
[image: image1.png]OASIS

Position Paper: Global versus Local

Proposal 01, 10 February 2003

Document identifier:

draft-stuhec-globVloc-01.doc

Location:

Author:

Gunther Stuhec <gunther.stuhec@sap.com>

Abstract:

This position paper outlines the use and definition of facets within the UBL library content.

Status:

This is V01 of the identifier position paper intended for consideration
 by the OASIS UBL Naming and Design Rules subcommittee and other interested parties.

If you are on the ubl-ndrsc@lists.oasis-open.org list for subcommittee members, send comments there. If you are not on that list, subscribe to the ubl-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright © 2002 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

41
Introduction

2
Real Examples
4
2.1
Inconsistencies of tag-names
4
2.1.1
Problem
4
2.1.2
Solution by using global declared elements
6
2.1.3
Solution by using local defined elements
6
2.2
Same sub-element in two or more aggregates with different characteristics
8
2.2.1
Problem
8
2.2.2
Solution by using global declared elements
9
2.2.3
Solution by using local defined elements
11
2.3
Synchronization of Types
12
2.3.1
Problem
12
2.3.2
Solution by using global declared elements
13
2.3.3
Solution by using local defined elements
15
2.4
Reusability in Interfaces and Implementations
16
2.4.1
Problem
16
2.4.2
Solution by using global declared elements
16
2.4.3
Solution by using local defined elements
18
3
Reusability
20
3.1
Reusability
20
3.2
Object Oriented Representation
20
3.2.1
Problem
20
3.2.2
Solution by using global declared elements
20
3.2.3
Solution by using local defined elements
20
Appendix A. Bibliography
21
Appendix B. Notes
22

Introduction

At October 16, 2002 the UBL NDRSC made the decision that they’re using global declared elements instead of local defined elements in our UBL schemas.

Since I have a reasonable perl-script for generating xml-schema output from the different kinds of excel spreadsheets, I'm testing the different possibilities for the representation of xml-schemas.

Therefore, for me it was very easily possbile to see the advantages and disadvantages of the declaration of global elements or local elements which are based on complex types. Additionally I can see this behaviour by using implementations (SAP or XML native databases) or by developing of interfaces by using diverse computer languages or scripts (JAVA, XSLT etc.).

By this level of knowledge, I have seen that the using of global declared elements do have some disadvantages, which might be k.o. criterias. The main problem of that is the global definition of tag names. This problem involves negatively the design time, the developing of highly reusable interfaces and/or implementations and the processing during the run time.

I would like to show these problems in the further chapters in much more detail.

1 Real Examples

1.1 Inconsistencies of tag-names

1.1.1 Problem

We can see some inconsistencies of tag-names in the global element called “BuyerParty”.

[image: image2.png]I

catBuyerPartyType
Fin

T —

3

catiBuyerContactType

Generated with XMLSpy Schema Editor @™ T "

The parent element has the tag name “BuyerParty”. Then, we have the child elements ID, AccountCode, PartyName, Address, PartyTaxScheme and BuyerContact. Why do we have sometime the object class term in the tag names and sometimes not? If we look into the spreadsheet, than we see that all child elements have the same object class term.

	BIE Dictionary Entry Name
	Object Class Qualifier
	Object Class
	Property Qualifier
	Property Term
	Representation Term

	Buyer_ Party. Details
	Buyer
	Party
	
	Details
	Details

	Buyer_ Party. Identification
	Buyer
	Party
	
	Identification
	Identifier

	Buyer_ Party. Account ID. Code
	Buyer
	Party
	
	Account ID
	Code

	Buyer_ Party. Party Name
	Buyer
	Party
	
	Party Name
	Party Name

	Buyer_ Party. Address
	Buyer
	Party
	
	Address
	Address

	Buyer_ Party. Party Tax Scheme
	Buyer
	Party
	
	Party Tax Scheme
	Party Tax Scheme

	Buyer_ Party. Buyer_ Contact
	Buyer
	Party
	Buyer
	Contact
	Contact

For an automatic generating system of schemas, it will be very hard to find out, which child-elements must has be a object class qualifier and which of the child-elements not. There does not existing any rule, which is defining the difference between the tag names with object class terms and without object class terms.

1.1.2 Solution by using global declared elements

For an automatic generating system will be easier, if exists some common rules. That means, if we’re using global declared elements, must the object class term existing in the tag-names of all child elements, too.

For example:

[image: image3.png]BuyerPartyType
Fpartyin

BuyerParty

Generated with XMLSpy Schema Editor @™ T "

The disadvantage
of that rule is, that we will get always long tag-names with redundancies. That means that the object class term always existing in the parent element and in all child elements, too. We’re generating to much and unnecessary information. In particular, if we’re generating the tag names with some very long object class term, like “TransportHandlingUnit” or “TransportEquipmentMeasurement”.

1.1.3 Solution by using local defined elements

We’re using the local definition of tag names, instead. Because there is a possibility, that all child elements based on some specific types, but the tag names of these child elements can be shortened by truncation of the object class term. For example:

[image: image4.png]Generated with XMLSpy Schema Editor anlspy

The equivalent xml schema is:

<xsd:complexType name="BuyerPartyType" id="UBL000089">
<xsd:sequence>

<xsd:element name="ID" type="cct:IdentifierType" id="UBL000090"/>

<xsd:element name="AccountCode" type="cct:CodeType" id="UBL000091" minOccurs="0"/>

<xsd:element name="Name" type="PartyNameType" id="UBL000092" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element name="Address" type="AddressType" id="UBL000093" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element name="TaxScheme" type="TaxSchemeType" id="UBL000094" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element name="BuyerContact" type="BuyerContactType" id="UBL000095" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

The advantage is, the child elements can be based always on different types but the tag names itself will be always the same. The tag names can be truncated automatically by one very easy rule:

If the child element representing the same object class, then the object class term must not be shown in the tag element.

This is redundancy free and the complete dictionary entry name can be completed by using for example an XPath navigation path:

/BuyerParty/ID (Buyer_ Party. Identification. Identifier

/BuyerParty/Name (Buyer_ Party. Name. Details

/BuyerParty/TaxScheme (Buyer_ Party. Tax_ Scheme. Details

1.2 Same sub-element in two or more aggregates with different characteristics

1.2.1 Problem

We can have two aggregates, for example BuyerParty and SellerParty and both have some same child elements, like ID or PartyName.

BuyerParty:

[image: image5.png]BuyerParty

catBuyerPartyType

| catpartytametype |

~O-ame |

Generated with XMLSpy Schema Editor @™ T "

SellerParty:

[image: image6.png][caseterpartytype

SellerParty

| catpartytametype

Generated with XMLSpy Schema Editor @™ T "

But what happens, if we
would like to have some specific characteristics for ID or PartyName within the Aggregation “BuyerParty”? For example, the PartyName should have a child-element, like AdditionalName and the ID should be restricted in the maximum length.

Like:

[image: image7.png]I

catBuyerPartyType

| catpartytametype

‘additionallame.

Generated with XMLSpy Schema Editor @™ T "

1.2.2 Solution by using global declared elements

If we’re doing the suggested expansion by using the same global declared element, than we would like to see the same expansion in SellerParty, too:

[image: image8.png]SellerParty

[caseterpartytype

lengt

| catpartytametype

‘additionallame.

Generated with XMLSpy Schema Editor P

To avoid this problem, we have to declare some further global elements. But how we will define the tag names itself?

Should the tag names of BuyerParty added by the object class terms and object qualifer? Like:

[image: image9.png] buyerpartyrype

| BuyerpartytameType

‘additionallame.

Generated with XMLSpy Schema Editor anlspy

Why should we do that? And why should SellerParty using the shorter tag names? How can we define a rule for that?

I guess, it is very hard to define a rule for this kind of extension, which says, which kind of child elements should have shorter tag names and which kind of tag names should have longer tag names. We would like to run into many conflicts by this.

If we’re using the global declared elements, it is useful, that all tag names are fully qualifed by always the complete dictionary entry name. This is only the one possibility to avoid the conflicts, as described above in an automatic way.

By this way, we will get very long tag-names, like:

BuyersCatalogueItemIdentificationItemMeasurement (35 Bytes)

SellersHandlingUnitDespatchLineDespatchedQuantity (49 Bytes)

ManufacturersHandlingUnitDespatchLineOrderLineID (48 Bytes)

ManufacturersTransportEquipmentRefrigerationStatusIndicator (59 Bytes)

But we’ve to think about it:

· Many of the applications (databases, interfaces, erp-systems, user-interfaces) can not handle directly with tag names, which are longer as 30 bytes. A mapping (additional processing step) into shorter tag names is necessary.

· Many business documents in the real life have over 10.000 positions. Long tag names would decrease the speed of using, processing and transferring, tremendously.

· Very long tag names usually are not human readable any more. A mapping into much more understandable tag names is necessary.

1.2.3 Solution by using local defined elements

All local defined child elements can have tag names, which always based on the dictionary entry name and shortened by the same truncation rules. Each child element can be base on different types. These types can be the common CCTs or the common CCs. If this type The specific characteristics like AdditionalName or length=”10” can be defined in this specific types. The types itself can be distinguished by fully qualified names, which can be the same as the dictionary entry name of each BIE.

Example:

[image: image10.png][PartytameType |

Generated with XMLSpy Schema Editor @™ T "

The xml schema for this type is:

<xsd:complexType name="BuyerPartyType" id="UBL000089">

<xsd:sequence>

<xsd:element name="ID" type="cct:IdentifierType" id="UBL000090">

<xsd:annotation>

<xsd:documentation>length="10"</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="AccountCode" type="cct:CodeType" id="UBL000091" minOccurs="0"/>

<xsd:element name="Name" type="PartyNameType" id="UBL000092" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element name="Address" type="AddressType" id="UBL000093" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element name="TaxScheme" type="TaxSchemeType" id="UBL000094" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element name="BuyerContact" type="BuyerContactType" id="UBL000095" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="BuyerPartyID">

<xsd:simpleContent>

<xsd:restriction base="cct:IdentifierType">

<xsd:length value="10"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<xsd:complexType name="BuyerPartyNameType" id="UBL000397">

<xsd:sequence>

<xsd:element ref="Name" id="UBL000398"/>

<xsd:element name="AdditionalName"/>

</xsd:sequence>

</xsd:complexType>

By this solution can be all element tag names in the shortest possible way. All elements can be based on different types. Therefore, the tag names do always have a common understanding and no confusion. All tag names might be short enough for further using in interfaces, databases, user interfaces etc. without mapping into shorter names.

1.3 Synchronization of Types

1.3.1 Problem

All global declared elements of aggregates based currently on a type with the same name. For two or more different same aggregates with distinguished names exist two ore more equivalent types. Like “BuyerContact” and “ShippingContact”, both aggregates based on the specific types “BuyerContactType” and “ShippingContactType”. But both types have exactly the same structure.

[image: image11.wmf]BuyerContact

ShippingContact

BuyerContactType

ShippingContactType

BuyerContact

ShippingContact

BuyerContactType

ShippingContactType

Schema of BuyerContact and BuyerContactType:

<xsd:element name="BuyerContact" type="BuyerContactType"/>

<xsd:complexType name="BuyerContactType" id="UBL000078">

<xsd:sequence>

<xsd:element ref="ID"/>

<xsd:element ref="Name" minOccurs="0"/>

<xsd:element ref="Phone" minOccurs="0"/>

<xsd:element ref="Fax" minOccurs="0"/>

<xsd:element ref="E-Mail" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

Schema of ShippingContact and ShippingContactType:

<xsd:element name="ShippingContact" type="ShippingContactType"/>

<xsd:complexType name="ShippingContactType" id="UBL000595">

<xsd:sequence>

<xsd:element ref="ID"/>

<xsd:element ref="Name" minOccurs="0"/>

<xsd:element ref="Phone" minOccurs="0"/>

<xsd:element ref="Fax" minOccurs="0"/>

<xsd:element ref="E-Mail" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

1.3.2 Solution by using global declared elements

If we would like to make all elements unique in an automatic manner (see chapter 2.1 and 2.2), all global declared elements must be based on specific types. But all child elements within these types must have the object class term in the element tag name.
 There is no other possibility to differentiate each child element which has some specific characteristics (facets of leaf-elements or substructure of aggregates) in a unique and automatic way.

You will see this in the following example. Some characteristics of the same BBIEs within the two aggregates “BuyerContact” and “SellerContact” are different. Therefore it is necessary to declare a global element for every BBIE
(BuyerContactID, BuyerContactName, ShippingContactID and ShippingContactName) which have some different characteristics. And why should we do that for BBIEs with different characteristics and not for the BBIEs which have the same characteristics? This would become some inconsistencies and would be not handable by parsers for defining interfaces very efficiently.

Example:

Schema of BuyerContact and BuyerContactType:

<xsd:element name="BuyerContact" type="BuyerContactType"/>

<xsd:complexType name="BuyerContactType" id="UBL000078">

<xsd:sequence>

<xsd:element ref="BuyerContactID"/>

<xsd:element ref="BuyerContactName" minOccurs="0"/>

<xsd:element ref="BuyerContactPhone" minOccurs="0"/>

<xsd:element ref="BuyerContactFax" minOccurs="0"/>

<xsd:element ref="BuyerContactE-Mail" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

Schema of ShippingContact and ShippingContactType:

<xsd:element name="ShippingContact" type="ShippingContactType"/>

<xsd:complexType name="ShippingContactType" id="UBL000595">

<xsd:sequence>

<xsd:element ref="ShippingContactID"/>

<xsd:element ref="ShippingContactIName" minOccurs="0"/>

<xsd:element ref="ShippingContactIPhone" minOccurs="0"/>

<xsd:element ref="ShippingContactIFax" minOccurs="0"/>

<xsd:element ref="ShippingContactIE-Mail" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

Schema of globale declared elements and the belonged types:

<xsd:element name="TimezoneOffsetMeasure" type="cct:TextType"/>

<xsd:element name="ShippingContactID"/>

<xsd:complexType name="ShippingContactIDType">

<xsd:simpleContent>

<xsd:restriction base="cct:IdentifierType">

<xsd:length value="13"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<xsd:element name="BuyerContactID"/>

<xsd:complexType name="BuyerContactIDType">

<xsd:simpleContent>

<xsd:restriction base="cct:IdentifierType">

<xsd:length value="30"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<xsd:element name="ShippingContactName"/>

<xsd:complexType name="ShippingContactNameType">

<xsd:simpleContent>

<xsd:restriction base="cct:NameType">

<xsd:maxLength value="40"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<xsd:element name="BuyerContactName"/>

<xsd:complexType name="BuyerContactNameType">

<xsd:simpleContent>

<xsd:restriction base="cct:NameType">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

1.3.3 Solution by using local defined elements

Better is this, if we solve this problem by using local defined elements. Because all element names ar readable enough, short as possible and truncated automatically by some fixed rules. The most important thing is that all elements within the aggregation with the same object class term do have the same tag names. This helps for a common understanding and makes the implementation and parsing of aggregates more automatizeable. All elements refer to the specific types. The types can either be a very generic CC/CCT or can be a BIE with some specific (restricted) characteristics.

Example, the declaration of BuyerContactType and SellerContactType:

<xsd:complexType name="BuyerContactType" id="UBL000078">

<xsd:sequence>

<xsd:element name="ID" type="cat:BuyerContactIDType" id="UBL000079"/>

<xsd:element name="Name" type="cat:BuyerContactNameType"

id="UBL000080" minOccurs="0"/>

<xsd:element name="Phone" type="cct:TextType" id="UBL000081"

minOccurs="0"/>

<xsd:element name="Fax" type="cct:TextType" id="UBL000082"

minOccurs="0"/>

<xsd:element name="E-Mail" type="cct:TextType" id="UBL000083"

minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ShippingContactType" id="UBL000595">

<xsd:sequence>

<xsd:element name="ID" type="cat:ShippingContactIDType"

id="UBL000596"/>

<xsd:element name="Name" type="cat:ShippingContactNameType"

id="UBL000597" minOccurs="0"/>

<xsd:element name="Phone" type="cct:TextType" id="UBL000598"

 minOccurs="0"/>

<xsd:element name="Fax" type="cct:TextType" id="UBL000599"

 minOccurs="0"/>

<xsd:element name="E-Mail" type="cct:TextType" id="UBL000600"

 minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

The BBIEs (ID and Name) based on the types which have some restricted characteristics:

<xsd:complexType name="BuyerContactIDType">

<xsd:simpleContent>

<xsd:restriction base="cct:IdentifierType">

<xsd:length value="30"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<xsd:complexType name="BuyerContactNameType" id="UBL000397">

<xsd:simpleContent>

<xsd:restriction base="cct:NameType">

<xsd:length value="13"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<xsd:complexType name="ShippingContactIDType">

<xsd:simpleContent>

<xsd:restriction base="cct:IdentifierType">

<xsd:length value="13"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<xsd:complexType name="ShippingContactNameType">

<xsd:simpleContent>

<xsd:restriction base="cct:NameType">

<xsd:maxLength value="40"/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

All another BBIEs (child elements) based on the standard CCT, because for these BBIEs is no restriction necessary.

1.4 Reusability in Interfaces and Implementations

1.4.1 Problem

One of the biggest benefits of XML is the development of very efficient interfaces and applications with a high reusability. But this must be based on very efficient XML schemas as well as XML instances. Otherwise, you will have the same effort as without XML.

The most of interfaces (for databases, userinterfaces, to applications etc.) using the tag names of XML structures for defining variables or database tables, normally. It should be the possibility that we can reuse all BIEs and CCs for the different development requirements, too. And this will be possible, if we have always a common understanding or processing of all BIEs without any additional mappings or control procedures. This helps us, to develop applications in a very fast and cheap way.

If exists inconsistencies in tag names especially, you will loose these advantages in developing, rapidedly.

1.4.2 Solution by using global declared elements

Global delared elements do have always inconsistencies in tag names. Because all tag names itself must be unique and if you have the same BIE with two different characteristics, you have to define two different elements with different tag names. By this, you must query in the program every tag name itself and this makes the programming very inefficient.

For example, you have the following instance with global declared elements:

< BusinessDocument>

< BuyerContact>

< BuyerContactID>000000000000000000000000120321</cat:BuyerContactID>

< BuyerContactName>Hugo Herbert</cat:BuyerContactName>

< BuyerContactPhone>+49 54639 4334</cat:BuyerContactPhone>

< BuyerContactFax>+49 33853 3843</cat:BuyerContactFax>

< BuyerContactE-Mail>hugo.herbert@ubl.org</cat:BuyerContactE-Mail>

</BuyerContact>

<ShippingContact>

<ShippingContactID>0000000134543</cat:ShippingContactID>

<ShippingContactName>Berta Bertram</cat:ShippingContactName>

<ShippingContactPhone>+1 43543 43453</cat:ShippingContactPhone>

<ShippingContactFax>+1 35433 4343</cat:ShippingContactFax>

<ShippingContactE-Mail>bert.bertram@ccts.org</cat:ShippingContactE-Mail>

</ShippingContact>

</BusinessDocument>
And you would like to express the information in the following format:

Buyer:

ID: 000000000000000000000000120321

Name: Hugo Herbert
Phone: +49 54639 4334
Fax: +49 33853 3843
E-Mail: hugo.herbert@ubl.org
Shipper:

ID: 0000000134543

Name: Berta Bertram
Phone: +1 43543 43453

Fax: +1 35433 4343
E-Mail: bert.bertram@ccts.org

There is a very inefficient procedure necessary, because you have to parse every tag name separately and you have to generate another output tag information, because the global declared elements are too long and not understandable in a common way.

The following perl script shows the problematic in more detail:

use XML::SimpleObject;

my $parser = new XML::Parser (ErrorContext => 2, Style => "Tree");

my $xmlobj = new XML::SimpleObject ($parser->parse($XML));

print "Buyer: \n";

process_buyer_contact ($xmlobj->child("BusinessDocument")->children("BuyerContact"))

print "Shipper: \n";

process_shipping_contact ($xmlobj->child("BusinessDocument")->children("ShippingContact"))

process_buyer_contact {

my $contact;

printf("ID: $s\n", $element->child("BuyerContactID")->value);

printf("Name: $s\n", $element->child("BuyerContactName")->value);

printf("Phone: $s\n", $element->child("BuyerContactPhone")->value);

printf("Fax: $s\n", $element->child("BuyerContactFax")->value);

printf("E-Mail: $s\n", $element->child("BuyerContactE-Mail")->value);

}

process_shipping_contact {

my $contact;

printf("ID: $s\n", $element->child("ShippingContactID")->value);

printf("Name: $s\n", $element->child("ShippingContactName")->value);

printf("Phone: $s\n", $element->child("ShippingContactPhone")->value);

printf("Fax: $s\n", $element->child("ShippingContactFax")->value);

printf("E-Mail: $s\n", $element->child("ShippingContactE-Mail")->value);

}

1.4.3 Solution by using local defined elements

If the tags of child elements within same aggregates (based on same ACCs) have always the same names, it will be much easier and efficient to develop interfaces for processing the instances.

The following instance based on local defined elements. The aggregates BuyerContact and SellerContact based on the ACC (ContactDetailsType). By this, all equivalent child elements have the same tag names.

<BusinessDocument>

<BuyerContact>

<ID>000000000000000000000000120321</ID>

<Name>Hugo Herbert </Name>

<Phone>+49 54639 4334</Phone>

<Fax>+49 33853 3843</Fax>

<E-Mail>hugo.herbert@ubl.org</E-Mail>

</BuyerContact>

<ShippingContact>

<ID>0000000134543</ID>

<Name>Berta Bertram</Name>

<Phone>+1 43543 43453</Phone>

<Fax>+1 35433 4343</Fax>

<E-Mail>bert.bertram@ccts.org</E-Mail>

</ShippingContact>

</BusinessDocument>
Therefore, you can develop some reusable subroutines (function) for processing the structure for the ACC “ContactDetails” and you can use this functions every time if you have to process some ABIEs which are based on “ContactDetails”. Further, you have a higher reusability of the tag names. You can use this tag names for the understandable representation, without any mapping.

The following perl script shows the reusability of same structures and common tag names:

use XML::SimpleObject;

my $parser = new XML::Parser (ErrorContext => 2, Style => "Tree");

my $xmlobj = new XML::SimpleObject ($parser->parse($XML));

print "Buyer: \n";

process_contact ($xmlobj->child("BusinessDocument")->children("BuyerContact"))

print "Shipper: \n";

process_contact ($xmlobj->child("BusinessDocument")->children("ShippingContact"))

process_contact {

my $contact;

foreach my $element ($contact->child) {

printf("%s: $s\n", $element, $element->value);

}

}

For processing “BuyerContact” and “ShippingContact” is only one function necessary. And you can use tag names directly for showing in the output. Therefore, you will get the same output, but much more efficiently.

Buyer:

ID: 000000000000000000000000120321

Name: Hugo Herbert
Phone: +49 54639 4334
Fax: +49 33853 3843
E-Mail: hugo.herbert@ubl.org
Shipper:

ID: 0000000134543

Name: Berta Bertram
Phone: +1 43543 43453

Fax: +1 35433 4343
E-Mail: bert.bertram@ccts.org

2 Reusability

XML offers us the possibility to have a reusability in two different ways:

Structure and Elements

Programming and Interfaces

A business document language will be accepted worldwide, if we as developer of this language recognize both ways of reusability. Therefore it is a must for UBL to consider both areas. Otherwise, UBL will be ignored on the one hand side from the designers of business documents and on the other hand side from the developers of interfaces and applications. And this can not be happen for a standard, which will be the only one business language over the world at one time.

2.1 Reusability of Structures and Elements

A structure and elements should be so often used as possible. Global declared element offers for this reason some advantages more. All elements based on a fixed tag name and on a fixed structure. Therefore, you can refer to these elements only.
 There is no wrong definition and no wrong interpretation. But this will be only effective, if you would like to define business documents.

The problem of global declared elements is that all elements are declared in the same hierarchy. This leads to inconsistencies in defining of the tag names. Especially, if you have some child elements which based on same BCCs or ACCs but it has different characteristics or sub-structures. This inconsistencies influence the modeling and programming, seriously.

Therefore it will be better, if the name of same child-elements and in different aggregates always the same. And this is only reachable by using local defined elements. The tag names of these elements will be consistent, too, if the tag names always be based on the dictionary entry name and if these names always be shortened in the same manner (UBL tag name truncation rule).

2.2 Programming and Interfaces

The definition of business documents will be mostly done by modeling-tools (like UML class diagrams) in future. Because these modeling tools considers the following parts:

No knowledge in XML schema definition is necessary

Automatic generation of XML schemas

Automatic generation of different types of interfaces.

Especially the smallest companies do not have any knowledge about complex XML schemas. Therefore a couple of software vendors developing on graphical modeling and business document interaction tools, which give the small companies the great possibility to participate on e-Collaboration. The users of business documents will be not confronted with XML itself, in future. This will be the only one internal physical format.

Therefore, it will be very narrow interfaces between modeling, xml and developing of interfaces, in future (see following picture).

[image: image12.emf]Modelling

Tool

Interfaces for

Internal Processing

User Representation

Data Bases

Mapping

XML Schema

Generation of class

diagrams

Automatic generation

of Intefaces

Valid XML Instances

for parsing

(or generation of

interfaces)

XML Instances for

validation

Generation of XML

Schemas

Generation of class

diagrams

This is only possible, if all names and structure will be always consistent and have always the same meaning. This structures can be used in many times without any big effort.

For example:

	Object Oriented Modelling by Class Diagrams

	[image: image13.wmf]BuyerContact

-ID : BuyerContactIdentifierType = length="30"

-Name : BuyerContactNameType = length="13"

-Phone : cct:PhoneType

-Fax : cct:TextType

-E-Mail : cct:TextType

«type»

ContactDetails

-ID : cct:IdentifierType

-Name : cct:NameType

-Phone : cct:TextType

-Fax : cct:TextType

-E-Mail : cct:TextType

ShippingContact

-ID : ShippingContactIdentifierType = length="13"

-Name : ShippingContactNameType = maxLen="13"

-Phone : cct:PhoneType

-Fax : cct:TextType

-E-Mail : cct:TextType

	Generating user interfaces

	[image: image14.wmf]Buyer Contact

ID

Name

Phone

Fax

E-Mail

000000000000000000000000120321

Hugo Herbert

+49 54639 4334

+49 33853 3843

hugo.herbert@ubl.org

	[image: image15.wmf]Shipping Contact

ID

Name

Phone

Fax

E-Mail

0000000134543

Berta Bertram

+1 43543 43453

+1 35433 4343

bert.bertram@ccts.org

	Generating of database tables

	[image: image16.wmf]000000000000000000000000120321

0000000134543

Hugo Herbert

+49 54639 4334

+49 33853 3843

hugo.herbert@ubl.org

+1 43543 43453

+1 35433 4343

bert.bertram@ccts.org

Shipping

E-Mail

Fax

Phone

Name

ID

Buyer

Berta Bertram

	Generating ABAP-Objects for SAP development environment

	[image: image17.png]BuyerContentDetails

Generafion Stucture | Documentation | Warnings
Proxy Objects [Type
< @B Siructure BUYER_CONTENT_DETAILS
a D CHAR (30)
a NAME CHAR (19)
a PHONE STRING
a Fax STRING

STRING

[T—]

	[image: image18.png]ShippingContentDetails

Properlies | Generafion ~ Structure | Documentation | Wanings
Proxy Objects [Type
< @B Siructure SHIPPING_CONTENT_DETALS
a D CHAR (19)
a NAME CHAR (40)
a PHONE STRING
a FAx STRING
a EMAL STRING

[T—]

	Storing into a repository for providing and mapping to another dialects

	[image: image19.png]DataType View Tools window %) | |3 @ H & @\
Display Data Tyne
Name BuyerCantentDetails Namespace xipm Status
Description
ype Definton | X80 Defton |
B ®E2%a
Siructure [category [Ty |oceurence |Detalls | Description
|~ BuyerContentDetails |Complex Type
[Element hdioken |1 length="30
Name Element hisdistring (0.1 fengin
Phone Element hisdistring (0.1
Fax Element hisdistring (0.1
EMail Element isdistring (0.1

| @ Buyercontentetails

	[image: image20.png]View Tools window %/ | [0 1@ @ E]
Display Bt yve
Name ShippingCantentDetails Namespace xipm Status
Description
Type Deniton | X80 Defintion |
BERER @ 2% a
Stucture Teem v [ommes [aeek 3w
' _ShippingContentDetails |Complex Type.
D Element adioken 1 fength=
Name Element ssdistring (0.1 maxe
Phone Element wadsting (0.1
Fax Element wadsting (0.1
EMail Element wedisting (0.1

| @ BuerContenDetall | @ StippingCortertoetals

	Developing and/or generating interface applications

	use XML::SimpleObject;

my $parser = new XML::Parser (ErrorContext => 2, Style => "Tree");

my $xmlobj = new XML::SimpleObject ($parser->parse($XML));

print "Buyer: \n";

process_contact ($xmlobj->child("BusinessDocument")->children("BuyerContact"))

print "Shipper: \n";

process_contact ($xmlobj->child("BusinessDocument")->children("ShippingContact"))

process_contact {

my $contact;

foreach my $element ($contact->child) {

printf("%s: $s\n", $element, $element->value);

}

}

	Developing and/or generating XSLT-Scripts

	<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE xsl:stylesheet [

<!ENTITY nbsp " ">

]>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:fo="http://www.w3.org/1999/XSL/Format">

<xsl:output method="html" indent="yes" encoding="UTF-8"/>

<xsl:template match="/">

<html>

<head>

<title>Contacts</title>

<link rel="stylesheet" type="text/css" href="002006825000000584722001E.css"></link>

</head>

<body>

<table>

<tr>

<xsl:for-each select="BusinessDocument">

<xsl:apply-templates select="./*"/>

</xsl:for-each>

</tr>

</table>

</body>

</html>

</xsl:template>

<xsl:template match="*">

<td>

<h2>

<xsl:value-of select="name()"/>

</h2>

<table border="1" cellspacing="0" cellpadding="3">

<tr>

<th scope="col">Key</th>

<th scope="col">Value</th>

</tr>

<xsl:for-each select="./*">

<tr>

<xsl:attribute name="class">

<xsl:choose>

<xsl:when test="position() mod 2 = 0">

<xsl:value-of select="'darkrow'"/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="'lightrow'"/>

</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

<td>

<xsl:value-of select="name()"/>

</td>

<td align="right">

<xsl:value-of select="."/>

</td>

</tr>

</xsl:for-each>

</table>

</td>

</xsl:template>
</xsl:stylesheet>

	Generating HTML-Output

	[image: image21.png]2 Contacts - Microsoft Internet Explorer provided by SAPIT -1o) x|

Fle Edt View Favortes Took Help

EBack - > - @ [2) 3| @earch (aravories @veda B3| B B 0 -)
‘ddress [&] C:\Users|My Documents|UBL|GlobalirsLocalisL Output.him =] @oo |unks
Google - =] Govebsuhe @i e | P »

BuyerGontact ShippingGontact

o [oooonoooonononaonononaonizozzt | 10 0000000134543

[ioms | o et | [Name | setasetan
[Prone]| 54639 1354 [Phone|__+1 43543 43953
x| s sssa | [rax | nissa e
[emat | g erbert @i or £l [t bertran@ectsorg

NI

@oe [[

	Defining complex Types within XML Schemas

	[image: image22.png]Generated with XMLSpy Schema Editor @™ T "

	[image: image23.png]ShippingContactiype 3

Generated with XMLSpy Schema Editor @™ T "

All examples above base on the same schema structure of the ACC “ContactDetails”.
 It would be always used for “BuyerContactDetails” and “ShippingContactDetails” without additional mappings. Only some applications (ABAP-Objects and database tables) need the restrictions of the length of the BIEs ID and name. Therefore it is necessary to define some additional complex types “BuyerContactIdentifierType”, “BuyerContactNameType”, “ShippingContactIdentifierType” and “ShippingContactNameType” with this restricitions. Because, this restrictions would be useful for the validation of XML instances and it is necessary for the automatic generation of ABAP Objects or database tables..

3 Recommedation

A consistency of tag names of the same or similar aggregations is necessary to enables a reusability of BIEs in applications, programs and interfaces, too. The consistency is not reachable, if we’re using global declared elements and we would like to have very short tag names itself. Many elements would get completely different tag names itself, although if they would be the same BBIE or ASBIE of different ABIEs, which based on the same ACC, but in different contexts. In particular is a consistency not reachable, if we have hunderts of elements in one namespace and on the same hierarchy.

If the consistency and uniformity of tag names is not possible, the efficient reusability in developing of programs/interfaces and automatic generating would be decreasing enormously.

Therefore, would I highly recommended that we’re using local defined elements instead of global declared elements. Because this elements can be truncated always in the same manner and you have in all ABIEs which are based on one ACC the same short, human and technical readable tag names.

Appendix A. Bibliography

Appendix B. Notes

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

�PAGE \# "'Page: '#'�'" ��I have added comments to this document which question some of the premises underlying the position in this paper and –surprisingly to me! – propose a compromise solution. –Eve Maler, 12 March 2003

�PAGE \# "'Page: '#'�'" ��All the properties of an object class have the same object class term by definition. However, if the object class term (or qualifier+term) is supposed to appear in the ultimate UBL name, then the modelers are supposed to qualify the property term in that case. This is what our naming rules have said for a long time: Elide the object class term from the UBL name of a property completely and use property qualifiers as necessary in order to ensure that object class terms will appear in UBL names if desired. (NDR draft 21, R16 and following commentary)

By the way, I believe that the model has been slightly incorrectly filled out given these rules; it should not have “Party Name” appear as a property term, but rather “Party” should be the propery qualifier. Likewise for Party Tax Scheme.

In any case, the appearance of the word “Party” is designed to be derived by the perl script from the property columns, not the object class columns, and so there is no need to assume that the object class term needs to uniformly appear as a solution to the lack of a naming algorithm.

It’s also argued in this paper that retaining the object class term everywhere solves the problem of inconsistency of UBL names. This type of inconsistency might appear (albeit more infrequently) with local names as well as with global names, whenever additional clarification is sought by the modelers. In fairness it’s certainly true that a global declaration scheme forces qualification of more UBL names. However, the inconsistencies caused by this have to be weighed against the benefits of being able to (a) do non-type-aware processing because every element name is unique with respect to its type and (b) reuse UBL Library elements in the building of new document types through <element ref=”ubl:elemname”>. More on this below.

�PAGE \# "'Page: '#'�'" ��If there are any redundancies in the current UBL Library that do not add anything of value, the model can and should be normalized to remove these redundancies. (In a quick check I couldn’t find any, but some may exist.) But PartyName has a complex structure, and – for example – the Name element inside ShippingContact maps to the Name.Type CCT, so I find usefulness in the fact that I can do processing on //PartyName and //ShippingContact/Name separately. It wouldn’t have helped me at all for them both to be called Name because their types are radically different. This seeming “inconsistency” and PartyName’s “long tag name” turn out to be useful for revealing something special about each element.

�PAGE \# "'Page: '#'�'" ��This XPath could be consistently used if a local declaration scheme is chosen, it’s true. But in the cases where properties of different object classes are structurally identical, this rule could be used at least some of the time. For example, all of the following properties are mapped to the Name.Type CCT but have the same UBL name (provided as BIE name:UBL name):

Accounts_Contact.Name:Name

Buyer_Contact.Name:Name

Contact.Name:NameName (I think there’s a bug here – the UBL name here should be “Name”!)

FI Branch.Name:Name

Etc.

They can all be accessed in a non-type-aware manner with an XPath like //objectclass/Name if necessary. But PartyName has complex structure and would likely not be processed in the same manner as these, so it’s not a burden to require a different XPath for it. On the other hand, HouseName, while it is mapped to Name.Type just like the others in the list above, usefully has a property qualifier because it would seem odd to have HouseNumber but not HouseName; without the qualifier, you’d be misled into thinking that it was the name of the address. So even with local elements, you’d still want HouseName.

�PAGE \# "'Page: '#'�'" ��Small question: Who is “we” here? Customizers may have different means at their disposal than the original UBL Library modelers, given the ability to do derivation directly off of the XSD.

�PAGE \# "'Page: '#'�'" ��If this inconsistency literally causes problems in the implementation of systems that process or produce UBL documents, then this argument has some weight. But there seems also to be an underlying aesthetic argument, which I don’t really agree with. “False consistency is the hobgoblin of little minds.” If there is semantic variation (or structural variation, which correlates somewhat), then perhaps it is right to have naming variation. It’s true that the global declaration scheme forces naming variation every time you have structural variation and this may not correlate perfectly with your desired semantic variation; in fact, the big exception is IDs. More on this below.

�PAGE \# "'Page: '#'�'" ��You will only get UBL names this long if:

All object class, property, and representation term qualifiers are filled in rather than left blank

The object qualifier+class is not elided (which is against our naming rules)

No other folding needs to take place

�PAGE \# "'Page: '#'�'" ��However, I believe non-type-aware processing will have a very difficult time of it unless xsi:type is used in the instance, which is just another way of adding name length and naming variation. I’m willing to admit that I’m wrong about the prevalence of non-type-aware processing vs. type-aware processing, but until we see XPath V2.0 and XML Query in widespread use, and maybe not even then, I’m extremely wary of optimizing for type-aware processing because it seems to compromise some of our guiding principles about SMEs and leveraging XML software.

�PAGE \# "'Page: '#'�'" ��As an aside, if we currently do have multiple elements that have literally identical structure, I’m wondering why we do have multiple object classes (complex types) for them. The original idea was to map multiple properties to the same object class as necessary, but I believe the spreadsheet no longer has a way for us to accomplish this (it used to, when we still had the “Type” column distinct from the Representation Term column). I don’t have time to write up my ideas on this now, but would be happy to describe this further.

�PAGE \# "'Page: '#'�'" ��This is a false assumption, as I hope I showed above.

�PAGE \# "'Page: '#'�'" ��I believe that the process of modeling would result in the necessary differentiation. I grant that the use of a global declaration scheme imposes some constraints on modeling that would not otherwise have existed; there would need to be a review/feedback loop whenever a property is added to an object class, to change the situation if the UBL name of the property (along with all other identical UBL names of other properties elsewhere in the model) and the property’s RT have a one-to-many relationship. I can go into detail about the types of changes typically needed, but am running out of time to write up these notes, so will defer for now.

�PAGE \# "'Page: '#'�'" ��As I’ve already stated, I don’t believe this assumption to be accurate. If every property has characteristics that distinguish it from its counterpart in the other object class, then yes, you’d need the qualification and the unique type. But this is probably not the case. However, I do agree that you need distinguished object classes every time there’s even one property that has unique characteristics. Depending on your point of view, this is either a bug or a feature.

It seems that IDs are a very common source of distinguishing characteristics of properties because they often have special structure inside them, and we can take advantage of validating that structure by creating simple types that are specific to that kind of ID. (This is somewhat the same situation as we have with codes, only more pervasive because IDs tend to be on everything.) Even if all my other arguments about the benefits of global elements are irrefutable (, we might want to consider a mixed-use scenario where ID elements are locally declared (though still qualified, for instance consistency) so they can all be called “ID”. If code elements are in the same boat, we could consider an exception for them as well.

�PAGE \# "'Page: '#'�'" ��At least as stated here, this is an argument that I don’t generally agree with. In the general case, I don’t see the efficiencies of using the same name for things that are really semantically and structurally different. (In the case of IDs, perhaps even if they are structurally different they might be semantically similar enough to be handled by the same code a lot of the time.)

�PAGE \# "'Page: '#'�'" ��I certainly agree with this paragraph, and will also point out that the main reusability use case that we discussed in October 2002, which led to our changing our decision from local back to global, was that customizers wishing to create new document types by mixing and matching UBL Library elements would have an easier time if they could reuse the elements, not just the types. If you want “the UBL Address element” for your new document type, you couldn’t do it with local elements. You would have to either map a UBL AddressType type to your own address element, with the address subelements in your document then coming from UBL, or map some UBL type containing a UBL Address element to a super-element of your own, with the address element itself coming from UBL but with a lot of other content-model baggage coming along for the ride.

�PAGE \# "'Page: '#'�'" ��I have some questions about this example; I’m not sure exactly what you’re trying to show here. Are you trying to say that the upper type in both cases would be the identical ContactType, but the inner local elements would be mapped to different types? I don’t think this is possible in XSD, so you’d still need two upper complex types in order to reflect the mappings of the inner elements to different types.

PAGE
30

_1107692759.vsd
Modelling
Tool�

Interfaces for
Internal Processing
User Representation
Data Bases
Mapping�

XML Schema�

Generation of class diagrams�

Automatic generation of Intefaces�

Valid XML Instances for parsing
(or generation of interfaces)�

XML Instances for validation�

Generation of XML Schemas�

Generation of class diagrams�

