

UBL Guidelines for Customization

v 0.1
30 January 2008

31.
Introduction

32.
When to Customize

32.1.
Conformant or Compatible

32.1.1.
UBL Conformance

32.1.2.
UBL Compatibility

43.
Approaches to Customization

43.1.
Designing for Conformance

43.1.1.
Subsets of the document model

53.1.2.
Constraints on document content

53.2.
Designing For Compatibility

53.2.1.
Reuse of UBL Objects

63.2.2.
Extension of UBL Model

73.2.3.
Use UBL principles for new BIEs

83.2.4.
The Customization Ripple Effect

94.
Specification (Placeholder)

94.1.
XML Schema Extension/Restriction

94.2.
Subset Schema

94.3.
UBLExtension Element

94.4.
XPath

105.
Validation (Placeholder)

116.
UBL Systems (Placeholder)

116.1.
Producer Systems

116.2.
Consumer Systems

1. Introduction

The OASIS Universal Business Language (UBL) Technical Committee (TC) has produced a vocabulary that, for many user communities, can be used ‘as is’. However, the TC also recognizes that some user communities have produced valid use cases highlighting the need for customization. With this in mind, the UBL TC has produced these customization guidelines. The target audience for these guidelines are the communities of users whose needs are not met by the UBL off-the-shelf solution.
To assist with the scoping of this document, let us begin with some definitions:

· Customization: To alter something in order to better fit actual requirements.

· UBL Customization: Describing XML instances, or XML-based applications acting on those instances, that are somehow based on or derived from the UBL 2.0 specification.

The goal of customization is to maximize interoperability so that all parties understand the meaning of information in the documents being exchanged.
2. When to Customize
For communities who may require customization, the determining factors governing when to customize may be business-driven and/or technically–driven. The decision should driven by real world needs balanced against perceived economic benefits.
2.1. Conformant or Compatible

Once the need to customize UBL has been determined, designers must decide whether the result should be UBL conformant or UBL compatible. Although the UBL TC will not be involved in determining whether customizations are conformant, compatible or otherwise, we supply these definitions as a point of reference for those who might.

2.1.1. UBL Conformance
UBL conformance at the instance and schema level means there are no constraint violations when validating the instance against a published UBL schema. A UBL conformant instance is an instance that validates against a published UBL document schema. A UBL conformant schema is a schema that will only validate UBL conformant instances.
2.1.2. UBL Compatibility

UBL compatibility means to be consistent with the principles behind UBL's models and/or their development. These principles are defined in the ebXML Core Component Technical Specification and the UBL NDR 2.0 artifacts. While we cannot assume conformance and interoperability of these customized documents, we can expect some degree of familiarity through the re-use of common objects.
3. Approaches to Customization

The approach to customization will reflect the chosen goal of either conformance or compatibility. Designing a customization may involve:

· Adding information items to meet contextual requirements
· Omitting information items not needed in a specific context

· Refining the meaning of information entities

· Qualifying the data type of information entities

· Combining (or recombining) and assembling information entities into new aggregations or documents

3.1. Designing for Conformance

When designing for conformance the key objective is to create custom schemas that can be used to generate UBL-conformant instances. Consequently, with one exception, conformance only allows for restrictions:

· Subsets of the document model

· Constraints on document content

In either case, the restriction may be accomplished either by removing optional objects from the UBL model or by checking for their existence in the value validation phase. Minimums can be increased, maximums can be decreased and data types may be refined but not extended. Hence, all schema-valid instances of a conformant customization are schema-valid instances of UBL as well; however, this is not true the other way around.

The one exception to this restriction ‘rule’ is when the UBLExtension element is used. If new objects are added to an existing document type exclusively in the extension area, instances validating against the extended schema are still UBL conformant (not just UBL compatible).

A major advantage of UBL conformance is that the resulting instances can be processed by any off-the-shelf UBL application. This negates the need for bespoke software or modifications to UBL applications.
3.1.1. Subsets of the document model

If all optional elements in a particular UBL document type were instantiated, the resulting instance would be extremely verbose. For example, if all of the BIEs within a UBL Order were instantiated in a single instance the result would produce approximately 800,000 elements. Communities may not want to require their applications to process this massive structure. The use of subsets allows for the removal from the document model any optional BIEs that are not needed to satisfy business requirements.

It must be noted that subsetting is only used to remove optional elements. It cannot be used to reduce the permitted minimum number of occurrences or extend the permitted maximum number of occurrences.

· 0..1 can become 1..1, or 0..0 (not used)

· 0..n can become 0..1, 1..n, or 0..0 (not used)

· 1..n can become 1..1

· 1..1 cannot be restricted

3.1.2. Constraints on document content

There are some use cases that require customization in order to limit or restrict content values. For example:
· "The Total Value of an Order cannot exceed $100,000“

· "The Currency Code should be expressed using ISO 4217 codes".

Additionally, there are other use cases relating to the dependencies between values of components which also necessitate customization. For example:
· "The Shipping Address must be the same as the Billing Address“

· "The Start Date must be earlier than the End Date“

Code lists or enumerated lists of possible values are a common form of value constraints.

3.2. Designing For Compatibility

When designing for compatibility the key objective is to re-use as much of the UBL model as possible. Where this is not possible, the guiding principles of the UBL model should be followed. Schema-valid instances of a compatible customization are not necessarily schema-valid instances of UBL; however, the reverse may be true. Unlike a conformant design, a compatible design allows for extensions (supersets). One may add to the model any BIEs that are needed to satisfy business requirements.
3.2.1. Reuse of UBL Objects

There are two categories of UBL objects that are candidates for re-use
· BIEs.

· Datatypes

3.2.1.1. Re-use of BIEs

A key goal of compatibility is to re-use existing UBL BIEs at the highest possible level. For example, it is better to re-use the UBL-declared ‘BuyerParty’ element than to create a competing element with a similar content model. This will help to keep the customization as closely aligned with UBL 2.0 as possible and will prevent an unnecessarily proliferation of BIEs requiring maintenance.

3.2.1.2. Re-use of Datatypes

Where a re-use of BIEs is not possible, re-use of datatypes is desirable. You can create new qualified data types based on UBL qualified data types or UN/CEFACT unqualified data types. For example, a model may require a purchaser object instead of the UBL-declared ‘BuyerParty’ object. For compatibility at a minimum, the UBL datatype ‘BuyerPartyType’ should be the basis for deriving your ‘PurchaserType’. The advantage of re-using datatypes is that there is a semblance of traceability back to the original UBL model.
3.2.2. Extension of UBL Model

If re-use of existing UBL constructs is not feasible, it is possible to customize by extending the UBL model. Extension may be required in a case where the context of use for a particular object differs from the UBL model. Indicating context of use is supported in the ebXML Core Component Technical Specification by qualifying the Property Terms of Dictionary Entry names.
If the new object has the same structure as the original object, it shares the same type. The qualifying terms used to name the new object should describe the role of the new object.
If the new object does not have the same structure as the original object, the new object includes the original object as a child. The new object has a new name, not a qualified name. The other children of the new object are the additional information items needed to describe the new object.
3.2.2.1. New BBIEs
In certain scenarios a particular user community may require new properties for their BBIEs. This would require an extension of the existing UBL model to either create a new property based on an existing UBL data type or indeed a completely new data may be required. Any new BBIE will result in a new ABIE container. See the sections below for further details.
3.2.2.1.1. Original Data Types
In cases where the representation terms matches one of the existing UBL data types, a new property can be created based on this data type.
3.2.2.1.2. New Data Types
In cases where the representation term does not match an existing UBL data type, a new data type may be required.
3.2.2.2. New ASBIEs
If the required aggregation has the same structure as an existing ABIE, a new association (ASBIE) is created with the existing ABIE. The new ASBIE represents a different context of use with qualifying terms describing the new role.

For example, Address is re-used in contexts such as Postal_ Address, Delivery_ Address, and Pickup_ Address. They all share the same structure as address with ‘Postal’, ‘Delivery’, and ‘Pickup’ providing the qualifying terms.
3.2.2.3. New ABIEs
If the required aggregation is an extension of an existing ABIE, a new ABIE is created with a new name (not a qualified name). The new ABIE includes the extended ABIE as a child (by association) with additional BIEs where required.
For example, Buyer Party is a new ABIE that has a different structure than Party. The Party structure is re-used by inclusion in the Buyer Party ABIE. In addition, Buyer Party also contains additional BIEs. In this case, the name Buyer Party is not a qualification of the name Party, rather you have extended the UBL model and created a new ABIE.
3.2.2.4. New Data Types
Qualification of data types is another example of re-use by association. Qualified data types can based on CCTS Unqualified data types or UBL qualified data types. For example, Currency_ Code. Type is a restriction on the Code Data Type which qualifies a CCTS unqualified data type. European Currency_ Code. Type is a restriction on the Currency_ Code Data Type which qualifies a UBL unqualified data type.
3.2.2.5. New Document Models

Where existing UBL document models do not meet requirements it possible to create a new document model. The key steps in new document assembly is to select/create your document ABIE and apply cardinality constraints. Additionally, assemble the required BBIEs and ASBIEs. Proceed recursively through other BIEs.
3.2.3. Use UBL principles for new BIEs
The minimum requirement for compatibility is to adhere to the UBL principles when creating or defining new BIEs.
· Normalize aggregates – when different BIEs have similar content models combine where possible
· Base on component model – normalized aggregates should be based upon the same component model
· Re-use patterns – aggregates based upon the same component model should re-use existing patterns
· Use ebXML CCTS – CCTS should be used when modelling BIEs
· Use UBL NDR for any schema – the UBL NDRs should be used when implementing the model
3.2.4. The Customization Ripple Effect

When creating a new BIE or data type all BIEs and or data types within its path are affected. This is known as the ripple effect.

[image: image1]
· Customizing a Data Type creates a new BBIE

· Customizing a BBIE creates a new ABIE

· A customized ABIE means creating a new ABIE

· Customizing an ASBIE creates a new ABIE

· Any new ABIE means a new document model
3.2.4.1. The Atomic Rule

All UBL ABIEs must be treated as if each is a single, indivisible entity, conveying its unique structure, assigned meanings and identity as described by its schema. This applies recursively down through each and every constituent ASBIE, BBIE, and Data Type used. Applications must know what to expect. e.g. A UBL “Address” is always the same structure.

4. Specification (Placeholder)
This section talks about the options for the specification of the customization.

4.1. XML Schema Extension/Restriction

This section describes the original UBL customization method.

4.2. Subset Schema

This section describes how to create a schema that is a proper subset of the UBL schema.

4.3. UBLExtension Element

Note that if new items are added to an existing document type only in the extension area, instances validating against the extended schema are still UBL conformant (not just UBL compatible).

4.4. XPath

This section explains the XPath approach to customization specification.

5. Validation (Placeholder)
This sections discusses validation.

6. UBL Systems (Placeholder)
 Although UBL will not be involved in determining whether systems are conformant, compatible or otherwise, we supply these definitions as a point of reference for those who might.
6.1. Producer Systems

The system will produce an instance that will validate against any UBL schema whose minor version number (within the indicated major range) is equal to or greater than the version to which the system claims conformance.
6.2. Consumer Systems
The system will accept instances that validate against any UBL schema whose minor version number (within the indicated major range) is equal to or less than the version to which the system claims conformance.
NB

Wavelength equates to precision of context of use.

Drop a change into any point and it ripples out

New Data Type

New BBIE (or ASBIE)

New ABIE

New Document type

