, should be reformulated.  
 
7/31 – Reformatted.  Since the only user defined 
attributes are CCTS:SupplementaryComponents, this 
rule MUST be focused on them.  As such, the only 
attributes that can be declared locally are 
CCTS:SupplementaryComponents that are common to 
all UBL elements. Currently there are no 
CCTS:SupplementaryComponents that are common to 
all UBL elements however we have rewritten as r26a.  
There are some attributes such as xml:lang that may be 
common to all  
 
 

[R 27] A common attribute should be declared as 
a global attribute only in cases where the 
attribute's meaning is identical no matter 
what element it is used on, and where the 
attribute is useful on every UBL element. 
This rule applies to both external (such as 
xml:lang) and UBL-specific global 
attributes. 
 
Note that this rule allows for the creation of 
common attributes that are allowed on 
every element but are not globally declared, 
and that need documentation of their 
meaning in each XML environment in which 
they are used 

 YesDELETE ACCEPTED.Deleted as replaced by rules 26a and b. 
 
 

[R 28] The names of UBL-specific global attributes 
mustMUST be based on assigned object 
class property names, as is done for 
elements that are properties. 
 
[TBD: need example.] 

 DELETE Urgently need an example 
Does this conflict with email resolution MSG00069 from 
April 2002 which says 
attributes mustMUST be used only to represent 
supplementary components 
 
7/30 – Deleted.  This rule is in conflict with our rule on 
the use of attributes and is already covered by our 
CCTS:SupplementaryComponent naming rule.. 

[R 29] Code Lists Must not be enumerated in the 
core schema.  Code Lists Must be 
enumerated in a schema module using the 
UBL code list schema template. 
 
[R29a] All UBL Codes MUST be part of a 
UBL or External maintained Code List 
 
[R29b] The name of each UBL Code List 
Schema Module MUST be of the form 
[{Owning Organization}[Code List 
Name}{Code List Schema Module} 
 
[R29c] All UBL maintained or used Code 
Lists MUST be enumerated using the UBL 
Code List Schema Module. 
 

 HOLD Code Lists Must not be enumrated in the core schema. 
Code Lists mustMUST be specified using the rules laid 
down in the Code List paper. 
 
7/30 – Reworded.  Awaiting input from Code List group. 
 
 
Reworded.  Awaiting input from Code List adhoc 
committee.  Will submit to list when available. 
 
 
 
 
 
. 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

[R29d]Each UBL maintained Code List 
Schema Module MUST be maintained in a 
separate namespace. 
 
[R29e] An XSD:Import element MUST be 
declared for every code list required in a 
UBL schema. 
 
[R29f] The code list XSD:Import element 
MUST contain the namespace and schema 
location attributes. 
 
 

[R 30] Every type definition and element 
declaration mustMUST contain a structured 
set of annotations in following pattern, 
where the keyword is typically based on the 
spreadsheet column heading in the syntax-
neutral model and the description is 
typically based on the content of the 
spreadsheet field: 

 DELETE We need the pattern of the annotations for this rule.  Is 
this the embedded documentation rule? 
 
CK: Pattern not listed after ending colon. 
Find a way to describe the field, rather than give it a 
number or title 
 
Combine with Rule 31 

[R 31] Every type definition and element 
declaration MUST contain a structured set 
of annotations in the following pattern: The 
following sets of annotations are required in 
type definitions and element declarations: 
 
UBL UID: The unique identifier assigned to 
the type in the UBL library. 
 
UBL Name: The complete name (not the 
tag name) of the type per the UBL library. 
 
Object Class: The Object Class 
represented by the type. 
 
 
 
Dictionary Entry Name: The complete name 
(not the tag name), which is  the unique 
official name of the BIE or the property in 
the UBL library. 
 
UBL Definition: Documentation of how the 
type is to be used, written such that it 
addresses the type's function as a reusable 
component. 
 
 
Code Lists/Standards: A list of potential 
standard code lists or other relevant 
standards that could provide definition of 
possible values not formally expressed in 
the UBL structural definitions. 
 
Core Component UID: The UID of the Core 
Component on which the Type is based 
 
Business Process Context: A valid value 
describing the Business Process contexts 
for which this construct has been designed. 
Default is "In All Contexts". 
 
Geopolitical/Region Context: A valid value 
describing the Geopolitical/Region contexts 

 HOLD FOR 
REVIEW 

 
rewritten 
 
 
 
We propose that this be delete.  7/30 - No justification 
given.  Change not accepted. 
 
 
We propose that this be deleted, otherwise we need to 
add too many things.  7/30 - No justification given.  
Change not accepted. 
 
 
 
 
Add: See rule 30. It should also provide an example, to 
be taken from the spreadsheet's example column. 7/30 – 
We have combined rules 30 and 31. Example will be 
placed appropriately. 
 
 
 
 
 
We propose that this be deleted, since there are no 
approved CC UIDS.  7/30 – Use temporary until final 
provided per the CCTS. 
 
 
 
 
 
 
 
In all BP contexts.  7/30 CCTS defines this value as “in 
All Contexts”. Change not accepted. 
 
 
 
In all Geopolitical/Region context 
.  7/30 CCTS defines this value as “in All Contexts”. 
Change not accepted. 
 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

for which this construct has been designed. 
Default is "In All Contexts". 
 
Official Constraints Context: A valid value 
describing the Official Constraints contexts 
for which this construct has been designed. 
Default is "None". 
 
Product Context: A valid value describing 
the Product contexts for which this 
construct has been designed. Default is "In 
All Contexts" 
 
Industry Context: A valid value describing 
the Industry contexts for which this 
construct has been designed. Default is "In 
All Contexts". 
 
Role Context: A valid value describing the 
Role contexts for which this construct has 
been designed. Default is "In All Contexts". 
 
Supporting Role Context: A valid value 
describing the Supporting Role contexts for 
which this construct has been designed. 
Default is "In All Contexts". 
 
System Capabilities Context: A valid value 
describing the Systems Capabilities 
contexts for which this construct has been 
designed. Default is "In All Contexts". 
 
7/30 add [R31a] All relevant metadata as 
specified in CCTS Section 7 for the concept 
(BBIE, ABIE, ASBIE, CCT, Representation 
Term, Datatype) being conveyed. 

 
etc. (Note: this mustMUST be aligned with the names in 
section 5.6.1 of CCTS v1.9 – 7/30 concur. 
 
7/30 reworded.  Awaiting internal discussion with 
Gunther.  Note:  we determined that AppInfo still creates 
too large of a security concern to have Code Values 
conveyed and will require them to be conveyed inside a 
documentation element. 

[R 32] The nillable attribute mustMUST not be 
used in any UBL schema. The element 
declaration of xsi:nil shall not appear in any 
UBL conforming instance. 

 DELETE See R 94 
Delete R94. Change “shall” to “mustMUST” 
 
Propose a new rule: Elements that are not declared 
empty MUST have content. 
 
7/30 – Deleted 32 in favor of 94. 
 
 

[R 33] The top-level element mustMUST be 
globally declared in a UBL root schema.  
Each UBL Schema MUST declare one 
global element that defines the overall 
business process being conveyed in the 
Schema expression.  That global element 
declaration MUST include an 
XSD:Annotation child element which MUST 
further contain an XSD:Documentation 
child element that declares “This element 
MUST be conveyed as the root element in 
any instance document based on this 
Schema expression.” 

 HOLD FOR 
REVIEW 

DELETE 
 
Propose: delete this rule as unnecessary, add the need 
for documenting which elements will be root. 
 
This would be needed if local elements,  
 
7/30.  There is no way to declare which global element in 
a schema MUST be the root element.  XSD allows any 
globally declared element to be the root.  The rule MUST 
articulate that the XSD:annotation <documentation> 
element for the mandatory root element reflect this. 
 
written to reflect comments regarding proper 
identification of root element in instance. 

[R 34] If a definition depends on named constructs 
found in another namespace, then that 
other namespace mustMUST be imported 
as a namespace schema module. The 
referenced constructs mustMUST not be 

 ACCEPTED Rewrite:  If a definition depends on named constructs 
found in another namespace, then that other namespace 
mustMUST be imported (using the XSD IMPORT 
element)  as a namespace schema module. The 
referenced constructs mustMUST not be directly 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

directly included as Internal Schema 
Modules. 
 
[R34a] Every UBL defined or used Schema 
module MUST have a namespace 
declared. 
 
[R34b] UBL namespaces MUST only 
contain UBL developed Schema modules. 

included (with the XSD INCLUDE element) as Internal 
Schema Modules. 
 
7/30 – XSD include works for schema modules that have 
the same namespace so restating as occures in the 
initial version of this rule is unnecessary.  However, XSD 
include also works when the included schema module 
has no namespace.  We do not want to use any schema 
module that has no namespace because of collision 
issues.  Hence the rewrite to Rule 34a.  Further, we want 
to restrict external schema developers from appropiating 
UBL namespaces, as this would then allow for non 
conforming schema modules to use the include feature, 
which would in turn cause the same collision issues.  
The result of these two rules is that the XSD:Include 
feature will only be used with UBL schema modules.  

[R 35] A namespace may be completely specified 
within the Root Schema. If for larger 
namespaces, more schema modules may 
be defined - call these internal modules. 
The root schema for that namespace then 
MUST include those Internal Modules. 
 
[R35a] UBL Schema expressions MAY be 
split into multiple schema modules.   
 
[R35b]UBL Schema modules MUST either 
be be treated as external Schema modules 
or as internal Schema modules of the root 
Schema.  
 
[R35c] All UBL internal Schema modules 
MUST be in the same namespace as their 
corresponding root Schema.  
 
[R35d] Each UBL internal Schema module 
MUST be named 
“{ParentSchemaModuleName}{InternalSch
emaModuleFunction}{Schema Module}.  
   

 ACCEPTED OK as is.  Fixed typo 
 
7/30 – changed to more accurately reflect XSD.  In the 
narrative of the NDR document we need to add that this 
rule does not preclude using the XSD:Import feature for 
external schema modules. 

[R 36] The namespace names for UBL 
namespaces MUSTmustMUST have the 
following structure while the schemas are at 
draft status: 
 
urn:oasis:names:tc:ubl:schema:name:major
:minor 

 ACCEPTED Should this go into a “how to use” section or document. 
 
Maybe just reference this? 
 
 

[R 37] The namespace names for UBL Schemas 
holding specification status MUST be of the 
form: 
 
urn:oasis:names:specification:ubl:schema:n
ame:major:minor 
 

 ACCEPTED Reference this in the “how to” section. 

[R 38] Schema location mustMUST include the 
complete URI which is used to identify 
schema modules. 
 
[R38a] Each XSD:SchemaLocation 
attribute declaration MUST contain a 
persistant and resolvable URL. 
 
[R38b] Each XSD:SchemaLocation 
attribute declaration URL MUST contain an 
absolute path. 

 ACCEPTED Reference this in the “how to” section. 
 
Make more clear saying schema location attribute. 
 
Rewrite: Schema location mustMUST include the 
complete URL which is used to identify schema modules.  
Relative paths are not allowed (mark wordsmith). 
 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

 
[R 39] UBL schema modules mustMUST be 

located hosted under the UBL committee 
directory:  
 
http://www.oasis-
open.org/committees/ubl/schema/<schema-
mod-name>.xsd 

 ACCEPTED Reference this in the “how to” section. 
 
Rewrite:  UBL schema modules mustMUST be hosted 
under the UBL committee directory: 

[R 40] Every UBL Schema and schema module 
Major version Must have the URI of: 
 
urn:oasis:names:tc:ubl:Ordername:major-
number:0 

 ACCEPTED Reference this in the “how to” section. 
 
Change to:  
Every UBL Schema Major version Must have the URI of 
the form: 
 
urn:oasis:names:tc:ubl:name:major-number:0 

[R 41] [R41a]  The first minor version release of a 
UBL Schema or schema module MUSTust 
have the URI of: 
 
urn:oasis:names:tc:ubl:Ordername:major-
number.non-zero:1 
 
[R41b]  For UBL Minor version changes, 
the name of the version construct Must not 
change (short name not qualified name), 
unless the intent of the change is to rename 
the construct. 

 ACCEPTED Reference this in the “how to” section. 
 
Change to: 
 
The first minor version release of a UBL Schema Must 
have the URI of the form: 
 
urn:oasis:names:tc:ubl:name:major-number:non-zero 
 
(Example:  Order:1:3) 

[R 43] The number scheme mustMUST be the 
major number is a non-negative integer and 
the minor number is a non-negative integer. 
 
[R43a]  Every UBL schema and schema 
module major version number MUST be a 
non-negative integer. 
 
[R43b]  Every UBL schema and schema 
module minor version number MUST be a 
non-negative integer. 

 ACCEPTED
Yes 

ACCEPTED. 

[R 44] The CCT types and Reusable types and 
their namespace, should have a version. 
 
[R44a]  A UBL schema module may be 
created for Reusable types. 
 

 HOLD FOR 
REVIEW 

See R-44a below. 
 
We still have some questions about how this is going to 
happen.  Level of aggregation for this is yet to be 
determined. 
 
Reworded, needs to be sent out to the list. 

[R 45] Non-namespaced schema modules, will not 
have their own versions or namespaces, 
and thus mustMUST only be used within 
the context of and in conjunction with one 
specified parent. 

 DELETE See R-45a below. 

R-44a [R44b]Import Rule: A root schema in one 
UBL namespace “A” that is dependent 
upon type definitions or element declaration 
defined in another namespace “B”MUST 
only imports B’s the RootSchema from that 
namespace. “A” never imports other 
(internal) schema modules of “B”. 
 
[R44c]  A RootSchema in one UBL 
namespace that is dependant upon type 
definitions or element declarations defined 
in another namespace MUST NOT import 
schema modules from that namespace. 
 
[R 44d]  Imported Schema modules MUST 

 ACCEPT This are rules from the ModNamVer v8 paper that should 
go into the Rules document. 
 
These two rules superscede rules 44 and 45. 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

be fully conformant with UBL naming and 
design rules. 
 

R-45a Include Rule: The only place XSD 
“include” is used is within a RootSchema. 
When a namespace gets large, its type 
definitions and element declarations may 
be split into multiple SchemaModules 
(called InternalModules) and included by 
the RootSchema for that namespace. 
 
[R45] The XSD:Include feature MUST only 
be used within a RootSchema. 
 

  This are rules from the ModNamVer v8 paper that should 
go into the Rules document. 
 
7/30 Reworded for accuracy and alignment with Rule 35. 

[R 46] Each version Must have a namespace.  ACCEPTED
Yes 

ACCEPTED.  Move up above namespace rules.  Leave 
that to the discretion of the editor. 

[R 47] Each minor version mustMUST be given a 
separate namespace. 

 ACCEPTED
Yes 

ACCEPTED.  Same as above. 

[R 48] A published namespace MUST never be 
changed.   

 ACCEPTED
Yes 

ACCEPTED. 

[R 49] When the URN changes to reflect a change 
in the namespace, this change will be 
reflected in the version number, either 
major or minor. 

 ACCEPTED
Yes 

ACCEPTED. 

[R 50] Minor versioning mustMUST be limited to 
declaring new optional constructs, 
extending existing constructs and 
refinements of an optional nature.  

 ACCEPTED
Yes 

ACCEPTED. 

[R 51] Changes in minor versions mustMUST not 
break semantic compatibility with prior 
versions. 

 ACCEPTED
Yes 

ACCEPTED. 

[R 52] Minor version namespaces mustMUST 
reference immediately preceding minor 
version root schemas. 

 ACCEPTED ACCEPTED.  Change to say”… mustMUST reference 
“immediately” proceeding minor version root schema 

[R 53] A Core Component Type without any 
restriction of the Content Component 
mustMUST be defined by a complexType.  
This complexType includes a 
simpleContent group with a extension for all 
relevant global and local attributes 
(Supplementary Components) of this Core 
Component Type. The base type definition 
of this extension mustMUST be based on 
one of the decided built-in datatypes (see 
table ###). 

 DELETE DELETE rewritten under rule 21. 
 
Maybe we need clarity? 
 
Change to:   
 
 
A Core Component Type mustMUST be defined by a 
complexType. 
 
[R053a]  This complexType Must include a 
simpleContent group with a extension for all relevant 
global and local attributes (Supplementary Components) 
of this Core Component Type. 
 
[R-53b]  The base type definition of this extension 
mustMUST be based on one of the decided built-in 
datatypes (see table ###). 
(Gunther and Mark to rewrite this part of the rule.) 

[R 54] If the Content Component of a Core 
Component Type is restricted by any kind 
of facets, this Content Component 
mustMUST be a restriction of a 
simpleType.  The name of the simpleType 
mustMUST be ending with the suffix 
"Content". 

7/10/0
3 
DUE: 
7/17/0
3 

DELETE Replaced by rule 21 - DELETE  
 
ACCEPTED.  

[R 55] The Core Component Type with the 
restricted Content Component mustMUST 
refer to the relevant named simpleType. 

7/10/0
3 
DUE: 
7/17/0
3 

DELETE Replaced by rule 21 - DELETE  
ACCEPTED. 

[R 56] A restricted Supplementary Component 7/10/0 DELETE Replaced by rule 21 - DELETE  



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

(local attribute) within a Core Component 
Type mustMUST have a restriction of its 
simpleType. The base type definition of the 
restriction mustMUST refer to one of the 
decided built-in datatypes (see table ###). 
The restriction itself should have all 
relevant facets. 

3 
DUE: 
7/17/0
3 

 
ACCEPTED. 

[R 57] A complexType of a Basic Core 
Component as well as Basic Business 
Information Entity without any additional 
restrictions mustMUST be a extension of a 
simpleContent. The base type definition of 
the extension mustMUST refer to the 
complexType of the relevant Core 
Component Type. 

7/10/0
3 
DUE: 
7/17/0
3 

DELETE Replaced by rule 13-21 - DELETE  
ACCEPTED. 

[R 58] A complexType of a Basic Core 
Component as well as Basic Business 
Information Entity with any additional 
restrictions mustMUST be a restriction of a 
simpleContent. The base type definition of 
the restriction mustMUST refer to the 
complexType of the relevant Core 
Component Type. The element group of the 
restriction includes all required facets. 

7/10/0
3 
DUE: 
7/17/0
3 

DELETE Replaced by rule 13 - 21 - DELETE  
 
ACCEPTED. 

[R 59] If a global attribute or a Supplementary 
Component (local attribute) should be 
restricted within a Basic Core Component 
as well as a Basic Business Information 
Entity, there mustMUST be a restriction of a 
simpleContent. The base type definition of 
the restriction mustMUST refer to the 
complexType of the relevant Core 
Component Type. This restriction includes 
the attribute or attributes, which should be 
restricted. The simpleType of each attribute 
mustMUST be a restriction, again. This 
restriction includes all relevant facets. 

7/10/0
3 
DUE: 
7/17/0
3 

DELETE Replaced by rule 13 - 21 - DELETE  
 
ACCEPTED. 

[R 60] If a Basic Core Component as well as a 
Basic Business Information Entity should 
have one or more restricted Supplementary 
Components (local attributes) and a 
restricted Content Component, the 
simpleContent of the complexType 
mustMUST be a restriction. This base type 
definition of the restriction mustMUST refer 
to the complexType of the relevant Core 
Component Type. This restriction 
mustMUST include all facets and restricted 
attributes. The simpleType of each attribute 
mustMUST be a restriction, too.  This 
restriction should have all relevant facets of 
each restricted attribute. 

7/10/0
3 
DUE: 
7/17/0
3 

DELETE Replaced by rule 13 - 21 - DELETE  
 
ACCEPTED. 

[R 61] UBL Libraries and Schemas MUST only 
use UN/CEFACT approved Core 
Component Types. 

7/10/0
3 
DUE: 
7/17/0
3 

ACCEPTED ACCEPTED. 

[R 62] The UBL Library should identify and use 
external standardized code lists rather than 
develop its own UBL-native code lists.  

7/10/0
3 
DUE: 
7/17/0
3 

ACCEPTED ACCEPTED. 

[R 63] The UBL Library may design and use an 
internal code list where an existing external 
code list needs to be extended, or where no 
suitable external code list exists.  

7/10/0
3 
DUE: 
7/17/0
3 

ACCEPTED ACCEPTED. 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

[R 64] If a UBL code list is created, the lists should 
be globally scoped (designed for reuse and 
sharing, using named types and 
namespaced schema modules) rather than 
locally scoped (not designed for others to 
use and therefore hidden from their use).  

7/10/0
3 
DUE: 
7/17/0
3 

ACCEPTED ACCEPTED. 

[R 65] For each UBL construct containing a code, 
the UBL documentation should identify the 
zero or more code lists that mustMUST be 
minimally supported when the construct is 
used.  

7/10/0
3 
DUE: 
7/17/0
3 

ACCEPTED ACCEPTED. 

[R 66] Users of the UBL Library may identify any 
subset they wish from an identified code list 
for their own trading community 
conformance requirements. 

7/10/0
3 
DUE: 
7/17/0
3 

ACCEPTED ACCEPTED. 

[R 67] Both standardized and proprietary 
identifiers within a message are 
exchanged. 

7/11/0
3 DUE 
7/18/0
3 

DELETE DELETE 
 
Mike Grimley: This is not a rule. Unfortunately, I don't 
think I really understand what the intent was, so I can't 
offer alternate wording. 
 
We can’t find where this rule comes from.  Look at 
section 8.2, that is where text comes from, but there is 
no rule. 

[R 68] For each specific point in time the built in 
datatype from XML schema (Part 2) 
mustMUST be used. These are xsd:time, 
xsd:date, xsd:dateTime. 

7/11/0
3 DUE 
7/18/0
3 

DELETE ACCEPTED 

[R 69] The expression of duration requires the use 
of an additional secondary Representation 
Term called Duration. Type. 

7/11/0
3 DUE 
7/18/0
3 

DELETE DELETE RULE 
 
MarkCrawford: Against. We have already agreed that we 
would not use any additional terms not in CCTS. 
 

[R 70] For the expression of the Representation 
Term Duration. Type the XSD built in 
datatype xsd:Duration mustMUST be used.  

7/11/0
3 DUE 
7/18/0
3 

DELETE DELETE RULE 
 

[R 71] A period can be expressed using the 
Aggregate Core Component (ACC) 
PeriodDetails. The ACC is divided into 3 
representation types, Date, Time and 
DateTime. One of these mustMUST be 
selected. Each option has a start and end 
date, start and end time or start DateTime 
and end DateTime. 
 
 
. 

7/11/0
3 DUE 
7/18/0
3 

DELETE Dan Vint: This is even weaker than the BC Duration 
requirements. Also there is an explanation of the design 
that I don't think should be in the rule. 
 
Here is how I would change this based upon current 
design, if you agree we should be more specific in the 
requirements, then may would change to mustMUST. 
 
[R 71]  A period MAY be expressed using the ACC 
PeriodDetails. 
 
Also we are not consistent in how acronyms are spelled 
out. BCC used without an explanation but here we spell 
out ACC. There should be a standard glossary that has 
all these terms with maybe a pointer to control 
documentation for the definition. 
 
20030715:  Rewrite but basically saying the same thing. 
 
 
ACCEPTED:  When a Period is expressed using the 
ACC Period Details, one of the three representation 
types mustMUST be either date, time or datetime 

[R 72] For each representation term the equivalent 
data type mustMUST be used i.e. if the 
representation term Date is used, then the 
corresponding built in datatype xsd:date 
mustMUST be used. 

7/11/0
3 DUE 
7/18/0
3 

DELETE Dan Vint: Wouldn't it be better to have a single rule and 
table that lays out the relation between the 
representation term and its data type (maybe even the 
BCC involved)? If we did that there would be one place 
to look this information up and we could remove the 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

need for new rule with the additions of new types and 
remove rules like this and #68 which seems to be a 
generalization of this without the specific mapping. 
If you need something specific to report against, if could 
be Rule #72-Date or Rule #72-Decimal. 
 
20030716:  MC: I like the way Dan is thinking, they could 
be re-written and consolidated.  Build a table of xsd 
datatypes and representations terms.   
 
REWRITE 

[R 73] The start and end times may be 
represented by the BCCs i.e. StartTime, 
EndTime, StartDate, EndDate etc.  

7/11/0
3 DUE 
7/18/0
3 

DELETE DELETE 
Duplicate of 75 

[R 74] The recurrence of these periods in time 
may be represented by the BCC 
RecurrenceValue. 

7/11/0
3 DUE 
7/18/0
3 

DELETE Similar to 78 
 
Dan Vint: I agree this duplicates 74 - I would delete this 
one. 

[R 75] The start and end times may be 
represented by the BCCs i.e. StartTime, 
EndTime, StartDate, EndDate etc. 

7/11/0
3 DUE 
7/18/0
3 

DELETE Duplicate of 73 
 
Dan Vint: Agreed it is a duplicate and should be deleted 
#75. 
Question: Is this rule getting too specific? Isn't this like 
saying a decimal will be represented with xsd:decimal 
and a string with xsd:string? 

[R 76] The intervals in a point in time should be 
represented by a single BCC indicated by 
the choice operator i.e. FrequencyDuration, 
FrequencyYear etc. 

7/11/0
3 DUE 
7/18/0
3 

DELETE Duplicate of 80 
 
Tony Coates:  I don't see how a point in time can have 
intervals. I think this needs rewording, at the least. 
 
REWRITE 
 
This was written by Gunther. 
 

[R 77] Duration may be expressed by the BCC 
Duration. 

7/11/0
3 DUE 
7/18/0
3 

DELETE Duplicate of 79 
 
Dan Vint: Agreed 79 is a duplicate so delete it.   
Also is this wording a little weak? If I have a duration I 
have a duration and it should always be represented with 
the proper BCC. When or why would you allow 
something different? 
 
20030716:  Change may to MUST –  
 
This is a consistency thing, they should all either be may 
or mustMUST, there shouldn’t really be an option here. 

[R 78] The number of recurrences may be 
expressed by the BCC RecurrenceValue. 

7/11/0
3 DUE 
7/18/0
3 

DELETE DELETE 
 
Similar to 74. 

[R 79] Duration may be expressed by the BCC 
Duration. 

7/11/0
3 DUE 
7/18/0
3 

DELETE DELETE 
 
Duplicate of 77 
 

[R 80] The intervals in a point in time should be 
represented by a single BCC indicated by 
the choice operator i.e. FrequencyDuration, 
FrequencyYear etc. 

7/11/0
3 DUE 
7/18/0
3 

DELETE DELETE 
 
Duplicate of 76 

[R 81] A UBL message set may be extended 
where desirable if the business function of 
the UBL original is retained., but the 
message exists within its own business 
context. 
 
If a UBL message set is extended it MUST 

7/14/0
3 DUE 
7/21/0
3 

ACCEPTED  
Mike Grimley: Recommend: A UBL message set may 
MUST only be extended if the business function of the 
UBL original is retained., and the message exists within 
its own business context. 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

retain the business function of the original 
UBL message set. 
 

[R 82] UBL documents mustMUST use the same 
legal characters in XML character data that 
are listed in the XML Recommendation.  
Including tab, carriage return, line feed, and 
the legal characters of Unicode and 
ISO/IEC 10646. 

7/14/0
3 DUE 
7/21/0
3 

DELETE DELETE, already covered in rule 5. 
HOLD. 
 
 
Lisa Seaburg:  Similar to rule 5, only documents instead 
of just names. 
 
Dan Vint:  I would change the rule text:  
[R 82]   UBL documents mustMUST conform to all the 
requirements of the most current XML Recommendation. 
 
Why are we worried just about these characters. I don't 
know that this is even required, but if you want to keep 
something for this rule, then I would make the more 
general and inclusive rule as above. Otherwise its like, 
"Oh all I need are these characters I can forget about all 
the other XML requirements". 
 
20030726:  MC: I agree, we should get rid of the second 
sentence. 
 
DV: 2 things going on here, why are we worried about 
just characters. 
 
MC: Maybe our guiding principles should be turned into 
rules, because then that would cover this. 
 
MC: recommend to put this on hold, lets decide about 
turning out guiding principles into rules. 
 
Chee-Kai: Minor editorial amendment suggestion: 
 
[R 82]   UBL documents mustMUST use the same set of 
accepted characters in as those listed in the XML 
Recommendation, including tab, carriage return, line 
feed, and the defined characters of Unicode and ISO/IEC 
10646. 
 
I'm not still happy with my own suggestion, as I think the 
portion saying "including tab, carriage return, ..."  seems 
to imply that they're not part of character set accepted in 
XML Recommendation. 
 
The primary change here is to avoid the word "legal" in 
this context, and reserving "legal" to mean the real 
legality issues surrounding business transactions using 
UBL. 
 
Eduardo Gutentag: I myself am still scratching my head 
trying to understand why this rule is needed at all. It's like 
saying "UBL schemas will conform to W3C Schema, and 
UBL instances will conform to XML 1.0, oh, and UBL 
instances will use the following characters....which just 
happen to be prescribed in XML 1.0 but we'll prescribe 
too". 
 
Doesn't make sense. 
 
I believe that at some point the idea that what NDR does 
is draw rules for LSC to follow in the production of its 
normative output (i.e. schemas) has been forgotten, and 
has been mixed with all kinds of other things, including 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

rules for instances. 
 
THis rule (and others like this) should be deleted. 

[R 83] Trading partners may agree on other 
character encodings to use among 
themselves. It is recommended in all case 
that encoding declarations be provided in 
the XML declarations of UBL documents. 
 
[R 83]  UBL documents MUST always 
identify their character encoding with the 
XML declaration.  

7/14/0
3 DUE 
7/21/0
3 

ACCEPTED  
Dan Vint: This seems to weak. I would change it to read:  
 
[R 83]  UBL documents MUST always identify their 
character encoding with the XML declaration. It is also 
recommend that for portability that UTF-8 should be 
used; although trading partners may agree on other 
character encodings to use among themselves. 
 
REWRITE:  Wordsmith this into agreement. 

[R 84] UBL messages mustMUST express 
semantics fully in schemas and not rely 
merely on well-formedness. 
 
 
[R 84]  All UBL messages MUST validate to 
a corresponding schema. You should not 
rely merely on well-formedness when 
defining and building a message. 

7/14/0
3 DUE 
7/21/0
3 

ACCEPTED  
Dan Vint: What are we really trying to say with this rule? 
Is that any UBL document should have a matching 
Schema? Should there also be a statement about validity 
based upon that schema? I would think something like 
this is more appropriate: 
 
[R 84]   Any UBL messages MUST have a corresponding 
schema and the data stream mustMUST be valid based 
upon that schema. You should not rely merely on well-
formedness when defining and building a message.. 
 
Tony Coates:  I don't think Schemas could ever be said 
to capture semantics.  They can capture some of the 
business rules, but rarely can they capture all of the 
business rules.  I'm not convinced that trying to modify or 
adjust real business rules just to fit in with what Schemas 
can do is a good idea. 
 
Mike Grimley: Or:    
 
ACCEPT REWRITE:  [R 84]  All UBL messages MUST 
validate to a corresponding schema. You should not rely 
merely on well-formedness when defining and building a 
message.. 
 
Chee-Kai: Agree with Tony that forcing semantics into 
schema is odd. 
 

[R 85] Instances conforming to schemas should 
be readable and understandable, and 
should enable reasonably intuitive 
interactions. 

7/14/0
3 DUE 
7/21/0
3 

START 
HERE ON 
WEDNESDA
Y8/6 - 
Deleted 

HOLD FOR CHAIRS 
 
Dan Vint: I don't think the Instance has anything to do 
with the readability and understandability. Seems to me 
this should be a requirement for the schema 
design/generation process. This seems more 
appropriate: 
 
[R 85]   Schemas should be designed (or generated) 
such that instances conforming to them are readable and 
understandable, and should enable reasonably intuitive 
interactions. 
 
Mike Grimley: Better, but I'm still wondering if the 
judgment of such things is too subjective for a rule. 
 
Tony Coates: My experience is that it isn't *too* 
subjective.  Perhaps more to the point, as a general rule 
I insist on Schema developers doing prototypical 
instance documents before they start working on the 
Schemas, because it leads to more usable document 
structures.  Few people can properly visualise what the 
instance documents will look like from a knowledge of 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

the Schema, and this leads to unnecessarily awkward 
structures in instance documents.  Since UBL has 
tended to focus on Schemas rather than instances until 
recently (from what I understand), such issues are going 
to exist (and Stephen in LCSC has been ferretting them 
out of late).  So, I think something like this is needed.  If 
not a rule, it has to be part of the process.  While there 
are no absolutes as to when you have it "completely 
right", you can certainly aim to get rid of obvious things 
that almost everybody dislikes once they see the 
resulting instance documents. 
 
Dan Vint: True, but at least this is placing the 
requirement in the right place. I don't know of anything I 
can do in the instance to fix a problem caused in the 
schema. 
 
Also this is a should be, so I thin that handles the 
subjectiveness of the rule. 
 
I could also see deleting it if folks found it really 
objectionable. I don't think that it is a bad design 
principal. It sort of goes along with the idea of terseness 
not being a goal in XML - maybe this is just a friendlier 
way of saying that. 
 
Chee-Kai: For the original version, I don't understand 
here;  can instances conforming to schemas be 
unreadable and non-understandable, and could possibly 
not enable reasonably intuitive interactions? 
 
Whether "readability" and "understandability" refer to 
machine or human, the rule (the original rule) doesn't say 
more than what is already required (verifiable against a 
schema). 
 
Suggest removing [R 85]. 
 
8/6 – This is more appropriate as a guiding principle. 

[R 86] In the context of a schema, information that 
expresses correspondences between data 
elements in different classification schemes 
("mappings") may be regarded as 
metadata. This information should be 
accessible in the same manner as the rest 
of the information in the schema.  

7/14/0
3 DUE 
7/21/0
3 

8/6 - Deleted ACCEPTED 
 
Bill Burcham: what does classification scheme and 
mappings mean here? 
 
8/6 – We discussed this at length trying to determine 
what the origin of the rule is, and what it is trying to 
convey.    General consensus that this should be 
deleted. 
 
 

[R 87] UBL XML Element, attribute, and Simple 
and Complex Type Names mustMUST not 
use acronyms, abbreviations, or other word 
truncations, except those in the list of 
exceptions published in Section XX.  
[Editor's note: Section xx to be a section in 
the NDR document.  Currently this section 
only includes ID for Identifier, DUNS, and 
URI.] 

7/14/0
3 DUE 
7/21/0
3 

Accepted See R6, Delete R6, and add attributes to the list of what 
is named. 
 
Dan Vint: This should be combined so there is only one 
rule #87  
[R 87]   The only Abbreviations and Acronyms allowed 
for names used in the schemas or datastreams are listed 
in Section XX, ie. Element, attribute and Simple and 
Complex Type Names. Code list values are not 
controlled by this rule.  
 
[Editor's note: Section xx to be a section in the NDR 
document.  Currently this section only includes ID for 
Identifier, DUNS, and URI.] 
 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

Mike Grimley: That doesn't really capture Rule 90. I think 
two rules are necessary: 
 
[R 87]   The only Abbreviations and Acronyms allowed in 
the naming of Element, Attribute and Simple and 
Complex Types are those contained in the list published 
in Section XX.  [Editor's note: Section xx to be a section 
in the NDR document.  Currently this section only 
includes ID for Identifier, DUNS, and URI.] 
 
[R90]    The Abbreviations and Acronyms listed in 
Section XX MUST be used when referring to ( or 'in the 
place of'?) their corresponding references. 
 
20030716:  MC: there needs to be a mechanisim for 
updating the controlled vocabulary. 
 
LS: Industries are not going to spend their time sending 
in these to some group of people, meaning most industry 
implementations and extensions will not be compliant. 
 
DV:  these things maybe just need to be reworded alittle, 
editor.  The other aspect is”Oops we are missing a way 
to handle other peoples way to handle this issue”.  We 
need to expand the section about. 
 
Maybe its just one of those things where trading partners 
need to agree on abbreviations. 
 
TC:  Could you say the industry has to agree about a list 
of controlled vocabulary. 
 
LS:  Maybe this is like our codelists where we don’t want 
to be a controller of their lists, that we need to focus on 
our own base schema abbreviation and leave it open for 
outside industries. 

[R 88] Acronyms and abbreviations will only be 
added to the UBL approved acronym and 
abbreviation list after careful consideration 
for maximum understanding and reuse. 

7/14/0
3 DUE 
7/21/0
3 

Accepted See R6. 

[R 89] Acronyms and abbreviations added to the 
UBL approved list mustMUST only be taken 
from the latest version of the Pocket Oxford 
English Dictionary. The first occurrence 
listed for a word will be the preferred item to 
MUST be used. 

7/14/0
3 DUE 
7/21/0
3 

Accepted See R6. 
 
Dan Vint:  I would change the text:  
 
[R 89]  When the use of a new acronym or abbreviation 
is approved for use in UBL documents, the acronyms or 
abbreviations MUST be taken from the latest version of 
the Pocket Oxford English Dictionary. If more than one 
value is provided it should be the first occurrence listed 
for a word will be the preferred item to be used. 
 
Do we need something here to handle possible collisions 
with existing abbreviations? What about abbreviations 
that make words that may/may not be used elsewhere? 
Seems like this rule or the previous one that said they 
can be added should state some additional requirements 
(assuming you agree we should avoid these problems) 
Also what happens if we agree that we want an 
abbreviation and one is not in the dictionary, should we 
state a method for creating one, or should it be that we 
don't use the abbreviation? 
 
I have seen a general rule for creation (when they don't 
exist other wise) to be: "Drop all the vowels from the 
word." 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

 
Tony Coates:  Yes, that is the standard rule one uses to 
make acronyms accessible to native english speakers, 
and inaccessible to everyone else. 
 
20030716:  This is part of the discussion of the rules 
above. 
 
DV:  Is there an abbreviation for every word that you 
could possibly abbreviate and what happens if there isn’t 
one. 
 
Lets discuss in Montreal, there may be some pieces of 
the puzzle we need to go through. 
 
8/6 – slight modification to align rules 87 through 89.  
Make sure narrative addresses that the latest version of 
the POED will be used each time an acronym or 
abbreviation is used. 

[R 90] The Abbreviations and Acronyms listed in 
Section XX mustMUST always be used. 

7/14/0
3 DUE 
7/21/0
3 

Accepted See R6 
 
Dan Vint: This should be combined so there is only one 
rule #87  
[R 87]   The only Abbreviations and Acronyms allowed 
for names used in the schemas or datastreams are listed 
in Section XX, ie. Element, attribute and Simple and 
Complex Type Names. Code list values are not 
controlled by this rule.  
 
[Editor's note: Section xx to be a section in the NDR 
document.  Currently this section only includes ID for 
Identifier, DUNS, and URI.] 
 
Mike Grimley: That doesn't really capture Rule 90. I think 
two rules are necessary: 
 
[R 87]   The only Abbreviations and Acronyms allowed in 
the naming of Element, Attribute and Simple and 
Complex Types are those contained in the list published 
in Section XX.  [Editor's note: Section xx to be a section 
in the NDR document.  Currently this section only 
includes ID for Identifier, DUNS, and URI.] 
 
[R90]    The Abbreviations and Acronyms listed in 
Section XX MUST be used when referring to ( or 'in the 
place of'?) their corresponding references. 
 

[R 91] All types declarations MUST be 
globalnamedl. 

7/14/0
3 DUE 
7/21/0
3 

Accepted  
Dan Vint: I would modify this rule to be: [R 91]   For 
reuse and extension, all types MUST be named, which 
then requires their declarations be globally defined. 
 
20030716:  We need to harmonize our anonomous and 
global. 
 
Chee-Kai: Naming does not equate with being global. 
 
Eve Maler: Actually, I believe naming does equate with 
being global.  A topLevelComplexType requires its name 
attribute, and a localComplexType prohibits its name 
attribute from being used.  Roughly the same is true for 
simple types.  (See 
http://www.w3.org/2001/XMLSchema.xsd ) 
 
So probably the rule could be shortened to: 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

 
[R 91]  All types MUST be named. 
 
Explanatory text could then mention that the purpose is 
for reuse and extension, and that the syntactic 
consequence of the rule is that the types mustMUST all 
be declared as top-level. 
 
Chee-Kai: Not without loss of generality, let's just look at 
complexType. 
 
A complexType definition is global if and only if it is 
located as one of the immediate children under 
<xsd:schema>. 
 
A complexType is named if and only if the name attribute 
exists in the definition. 
 
I refer you to XML Schema Part 1: Structures, Section 
4.2.2 example "v2.xsd" part of which is illustrated: 
 
 <xs:redefine schemaLocation="v1.xsd"> 
<xs:complexType name="personName"> 
<xs:complexContent> <xs:extension 
base="personName"> ..... 
 
By definition, this <xs:complexType> definition is not 
global (not necessarily local), AND named. 
 
Dan Vint:  Ah yes it is global. The redefine is working on 
redefining the global type defined in in the v1.xsd file as 
personName. Your example is using one of the 
mechanisms/features that creating global names in the 
first places allows it to be used. This example would be 
wrong if personName was not a global in the original 
schema. 
 
Eve Maler: Aha, so "top level" not-equal "global".  
Thanks for the correction.  In that case, the rule should 
not say "...which then requires their declarations be 
globally defined."  If we want to prohibit redefinition, we 
ideally should do that in a separate rule, and not 
(incorrectly) imply that naming a type means the 
definition mustMUST be directly beneath <xsd:schema>. 
 
Chee-Kai:  Wait, I'm not saying anything about using or 
prohibiting <xsd:redefinition>,  all I'm quoting is that a 
named  complexType can be a non-immediate child of 
<xsd:schema>, thus giving a counter-example to the 
assertion that "naming" == "global". 
 
The original rule wordings were: 
 
[R 91]   All type declarations MUST be global. 
 
which says what it wants to say already. 
 
A rule about redefinition, if there's an intention to do so, 
would rightly be in a separate rule as you suggested. 
 
Eve Maler: I checked the XSD spec part 1 
(http://www.w3.org/TR/xmlschema-1/), and "global" is a 
concept that seems to be associated only with element 
and attribute declarations, and only in the sense that 
their namespace scope is global.  It doesn't refer to the 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

positioning of a declaration or definition within the 
<xsd:schema> element.  So maybe it's best avoided 
here, since it's not very precise. 
 
On the other hand, the XSD schema itself 
(http://www.w3.org/2001/XMLSchema.xsd) does have a 
notion of topLevelComplexType versus 
localComplexType; these are restrictions of the 
complexType type and govern the definition of named 
vs. anonymous/locally scoped complex types.  There are 
also topLevelSimpleType and localSimpleType.  It looks 
as though the <redefine> element can contain the 
version of <complexType> that is bound to 
topLevelComplexType. 
 
So at the very least, maybe we should substitute "top-
level" for "global" if we determine that this rule should 
have that additional bit of explanation on the end. 
 
(I know that redefinition was discussed at one time, but 
don't recall the conclusion.  We should make sure that 
any decision on them is recorded.) 
 
Chee-Kai: It's funny how when I flipped through the 
pages of XML Schema Part I, I got reminded of lawyers 
ploughing through the legal printings... 
 
Anyway, thanks for englightening more aspects of XML 
Schema. I tend to agree with you that XML Schema Part 
I talks about "global" almost consistently with use of 
"elements" only. It is remarkably silent about talking 
about the concept of "global" with types. 
 
But I see a point with [R 91] to talk about a type being 
global because such concept is not only applicable to 
programming languages, it also makes it easier to talk 
about types (whether named or unnamed) that are 
allocated at the "top-level" (immediate children of 
<xsd:schema>) of a schema. 
 
I believe I'm not alone in talking about "global" in the 
sense of being an immediate child of <xsd:schema>.  
For elements that you mentioned, XML Schema Part I 
does have a paragraph saying (somewhere in the midst 
of Section 3.3.2): 
 
  "<element>s within <schema> produce global element 
declarations; <element>s within <group> or 
<complexType> produce either particles which contain 
global element declarations (if there's a ref attribute) or 
local declarations (otherwise)." 
 
I concede that the notion of "global" being an immediate 
child of <xsd:schema> is an indirect conclusion.  The 
sentence uses the notion of "depth" (within <schema>, or 
within <group> or <complexType> which in turn 
mustMUST be within <schema>) to define "global"ness.  
As a given <element> mustMUST be in one or the other 
depth location, the conclusion would be that if a given 
<element> has depth 1, it is global;  else if it occurs 
within <group> or <complexType>, it mustMUST have 
depth > 1 and so isn't global (and not necessarily 
immediately concluded as being local). 
 
Either way, perhaps we need to agree on what "global" 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

means in the context of [R 91], if there could be a chance 
of having "global" being interpreted as any concept, such 
as "naming" or "being defined" (which to me, again, are 
very different concepts not to be interchanged easily 
without knowing the implications). 
 
8/6 – Much discussion.  Gunther is concerned that non-
native speakers might misinterpret.  Mark to ensure ndr 
document defines similiarity between named types and 
global elements declaration properties. 

[R 92] All element declarations MUST be global 
with the exception of ID and Code which 
MUST be local. 

7/14/0
3 DUE 
7/21/0
3 

Accepted Tony Coates:  I wasn't around for the original local vs. 
global discussion.  However, rules that apply sometimes 
and not other times are generally a nuisance to support.  
I would much rather see UBL have either all global 
elements or all local elements, rather than an arbitrary 
compromise. 
 
20030716:  We need to harmonize our anonomous and 
global. 
 
Chee-Kai: Agree with Tony with legs up! 
 

[R 93] XSD: Application InformationProcessing 
Instructions MUST NOT be used in UBL 
normative Schema. 
 
UBL designed schema SHOULD NOT use 
XSD:ApplicationInformation.  If used, 
XSD:ApplicationInformation MUST only be 
used to convey non-normative information.  

7/15/0
3 DUE 
7/22/0
3 

Accepted. Eve Maler: In schemas or instances? 
 
Dan Vint: I've got more of a why question on this one. 
Eve covered the Schema/Instance use side, but what if I 
want to use the Stylesheet PI to indicate how my 
document should be formatted? This is how they set that 
spec up and I would see where people might want to use 
that one specifically in the data stream. 
I would hope the surrounding text gives me a reason 
why, other than just because. This certainly might be an 
eaiser way to incorporate some trading partner 
agreements and still use the off the shelf UBL schema. 
 
Chee-Kai:  I could be a little ignorant on the rationale 
here. I'm neither strongly for or against this rule. 
 
But SOAP folks have gone through 1.1 prohibiting it, 
then after implementations, have changed their mind to 
allow for PIs to be in. 
 
Should we relook at what new insights have been 
acquired by them before prohibiting PIs? 
 
Tony Coates:  One thing that I personally haven't 
understood about the NDR rules.  Are they supposed to 
apply to all users using UBL (and derivatives thereof) at 
any time, or are they just intended as a guide to groups 
like LCSC?  It currently isn't clear to me whether this rule 
means that PIs should never be used in UBL instances 
by any end users, or whether it means that LCSC 
shouldn't explicitly use PIs in its designs, and hence 
explicitly force users to use PIs.  So, what is it?  Thanks, 
 
8/6 – Much discussion for and against.  Agreed that we 
would use alternative wording. 

[R 94] [R94a] Empty elements MUST not be 
declared  
 
 
[R94b]The XSD built in nillable attribute 
MUST NOT be used for any UBL declared 
element. 
 

7/15/0
3 DUE 
7/22/0
3 

8/6 – need 
to send to 
list. 

See R32 -  
 
Chee-Kai:  Amendment Required because prohibiting 
xsd:nil does NOT equate with prohibiting empty content 
element.  
 
Suggested change:   [R 94]: The nillable attribute MUST 
NOT be used. Empty content element MUST NOT be 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

[R94c] An element MUST not appear 
without content in the document instance. 
 
[remember to add in narative that there is 
an issue with string length of 0.] 

instantiated UNLESS it is expressly a user-intended 
indication to instantiate empty content for a given 
element. 
 
Dan Vint:  This isn't quite right. In schemas only 
elements of type string can be presented as empty in a 
data stream without using the NIL attribute. The user 
indication that nil is the appropriate interpretation is to 
use this schema attribute (or we have to create our own 
method). 
We need a statement more like this: 
 
Any element declared to have data, mustMUST not 
appear in a data stream as an empty element. Elements 
declared as EMPTY may only appear in the data stream 
as an empty element. 
 
This rule then prevents the use of the nillable attribute in 
the schema definition and the corresponding xsi:nil 
attribute in the data stream. 
 
Propose a new rule: Elements that are not declared 
empty MUST have content. 
 
 
REWRITE and look at 32 to match them up together.  
These are two rules saying about the same thing. There 
are many ways to say the same thing. 
 
3 different conditions that need to be covered. 
 
Chee-Kai: It depends on what was the intention of the 
rule.  I took Mark's response last time when he 
mentioned that [R 32] (= [R 94]) already prohibits 
instantiating empty content (which I didn't think that [R 
32] as it stands says that) to mean that [R 94]'s intent is 
to prohibit instantiating elements with empty content.  To 
complete that insufficiency that I though [R 94] had, I 
suggested the above additional line, to be interpreted 
whenever empty content can be instantiated. 
 
>>Any element declared to have data, mustMUST not 
appear in a data stream as an  
>>empty element.  
 
No, for such situations, during generation, it is an invalid 
instance already.  On the receiving end, this will cause 
schema validator to flag error based on, for example, a 
string pattern that contains no empty string or a string 
restriction with minLength="1" (See XML Schema Part 2 
Section 4.3.2). So this doesn't say more than what is 
already in place. 
 
7/30 – we concur with adding the additional rule. 
 
. 
 
 

[R 95] Wildcards MUST NOT be used. 
[R95a] The XSD:Any element must not be 
used 
 
The XSD:anyAttribute MUST not be used 
 
The XSD:anyType MUST not be used 

7/15/0
3 DUE 
7/22/0
3 

8/6 - 
Accepted 

Dan Vint: The wildcard for elements is Any, the wildcard 
for attributes is anyAttribute and there is a wildcard for 
the datatype as well anyType and anySimpleType. 
Because the question was asked, maybe these should 
all be listed as an example. 
 
Suggested change: Wildcards, such as “Any” and 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

 
The xsd:anySimpleType Must not be used 

“anyAttribute”, MUST NOT be used 

[R 96] Two schemas shall be developed for each 
standard.  One schema shall be a run-time 
schema devoid of documentation. One 
schema shall be a fully annotated schema 
that employs XHTML for the annotations. 
 
UBL MUST provide two normative schemas 
for each transaction.  One schema shall be 
a run-time schema 

7/15/0
3 DUE 
7/22/0
3 

8/6 - 
Accepted 

 
Chee-Kai: Objection : Stating two versions of schemas 
that are otherwise the same except for documentation is 
a user-level optimisation/preference issue that shouldn't 
become a hard-rule from UBL/NDR.  This is not to say 
that we cannot publish as a non-normative add-on, or 
reading aid or optimized version (assuming documented 
version is normative).   Suggest removing it. 
 
Dan Vint: Removing it allows one to do or not do this. I 
believe the general request  is to provide these two 
forms of the schema and there should be a 
rule/requirement that states this. 
 
Bill Burcham: I think we should remove this rule.  A user 
can filter out annotations if they are unwanted. 
 
Dan Vint:  Ok then the implication of this is that the only 
schema that UBL sends is one with full 
documentation/annotation. I suppose I can live with that, 
but again I would state this as a rule that the schemas 
are fully documented. 
 
Tony Coates:  I am *completely* opposed to the 
suggestion that users can filter annotations out of their 
Schemas if required.  My experience is that only the 1% 
of people who take part in XML committees have the 
confidence and experience for that.  Worse, it just 
introduces an unnecessary, globally-distributed quality 
control issue.  If it is so easy to filter out the 
documentation, then let us do it just once ourselves for 
everyone on the planet, and issue two equivalent 
normative Schemas, full-fat and low-fat.  I'm happy to 
contribute an XSLT script or Java class to do the job, if it 
is too hard to do from the Schema generation tools. 
 
Dan Vint:  I'm fine with the requirement to send both, but 
I think it should still be a stated requirement/rule. 
 
Chee-Kai: Sorry, Tony, I am VERY STRONGLY against 
having more than ONE normative schema. 
 
Taking a step further based on proposed "normative 
optimized schema without documentation", why can't 
people ask for "normative optimized schema without 
documentation AND without whitespaces" (ie, one long 
line of "optimized" non-fat milk?), and why can't people 
ask for "normative optimized schema in compressed 
WBXML binary format", and all sorts of other "normative" 
versions? 
 
Where does that stop??     So, no, please don't open the 
pandora box. 
 
Chee-Kai: Precisely!  When stated as a rule, it is 
unnecessarily restrictive for user to accomodate this rule 
when situation may not call for such. 
 
If you're talking about UBL's packaging, please read my 
second paragraph. 
 
Tony Coates:  There is no Pandora's Box here.  People 
can ask for different varieties of Schema until they go 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

blue in the face, but all that counts is what UBL decides 
to produce.  It is quite normal for people to require 
Schemas without annotations for use on production 
systems.  If UBL does not provide one, then everyone 
has to remove the annotations themselves, and they 
may get it wrong. The UBL team saves itself a bit of 
trouble, but the rest of the world has to suffer a 
distributed quality control problem. 
 
Although I understand the orthodoxy behind only wanting 
a single normative version of any deliverable, I strongly 
support UBL providing the two flavours of Schema. 
 
Chee-Kai: So I suppose we don't differ so much here.  Is 
it right to say that your point being:  Provide the 
undocumented version to help others, but ok with having 
only one normative form (say, the documented one)? 
 
I'm certainly not against (not that I have any influence in 
the final decision) supplying multiple forms within what 
TC members can provide.  We're doing that already 
anyway with supplying spreadsheets-equivalent, UML-
equivalent diagrams, etc. 
 
8/6 – Chair decision.  Maintain Rule. 

[R 97] Mixed content MUST NOT be used except 
where contained in an XSD:documentation 
element (excluding documentation). 

7/15/0
3 DUE 
7/22/0
3 

Accepted See R25 
 
Dan Vint: Hopefully Mixed content is defined somewhere 
in a glossary, if not please add a description here: 
An element has mixed content, when it allows both data 
and additional element content. 

[R 98] Built-in Simple Types SHOULD be used 
wherever possible. 

7/15/0
3 DUE 
7/22/0
3 

Accepted  
Dan Vint: Should we be masking the datatypes to protect 
against any future changes in definitions or other 
technologies? For instance xsd:boolean allows 0/1 and 
true/false - do all languages implement boolean this 
way? Will another XML schema language define boolean 
this way, or will it add yes/no? 
I would suggest adopting and specifying the UBL 
definition of the datatypes (for now they might be exactly 
what is in schema), but we don't use the schema types 
directly. So I would defined a ubl:Boolean that restricts 
xsd:boolean and then use ubl:Boolean everywhere 
instead of xsd:boolean. 
I belive in the long run this will be a useful "protection" 
from technology change. 

[R 99] XSD:Simple Type restriction MAY MUST 
not be used for CCTS:CCTs. 

7/15/0
3 DUE 
7/22/0
3 

8/6 accepted  
Dan Vint:  This rule seems a little strange to me. The 
implication is that we have gone through all the schema 
capabilities and have indicated yes/no as to what can be 
used - is this true? If it is true, then I would recommend 
one rule that has a table of all the "features" with an 
indication of their use. It will be easier to find and 
maintain. 

[R 
100] 

The XSD:Union technique MAY be used to 
merge data types. UBL: Not applicable. 
Therefore, SHOULD MUST NOT be used. 
(Code lists are excluded from this rule.) 

7/15/0
3 DUE 
7/22/0
3 

8/6 
accepted. 

 
 
Dan Vint: How about:[R 100] Union MAY be used to 
create new simple datatypes as long as those types are 
not enumerated types (code lists). 

[R 
101] 

Complex Types MUST be named. 7/15/0
3 DUE 
7/22/0
3 

8/6 – deleted 
as 
duplicative 
of revised 
rule 91 

 

[R 
102]

The absence of a construct or data MUST 
NOT carry meaning.

7/15/0
3 DUE 

8/6 - 
Accepted

 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

102] NOT carry meaning. 7/22/0
3 

Accepted Tony Coates: I object to this rule on the basis that it 
seems unprovable.  How does one guarantee that the 
absence of something cannot never imply something 
meaningful?  I suspect that the idea behind this was 
something like "absence of an element should not be 
used to imply that the element has a null value", or 
something like that.  Can someone who was around for 
the creation of this rule comment on what the idea 
behind it was?  Thanks, 
 
Jim Wilson: I do seem to recall a discussion around this 
that is easily understood in the form of an example 
(totally contrived) that would violate the rule: 
 
"The CustomerID element may have the optional 
attribute customerIDType. If that optional attribute is 
missing, then the customer ID is a DUNS number." 
 
(Yes, I'm aware of W3C XML Schema support for 
defaults, but that's beside the point and probably not 
relevant at all given that the rule is not stated in the 
context of XML Schemas.) 
 
Dan Vint: If anything like this exists in the definitions then 
all the rules about EMPTY data elements would have to 
be removed and we would have to allow the use of nill to 
flag this in the data stream. 
 
I think I like the rule and would say the schema should 
be changed to not have an attribute or content be 
mutually exclusive. I think the design is wrong, not the 
rule 

[R 
103] 

Substitution groups MUST NOT be used. 7/15/0
3 DUE 
7/22/0
3 

8/6 
accepted. 

 
Eve Maler: Does this mean that the normative UBL 
schemas mustMUST block element substitution so that 
customizations can't use it, or that UBL mustMUST not 
itself define substitution groups while letting 
customizations do it, or...? 
 
8/6 – Will not be allowed for schema from LC.  May 
subsequently allow in extension methodology. 

[R 
104] 

Attribute Groups MAY be used. 7/15/0
3 DUE 
7/22/0
3 

8/6 – not 
required 

This rule was superceeded by new rule 26 c and d. 

[R 
105] 

ID/IDREF MUST NOT be used. 7/15/0
3 DUE 
7/22/0
3 

  
Dan Vint: This seems a little overboard. I guess the 
corresponding rule is that key/keyref will be used to 
implement simple ID/IDREF relationships. Has anyone 
verifed that this is something that the tools support? I 
know they will manage ID/IDREF for me, but I have 
doubts about any other mechanism for making 
relationships. 

[R 
106] 

Key/KeyRef MAY be used. 7/16/0
3 DUE 
7/23/0
3 

  

[R 
107] 

The XSD prefix MUST be used. 
(xmlns:xsd=http://www.w3.org/2001/xmlSch
ema) 

7/16/0
3 DUE 
7/23/0
3 

 Move to part of R1. 
 
Dan Vint: I'm a little surprised that we have a rule 
restricting the namespace prefix. I agree UBL should 
probably use one prefix for consistency, but it doesn't 
really matter what the actual value is other than making 
documentation a little easier for all UBL messages. What 
does it matter if my actual implementation uses 
something different? 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

 
Chee-Kai: Just a minor editorial amendment suggestion 
to use: 
 
[R 107]  The "xsd" prefix MUST be used. 
(xmlns:xsd=http://www.w3.org/2001/xmlSchema) 
 
because in the original version, if "XSD" is interpreted as 
an acronym for XML Schema, then which prefix MUST 
be used isn't stated.  On the other hand, if "XSD" IS the 
prefix that mustMUST be used, then it should be 
lowercased. 
 
So putting it lowercase with enclosing double-quotes 
should help to clarify.   Note: Same for XSI 
 
Chee-Kai: Eve's right;  XML spec doesn't require a fixed 
prefix. And specifying a fixed prefix to associate with a 
given namespace value seems to go against the XML 
spec's spirit of having prefixes as mere "bins" to hold the 
namespace values. 
 
On the other hand, some implementations do have 
(questionable) "features" that for various reasons 
process fixed prefixes (e.g. "xs" or "xsd") or are not that 
agile in managing namespace dynamics.  This situation 
might improve in time. 
 
But having heard Eve's point, I agree with Eve's version, 
but prepended with: 
 
[R 107]  If a fixed prefix is used, then the prefix should be 
"xsd", and all W3C XML Schema constructs in UBL 
schema modules mustMUST use the "xsd" namespace 
prefix, bound to "http://www.w3.org/2001/xmlSchema". 
 
8/1 – The point is we are creating a standard for all UBL 
schemas.  This is not a violation of the XML specs.  The 
purpose is to ensure consistency in the declarations, and 
as standardizing on the use of “xsd” as a fixed prefix for 
XSD is quite appropriate.  Reworded Chee-Kai’s 
proposal to read: 
 
[R107]  All W3C XML Schema constructs in UBL schema 
and schema modules MUST contain the following 
regular expression: 
 
xmlns:xsd="http://www.w3.org/2001/XMLSchema” 

[R 
108] 

The XSI prefix SHALL be used where 
appropriate. 

7/16/0
3 DUE 
7/23/0
3 

 Eve Maler: The "xsi" prefix is meant for instances, not 
schemas.  So what does this rule mean?  XSD governs 
the required use of xsi:type in instances, and there is a 
bit more going on in that namespace than just xsi:type, 
so I'm pretty sure we want to be specific -- e.g., if there 
are any cases where we might require xsi:type although 
XSD doesn't (e.g., to reduce reliance on an external 
schema file for exposing types of elements). 
 
However, I doubt we want to do anything more than 
allow constructs in the xsi namespace to be used as 
allowed/dictated by the XSD spec, which doesn't seem 
to need a rule. 
 
Again, if we do turn out to need a rule, it should not make 
the "xsi" prefix not seem like magic. 
 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

Dan Vint:  Same comment as rule 107, what does it 
matter what prefix I use? 
 
Related to this. We have agreed to require the use of the 
XML Declaration, should we also require that 
xsi:SchemaLocation (and maybe other attributes) are 
required in UBL documents? Other wise I can send you 
a data stream with no indication of what schema and 
namespace should apply. 
 
Chee-Kai: Suggest changing to:  
 
[R 108] The "xsi" prefix SHALL be used where 
appropriate. 
 
Reason: Same for "XSD" change in previous post. 
 
Tony Coates:  >[R 108] The XSI prefix SHALL be used 
where appropriate. 
 
Similar to the "xsd" case, if UBL is going to have a rule 
about the "xsi" prefix, the rule needs to refer to the 
namespace URI and not just a prefix. 
 
8/1 – same comment as rewritten Rule 107.  Rewritten to 
read: 
[R108] All UBL conformant instance documents MUST 
contain the following regular expression: 
 
xmlns:xsii="http://www.w3.org/2001/XMLSchema-
instance” 

[R 
109] 

Abstract Complex Types MAY be used (for 
UBL ur-schema).. 

7/16/0
3 DUE 
7/23/0
3 

 Dan Vint: Abstract is a useful composition tool, do we 
also want to allow the side effect of being able to 
substitute elements defined from same types? The 
example is a Address and UKAddress  and USAddress 
from the Schema Primer. I can use Address in the 
definition of an element and it allows all three of these to 
be used. Should we say the final derivations should only 
be referenced? 
 
 

[R 
110] 

(not finalized) Complex Type extension 
SHOULD be used where appropriate. 

7/16/0
3 DUE 
7/23/0
3 

 Dan Vint: Is extension also restriction? Also is this for 
UBL base schemas or really meant for end user 
customization? I would think we would probably have 2 
different types in the UBL schemas, and this is only a 
customization issue. 

[R 
111] 

(not finalized) The final attribute SHALL be 
used to control extensions. 

7/16/0
3 DUE 
7/23/0
3 

 Dan Vint: Does this mean we should decide on 
everything if extension is allowed (one way of reading 
the SHALL requirement). I think this should be MAY be 
used, and then add some guidance as to when it is 
appropriate. 

[R 
112] 

(not finalized) The block attribute SHALL be 
used to control extensions. 

7/16/0
3 DUE 
7/23/0
3 

 Eve Maler: This relates to substitution groups; you block 
elements that you don't want used as the head of such a 
group.  So this should be coordinated with R 103.   
 
(To control complex type extension, you would use 
"final", not "block".) 
 
Dan Vint: Same comment on rule 111. Should ought to 
be MAY, Also should we be saying something about the 
schema level default settings for both of these as well as 
the local usage? 

[R 
113] 

Complex type restriction SHOULD be used. 7/16/0
3 DUE 
7/23/0
3 

  



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

[R 
114] 

Notations MUST NOT be used. 7/16/0
3 DUE 
7/23/0
3 

 Dan Vint: Is there also a need for a  statement about the 
use of DTD declarations in our schemas for things like 
entities? 
 
Eve Maler: Sigh, it would be most complete to do so -- as 
XML documents, schema modules could theoretically 
contain internal/external subsets. 
 
Dan Vint:  I'm assuming this rule is here because it really 
requires the use of the DTD to declare the NOTATION in 
the first place. 
 
Eve Maler: The schema "notation" feature is supposedly 
not even compatible with the DTD <!NOTATION...> 
feature, so it's best to stay away from it for lots of 
reasons 
 
Mark Crawford: Remember, we already *greed our 
normative form is XSD, and all of our rules would be 
focused accordingly 
 
Dan Vint: XSD is XML and the XSD folks have even said 
that the only way to do some things is to combine an 
Internal subset/DTD in the schema to define entities and 
notations. This is capability and techniques that are 
available. The NOTATIONS issue I thought was related 
to this, I had not heard there was an incompatiblity in the 
two areas. 

[R 
115] 

All documents shall have a container for 
metadata  and which proceeds the body of 
the document and is named  "Head" 
_____________. (anything but header) 

7/16/0
3 DUE 
7/23/0
3 

 How to name the Header: 
 
OrderHead, InvoiceHead, etc…… 
 
We are provisionally giving this advice to CheeKai to get 
this into the schemas for the draft versions. 
 
Chee-Kai:  I remain critical of having to maintain such 
virtual structure for no apparent use.  I've heard that the 
rules don't affect FPSC at all.  By design, they should not 
affect LC.  So who's benefiting from carrying all the 
empty luggages around? 
 
That said, I pointed out last time that the [R 115] should 
have "precedes" instead of "proceeds", unless the 
proponent of the rule wants Head sitting at the tail. 
 
7/28 – Deleted by joint agreement with LCSC. 

[R 
116] 

All elements with a cardinality of 1..n, (and 
lack a qualifying structure) mustMUST be 
contained by a list container named  
"(name of repeating element)List", which 
has a cardinality of 1..1. 

7/16/0
3 DUE 
7/23/0
3 

 This includes any element and type that has a cardinality 
of 1..n shall have a container. 
 
This rule should be applied at application level it is not 
part of the business model. 
 
List rule takes care of non-header containers 
 
Bill Burcham: I'm with Chee-Kai -- I think [R 116] is 
wrong.  (I know it's probably too late -- but I'm gonna say 
my peace anyway :-) The two cases I've heard made in 
favor of it are: 
 
1. container elements foster more readable stylesheets 
2. container elements significantly improve document 
processing performance 
 
Argument 1 is weak.  Forgive me for posting working 
code, but here is an instance document with superfluous 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

containers: 
 
<?xml version="1.0" encoding="UTF-8"?>  
<doc>  
<SuperfluousContainer>  
<Fruit>Apple</Fruit>  
<Fruit>Orange</Fruit>  
<Fruit>Banana</Fruit>  
</SuperfluousContainer>  
</doc> 
 
And here is a stylesheet to process it: 
 
<?xml version="1.0" encoding="UTF-8"?>  
<xsl:transform version="1.0" 
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">  
<xsl:output method="xml" version="1.0" encoding="UTF-
8" indent="yes"/>  
<xsl:template match="doc">  
<xsl:element name="NewDoc">  
<xsl:apply-templates select="current()/*"/>  
</xsl:element>  
</xsl:template>  
<xsl:template match="SuperfluousContainer">  
<BeforeFruit/>  
<xsl:apply-templates select="current()/*"/>  
<AfterFruit/>  
</xsl:template>  
<xsl:template match="Fruit">  
<AFruit>  
<xsl:value-of select="text()"/>  
</AFruit>  
</xsl:template>  
</xsl:transform> 
 
And here is the output: 
 
<?xml version="1.0" encoding="UTF-8"?>  
<NewDoc>  
<BeforeFruit/>  
<AFruit>Apple</AFruit>  
<AFruit>Orange</AFruit>  
<AFruit>Banana</AFruit>  
<AfterFruit/>  
</NewDoc> 
 
The example injects an element before the first fruit and 
after the last one.  That's the example we've been 
discussing for a couple years as being the bugaboo 
here. 
 
And here is an analogous source instance doc -- this 
time with no superfluous containers: 
 
<?xml version="1.0" encoding="UTF-8"?>  
<doc>  
<Fruit>Apple</Fruit>  
<Fruit>Orange</Fruit>  
<Fruit>Banana</Fruit>  
</doc> 
 
And here is a different stylesheet to process this one: 
 
<?xml version="1.0" encoding="UTF-8"?>  
<xsl:transform version="1.0" 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">  
<xsl:output method="xml" version="1.0" encoding="UTF-
8" indent="yes"/>  
<xsl:template match="doc">  
<xsl:element name="NewDoc">  
<xsl:apply-templates select="current()/*"/>  
</xsl:element>  
</xsl:template> <xsl:template match="Fruit">  
<xsl:if test="position() = 1">  
<BeforeFruit/>  
</xsl:if>  
<AFruit>  
<xsl:value-of select="text()"/>  
</AFruit>  
<xsl:if test="position() = last()">  
<AfterFruit/>  
</xsl:if>  
</xsl:template>  
</xsl:transform> 
 
Comparing the two stylesheets I note that the one for 
superfluous containers is 19 lines and the one for 
repeating elements (with no superfluous containers) is 
20 lines.  That's only one line of code difference.  And I 
don't think the second stylesheet is any less readable 
than the first. 
 
If I look at the two source documents, and extrapolate to 
larger documents with more nesting I can say with 
certainty that superfluous containers make for larger 
documents and IMHO are a bit harder for humans to 
read -- do to the increase in indentation necessitated by 
the deeper hierarchy. 
 
As for point 2 (processing performance), that's just 
Voodoo Computer Science.  So, which XML processing 
tools are we using for comparison?  Which versions of 
those tools?  What is the use-case/scenario/algorithm?  
How big is the document?  Worst-case, if you tell me that 
the document is HUGE then I'll tell you a) the Bolivian 
rug-weaver using Perl as the processing tool isn't gonna 
see the HUGE document and b) the company (Wal*Mart) 
that sees the HUGE document can darn-well write a 
transform on the incoming document (or four or five 
transforms) that make it more amenable to efficient 
processing. 
 
But you know what -- I still haven't seen any real 
_evidence_ that superfluous containers provide any 
processing performance advantage in the first place.  It's 
more likely they hurt performance since they _definitely_ 
make documents larger! 
 
So by my count, it's: 
 
Superfluous containers:  they make documents bigger 
(inflicting a processing burden) and harder for humans to 
read Repeated elements (no superfluous containers): 
they make documents smaller and easier for humans to 
read, and necessitate a tiny bit more XSLT code in some 
situations. 
 
Down with [R 116]! 
 
Eduardo Gutentag:  Bill, I think your argument is bogus. 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

 
The alternative to 
 
<?xml version="1.0" encoding="UTF-8"?> 
<doc> 
<SuperfluousContainer> 
<Fruit>Apple</Fruit> 
<Fruit>Orange</Fruit> 
<Fruit>Banana</Fruit> 
</SuperfluousContainer> 
</doc> 
 
is not, in real life, 
 
<?xml version="1.0" encoding="UTF-8"?> 
<doc> 
<Fruit>Apple</Fruit> 
<Fruit>Orange</Fruit> 
<Fruit>Banana</Fruit> 
</doc> 
 
but more probably 
 
<?xml version="1.0" encoding="UTF-8"?> 
<doc> 
<someelement>foo</somelement> 
<Fruit>Apple</Fruit> 
<anotherone>bar</anotherone> 
<Fruit>Orange</Fruit> 
<alongcontainerlikeaddress> 
              <a> 
                 <b> 
                    <c>foo</c> 
                 </b> 
               </a> 
         </alongcontainerlikeaddress> 
<Fruit>Banana</Fruit> 
</doc> 
 
Also, although I don't have the time or the inclination of 
checking this out, 
(I am on vacation after all) I believe your first stylesheet 
is way more 
complicated than needed for dealing with the container 
case, I believe it 
can be cut in half -- but again, I have not checked this, 
it's just based 
on previous experience with stylesheets. 
 
Jim Wilson:  I don't have a vote but I'll throw in an 
opinion. 
 
First of all, great discussion. I think Bill's analysis is right 
on.That said, I still like container elements (key word 
"like"). I feel that instance documents are slightly more 
intuitive and stylesheets are more intuitive (key word 
"feel"). Given that "what Jim likes" is not known to be a 
benefit to anyone but Jim, I certainly couldn't argue 
against reversing the rule. I hope you don't though. 
 
Bill Burcham:  Your counterexample, Eduardo, is 
double-bogus since in the first place your two docs carry 
different content, and in the second, your second doc 
won't validate under any scheme I've heard proposed in 
UBL, since the (repeated) Fruit elements have elements 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

stuck between 'em.  
 
Would this pair have made my example stronger: 
 
<?xml version="1.0" encoding="UTF-8"?> 
 <Groceries> 
<SuperfluousFruitContainer> 
<Fruit>Apple</Fruit> 
<Fruit>Orange</Fruit> 
<Fruit>Banana</Fruit> 
</SuperfluousFruitContainer> 
      <SuperfluousVegetableContainer> 
            <Vegetable>Celery</Vegetable> 
            <Vegetable>Lettuce</Vegetable> 
      </SuperfluousVegetableContainer> 
 </Groceries> 
 
<?xml version="1.0" encoding="UTF-8"?> 
 <Groceries> 
<Fruit>Apple</Fruit> 
<Fruit>Orange</Fruit> 
<Fruit>Banana</Fruit> 
      <Vegetable>Celery</Vegetable> 
      <Vegetable>Lettuce</Vegetable> 
 </Groceries> 
 
All my previous arguments hold equally for these two as 
well.  And you may be right -- that the first stylesheet 
could be cut in half.  And I suspect that if you found such 
a transformation, you could pretty much apply it to the 
second stylesheet and cut it in half too.  There just isn't 
much difference between the two approaches when it 
comes to XSLT. 
 
Chee-Kai Chin: Eduardo,  I really think your counter-
example is out of point to say the least. 
 
Bill's container illustated the context under which the 
container's proponent wishes to argue for having 
containers, ie to wrap those with cardinalities 1..n (and 
then forgetting to talk about 0..n again) with a TYPED 
container.  This is exactly what Bill tried to illustrate with 
<SuperfluousContainer>. 
 
Your counter-example illustrates exactly the kind of 
weakness latent within the containers as proposed by 
the 4 rules. In the light of having contextualization, a lot 
more such "holes within cheese" will get generated, 
leaving implementors taking their own interpretation to 
handle them.  The burden of handling those complex 
open issues, unfortunately, would not be suffered by the 
original proponents of these rules. 
 
[R 115] and [R 116] ought to be tarred, compressed and 
piped into /dev/null 
 
Eduardo Gutentag: Rather than continue this 
discussion now I propose that it be talked about in 
Montreal while people are speaking face to face, and if 
not resolved by then then I can devote some time after 
the first week of August. 
 
Tony Coates:  I may not correctly understand what you 
mean here, but if you mean that Arofan, Stephen, and 
myself forgot to mention the 0..n case, we did cover it, 



Rule 
Num
ber 

Rule  (these are not changed) Sent 
for 
email 
vote 

STATUSLC 
SC 

Comment (Look for rewrites and 
changes to rules) 

although perhaps the wording of the proposal obscures 
things a bit.  Just in case, I'll summarise the proposal.  
Suppose that the <Thing> element has cardinality M..N. 
Then 
 
1. If N <= 1 (i.e. <Thing> is 0..1 or 1..1), then <Thing> 
does not have a container.  
2. If N >= 2 (e.g. 0..2, 1..2, 2..2, 0..3, 1..3, ...) then 
<Thing> has a <ThingList> container.  
3. If M = 0, the cardinality of <Thing> inside <ThingList> 
is 1..N, and the cardinality of <ThingList> is 0..1.  
4. If M >= 1, the cardinality of <Thing> inside <ThingList> 
is M..N, and the cardinality of <ThingList> is 1..1. 
 
Chee-Kai: I mustMUST have been utterly confused with 
the 4-rules again, and didn't mean to imply that Arofan, 
Stephen nor yourself had missed out on things. 
 
These if-thens are much clearer, Tony.  They handle 
clearly case-by-case and illustrated with examples.  
These should've been in  the 4-rules in the first place. 
 
There was a part in the 4-rules that mentioned about 
containers being optional for 0..n.  I'm sorry for being 
sloppy here as I can't dig back to point out precisely 
which of the 4-rules said that, but just recall from 
memory. The part that's not clear is that when a 
container for 0..n is said to be "optional", it means (or at 
least one interpretation can mean) when it is time to 
instantiate, it is optionally up to the creator to instantiate 
the container or not. 
 
Something like your third if-then hasn't yet said, for an 
example case of Thing being 0..2, whether <ThingList> 
should be 0 or should be 1.  if-then-2 says <ThingList> 
should exist.  if-then-3 says <ThingList> can be 0 or 1. 
I'm sure the answer is clear in your minds, but the rules 
haven't made that undisputably clear. 
 
Do the if-thens apply in order? 
 
Anyway, your if-thens still help to clear up the more fuzzy 
areas.  Great works for the 3 of you to clarify them. 
 
And I'm still critical of even having Tops and Containers. 
 
7/28 – Rewritten. 

 
We need some basic context, extension, and restriction rules. 
 
 
Mavis’ table of decisions made from emails 
 
 

http://lists.oasis-open.org/archives/ubl-
ndrsc/200111/msg00068.html 

New terminology to be added to the document: 
Well-formedness checking: 
   Basic XML 1.0 adherence. 
 
DTD validation: 
    Adherence to an XML 1.0 DTD. 
 
Schema validation: 
    Adherence to an XSD schema. 



 
Schema processing: 
    Schema validation checking plus provision of default values and 
provision of new infoset properties. 
 
    Ad hoc schema processing: 
    Doing partial schema processing, but not with official schema 
validator software; e.g., reading through schema to get the default 
values out of it. 
 
    Instance constraint checking: 
    Additional validation checking of an instance, beyond what XSD makes 
available, that relies only on constraints describable in terms of the 
instance and not additional business knowledge; e.g., checking co-
occurrence constraints across elements and attributes. Such constraints 
might be able to be described in terms of Schematron. 
 
 Application-level validation: 
  Adherence to business requirements, such as valid account    numbers. 

http://lists.oasis-open.org/archives/ubl-
ndrsc/200111/msg00110.html 

Motion: "To use XSD as the source format for UBL business document 
types."  Moved by Arofan and seconded by Dale.  Approved by 
unanimous 
    consent. 
 

http://lists.oasis-open.org/archives/ubl-
ndrsc/200201/doc00005.doc 

We will not use anonymous types. We will use named types  in order to build a proper 
dictionary that can be referenced. Named types will be top level constructs of the XSD 
instance. All complex types will be defined together and all simple types will be defined 
together so that people will know where to look for things. (Approved) 

To create a usable data dictionary we will document the reusable 
objects expressed as XSD types in the schema, document the 
properties of each of these objects expressed as XSD locally 
declared elements, and document each unique occurrence of each 
element within each document type. Documentation of unique 
occurrences of each element within each document type will be 
sparse but sufficient. Best efforts will be made to auto-generate 
as much documentation as possible. This documentation will be 
produced by the UBL TC. (Approved) 

Type name shall consist of an optional qualifier followed by the object 
class, followed by the suffix “Type”. (Approved) 

Intermediate level tags (i.e. not top level and not leaf) mustMUST be comprised of the 
property term and may be preceded by an appropriate qualifier term as necessary to create 
semantic clarity at that level. The object class may be used as a qualifier. Mark Crawford has 
abstained and there were no further objections. (Approved) 

If elements share the same name they mustMUST share the same 
type. If they can’t share a type because they are different 
structurally they mustMUST have different names except in the 
following cases. The ones currently mandated are fields 
containing status codes, purpose codes, action codes. (Still under 
discussion; add to issues list.) 

The initial list of representation terms shall be taken from the 
approved list of ebXML core component representation terms. The 
NDR SC proposes to be the owner of the UBL representation term 
list and shall liaise with UN CEFACT with regard to any changes 
made. (Approved) 

The representation term mustMUST appear on leaf elements with the 
following qualifications:  

(a) ID mustMUST be used as the substitution tokenfor the 
representation term Identifier.  

(b) The representation term “Text”  will be considered the default 
representation term when a representation term does not appear. 



(Approved) 
UpperCamelCase mustMUST be used for element and type names 

and lowerCamelCase mustMUST be used for attribute names. 
(Approved) 

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200203/msg00028.html 

MOTION: In those cases where it seems beneficial to have two elements that have the same 
tag name but are bound to different types, as is currently the case with the BIE 
Order.Header.Details (tag name Header), it is permissible. 
 
Motion passes with Mark C. objecting. 
 

http://lists.oasis-open.org/archives/ubl-
ndrsc/200203/msg00028.html 

MOTION: Ratify the one-doctype- per-transmission principle as stated in the UBL Planning 
report and the modnamver paper. 
(Attending on 22 Mar '02): Eve, Fabrice, Mavis, Bill, Gunther, Phil, Paul, Arofan, Eduardo.)   
 
Motion passes unanimously. 
 

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200204/msg00069.html 

We formally accepted the proposal to use elements for everything, except for using attributes 
for supplementary components. 

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200205/msg00011.html 

Code lists 
 
    We voted on accepting the "namespaced type hybrid method".  Accepted 
    with one abstention from Jessica.  We agreed that the instance 
    extension method should still be described as a (failed) contender. 
 

http://lists.oasis-open.org/archives/ubl-
ndrsc/200205/msg00011.html 

Separate RT/CCT module 
There seems to be some interest in breaking down the UBL "core" 
       into multiple core-ish files, for both memory management reasons 
       (the C1 folks experimenting with Xerces report this) and for 
       reasons of reusing only the parts one wants (some verticals 
       seem to want to reuse the built-in ebXML CCT semantics in a 
       neat package).  There's a question about whether such a low-level 
       module needs its own namespace, but it needs one if you are 
       worried about memory management. 
 
       There's also a question about what we would call this module: Is 
       "CCT" incorrect, given our comments on CCTS?  "Leafy things" is 
       too informal. :-)  They are sort of "built-in UBL types"; would 
       this be a good name?  But other UBL types will be built in to UBL 
       too, by definition. 
 
       We agreed on "common [UBL] leaf types" (CLTs or CULTs!) for the 
       CCT-ish (basic) stuff, and "[UBL] common aggregate types" (CATs) 
       for the aggregate stuff. 
 

http://lists.oasis-open.org/archives/ubl-
ndrsc/200205/msg00018.html 

Modnamver 
Bill moved that we add a recommendation allowing two or more 
    functional areas to share definitions common between them but not 
    used elsewhere by creating and importing an additional RootSchema, 
    where the criterion for creation of this additional level of 
    namespace is that it not be used in a majority of the functional 
    areas. Motion PASSES unanimously.  (This means that we've 
    essentially accepted Option 4.) 
 

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200205/msg00033.html 

Code Lists 
We agreed that it's too circular and inconvenient to require 
    external code list modules to use our simple types for supplementary 
    components, so we agreed that instead they mustMUST use the attribute 
    names that we dictate in order for us to know that they intended the 
    CCTS semantics. 
 
    We didn't agree yet on whether to recommend XSD documentation 



    elements in external code list modules.  We will leave this point 
    open in the NDR document. 
 

http://lists.oasis-open.org/archives/ubl-
ndrsc/200207/msg00011.html 

Nested Supplementary Components 
We will definitely have attributes that apply to other 
      attributes.  The worst case is codes (other than Language.Code, 
      since the code list for that will be fixed) that are 
      supplementary to real BIEs. 
 
    - We believe that the names for these second-order attributes can 
      be constructed automatically by applying a qualifier consisting 
      of the name of the first-order attribute to which they apply. 
 
    - However, we think the definition of the relevant XSD types could 
      be tricky, because those additional attributes need to be specific 
      to particular attributes defined on particular complex types. 
 

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200208/msg00011.html 

Xsd:documentation 
 
we agreed that using xsd:documentation is most appropriate.  This doesn't preclude anyone 
from using our documentation fields for further processing, and leaves appinfo free for (e.g.) 
Schematron business rules. 
 

http://lists.oasis-open.org/archives/ubl-
ndrsc/200302/msg00013.html 

Our NDR document should be equally clear on which XSD features UBL schemas do and do 
not employ. 

http://lists.oasis-open.org/archives/ubl-
ndrsc/200302/msg00042.html 

 Rules For CCTs – 
1)      CCTs will be declared as elements 
2)      CCT Content Components will be conveyed as the value 
3)      CCT Supplementary Components will be conveyed as the attribute of the CCT 

element 
4)      If you use the default codeListVersionID, then you do not have to convey 

codeListVersionID.  If however you use a different codeListVersionID, then you 
mustMUST convey codeListVersionID. 

5)Any change to cardinality or length for any code for any CCT will only be allowed 
as derivations from the Ur Schema. 

5)6)Binary objects will not be carried as a value for the declared element, but will be 
referred to through the supplementary component attribute.  The element will 
be declared as empty. 

 
 The following principles underpinned by Bill's document on Modularity, 

Namespace and Versioning have been voted upon and agreed. 
These principles and the prose of this document v8 will provide the basis 
for the rules in the NDR document. 
1. UBL namespace names shall include version identifiers. 
2. The version identifier that is used in the namespace  name has two parts, 
a major number and a minor number. The major number is incremented whenever 
it contains any incompatible changes. The minor number is incremented with 
any other type of changes. 
3. UBL is composed of a number of namespaces each of which has its own 
namespace name and, possibly and in practice, its own version identifiers. 
There is no one to one correspondence between the various namespace versions 
that make up a UBL release. 
3. Once a namespsace and its associated namespace space name are published 
they shall not change. 
5. XSD import function will be used. In all cases a minor version imports 
the immediately preceding minor version of the same major release. 
 

http://lists.oasis-
open.org/archives/ubl-
ndrsc/200303/msg00047.html 

Code Lists 
PROPOSED RULE: 
Where a code list producer has not created a conforming code list schema 
module, the UBL library 
mustMUST bind the code property to the generic code type found in the CCT 
module. 
 
Accepted rule. 
 
Proposed RULE: 
For release of 1.0 of the Code List rules we will mandate a simpleType for 
the CodeContentType. We will examine in future versions of the Code Lists 



rules, guidelines for using XML for expressing hierarchy in code values. 
 
Accepted. 
 
Proposed Design RULE: 
The NDR SC agrees to remove the codename supplementary component from our 
recommendations for code markup . HOwver, we recommend 
that for codelist schema modules chosing to do so, they may provide code 
expansions and definitions in an annotation element inside each enumeration 
element 
wher any natural language information should be conveyed by means of 
xml:lang. 
 
Accepted 
 
Design RULE: 
The NDR SC agrees not to use XLINK for supplementary components of code tha 
t involve URIs but rather to use the XSD:anyURI and to name 
those attributes according to our usual naming rules. 
Agreed. 
 
 
 

http://lists.oasis-open.org/archives/ubl-
ndrsc/200303/msg00047.html 

Embedded Documentation 
Proposed Design Principle 
It is the intention of the NDR SC to use XHTML Basic as proposed in the NDR 
document for the purposes of documenting information other than CCTS that 
already has 
a structure. 
 
This has been voted on and agreed during this meeting which has quorum. 

  
 
 
 
Agenda Items for Montreal 
 
 
Containers 
 
 
Redefine 
 

I have heard this - from the London meeting right? I believe Eduardo is still planning on writing up the results of that and 
coming up with the "alternate implementation" which I don't think exists. Until we have a documented way of doing 
extensions/restrictions that works, I don't think you want to make any final determination on the use of redefine. 
 
I'm still waiting for the notes on the final argument and solution. The one I heard is that redefine doesn't create a new 
namespace, if that is the only reason/problem, there is a workaround for it. Not very pretty but a workaround. This area of 
extension/restriction is not very pretty/complete to begin with and I thin that baby has been thrown out with the bath water on 
this decision. 

 
 
List feature 


