OASIS 13

Universal Business Language (UBL)
Naming and Design Rules

Public Review Draft , 8 September 2006

Document identifier:
prd-UBL-NDR-2.0-

Location:
Current version: htt p: / / docs. oasi s- open. or g/ ubl / prd- UBL- NDR- 2. 0

Editors:

Mavis Cournane,
Mike Grimley

Abstract:

This specification documents the naming and design rules and guidelines for the construction of XML
components for the UBL vocabulary.

Status:
This document was last revised or approved by the UBL TC on the above date. The level of approval
is also listed above. Check the current location noted above for possible later revisions of this document.
This document is updated periodically on no particular schedule.

Technical Committee members should send comments on this specification to the Technical Committee's
emalil list. Others should send comments to the Technical Committee by using the "Send A Comment"
button on the Technical Committee's web page at http://www.oasis-open.org/committees/ubl.

For information on whether any patents have been disclosed that may be essential to implementing
this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights
section of the Technical Committee web page (http://www.oasis-open.org/committees/ubl/ipr.php).

The non-normative errata page for this specification is located at www.oasis-open.org/committees/ubl.

Table of Contents

O 101 oo 1o o o U 2
O U 1= ot PP 3
S o o 3
1.3. Terminology and NOLAIONu.eiii e e e e e e e e e e e et e e et e e et e e e aneraneeeen 3
O 10 1T T o I e T o L= 5
2. Relationship to ebXML Core COMPONENTScuuuiiiieiiiieeiieeiie e e e e e e e e e e et eeaaeeateeetn e eanaeeanaeeannaeannaees 6
2.1. Mapping Business Information ENtitieSt0 XSDcvuuniiiiiiii i r e e e e e e e 8
3. GENErAl XIML CONSIIUCES ...eevtieeeeii ettt e ettt e et e e et e ettt n e e e et s e e e eet e e e eaanneeeeaan s e e eennnns 10

http://docs.oasis-open.org/ubl/prd-UBL-NDR-2.0
http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl/ipr.php
www.oasis-open.org/committees/ubl

Universal Business Language (UBL)
Naming and Design Rules

3.1, OVErall SCREMEA SITUCLUIEciieei e e e e et e e e et e e e et s e e e eaa e e e ettn e eeennnns 11
3.2. Naming and Modeling CONSITAINTScvuuiiiiiieiiee e e e e e e e e e et e e e et e e ran e eanaas 12
3.3, REUSADIITY SCNEIME ... e e e e e e e e et e et e e e aan s 13
34 EXEENSION SCHEIMEei i e ettt e e e et e e e et e e e et e e e e e eas 13
G N =S 0 oI o 1= 0= 14
I Y= = To g gTo [10 P 15
A oo (U1 = A S = (=0 | 17
3.8. Annotation and Documentation REQUITEMENTSuueiuuiiiiii e e ee e e e e e e e e e e e e e eanas 23
Vo T gTo =P 27
4.1, General NamMING RUIESiiii e e e e e e e e e et e e et eean e eeeen 27
4.2. TYPENAMING RUIES . .oeeiii e e e e e e e e e e e e e e e et e e et e e et e e et e eaneenen 29
4.3, Element NamiNG RUIESuuiiiiiiiii et e e e e e e e e et e e et e et e ean s 30
N 1] o 01 == 1 T = PRSPPI 31
5. Declarations @and DEfiNITIONSuuuiiiiiiii e e e e e e et 32
L3N Y/ X B = 1 1 1T P 32
5.2, EleMENt DECIAIAiONS .. oeevuieieeii ettt ettt e et e e e e e 35
TG I @0 o (= I = 9] o A 35
N 1o Y = 00T 01 35
LT 0o L= I £SO 36
7. MiISCEIANEOUS XSD RUIES ... i e et e e et e e e et e e e et e e e e eta s 36
8 G o =T 0o 1= 1Y o= N 36
7.2. NaMESPACE DECIAIALONuuiiiiieii et e e e e e e e e et e e et e e et e e et e e e aaeeaaaees 36
7.3, XSA:SUDSHTULIONGIOUDuivtieiiie e e e e e e e e e e e e e e e e et e e et e e et e e et e e e et e e an e e et e eeaneeeannas 37
A o 111 7= 37
AT o Wl 0o - 1o o PSP 37
0 o 5 | 37
AT A o e oo o= PSP 37
RS o H T4 o o (= PPN 37
S o U T o LR 38
8 O E o =10 o 1 o) (o T 38
711, XSA:SCHEMAL OCALION ...eevt ettt e et e e et e e et et e e e e et e e e e et e e e e et e e e e e et neeeenannas 38
A P o H o1 = = PP 38
A TGS o 01V 1111 U (U 38
7.14. EXENSION @NA RESLIICHION ...ovuviee ittt e et e e e et e e e et e e e et e e e e et eas 38
8. INSLANCE DOCUMENTS ...ttt ettt et et e et et e e et e et e et e e e e ea e e nrean s e s e et e et e eneennas 39
Appendixes
AL UBL NDR 2.0 ChECKIiSt . cvuitiiiiiiiii et e e et e et e e e e e et e et e e e eaaeens 39
B. Additional DOCUMENT CONSLIAINTSuiitiiiteit et eieeie et ee et e e e e e et e et e et e e et e et e et estsenesaneeaeesaernaes 49
C. TeChNiCal TEMMUNOIOGY ... cevveneteiti ettt ettt e e et e e e e et e e e e et e e e e et e e e eaba s 50
(D (C L= 1= 1 0= PP NPP PPt 52
L Lo 1 o= P PPSPPRRt 53

1. Introduction

XML isoften described asthe linguafrancaof e-commerce. Theimplicationisthat by standardizing on XML, enterprises
will be able to trade with anyone, any time, without the need for the costly custom integration work that has been ne-
cessary in the past. But thisvision of XML-based "plug-and-play" commerceisoverly simplistic. Of course XML can
be used to create electronic catalogs, purchase orders, invoices, shipping notices, and the other documents needed to
conduct business. But XML by itself doesn't guarantee that these documents can be understood by any business other
than the one that creates them. XML is only the foundation on which additional standards can be defined to achieve

Universal Business Language (UBL)
Naming and Design Rules

the goal of true interoperability. The Universal Business Language (UBL) initiative is the next step in achieving this
goal.

The task of creating a universal XML business language is a challenging one. Most large enterprises have aready in-
vested significant time and money in an e-business infrastructure and are reluctant to change the way they conduct
electronic business. Furthermore, every company has different requirementsfor the information exchanged in aspecific
business process, such as procurement or supply-chain optimization. A standard business language must strike adifficult
balance, adapting to the specific needs of a given company while remaining general enough to let different companies
in different industries communicate with each other.

The UBL effort addresses this problem by building on the work of the electronic business XML (ebXML) initiative.
UBL isorganized as an OASIS Technical Committee to guarantee a rigorous, open process for the standardization of
the XML businesslanguage. The development of UBL within OA SIS also hel ps ensure afit with other essential ebXML
specifications.

This specification documents the rules and guidelines for the naming and design of XML components for the UBL
library. It contains only rules that have been agreed on by the OASIS UBL Technical Committee. Consumers of the
Naming and Design Rules Specification should consult previous UBL position papersthat are available at http://www.oas-
is-open.org/committees/ubl/ndrsc/. These provide a useful background to the development of the current rule set.

1.1. Audiences

This document has several primary and secondary targets that together congtitute its intended audience. Our primary
target audience is the members of the UBL Technical Committee. Specifically, the UBL Technical Committee will
use the rules in this document to create normative form schemas for business transactions. Devel opers implementing
ebXML Core Components may find the rules contained herein sufficiently useful to merit adoption as, or infusion into,
their own approachesto ebXML Core Component based XML schemadevel opment. All other XML Schemadevel opers
may find the rules contained herein sufficiently useful to merit consideration for adoption as, or infusion into, their
own approaches to XML schema development.

1.2. Scope

This specification conveys a normative set of XML schema design rules and haming conventions for the creation of
business based XML schemas for business documents being exchanged between two parties using XML constructs
defined in accordance with the ebXML Core Components Technical Specification.

1.3. Terminology and Notation

The key wordsMUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOM -
MENDED, MAY, and OPTIONAL in this document are to be interpreted as described in Internet Engineering Task
Force (IETF) Request for Comments (RFC) 2119. Non-capitalized forms of thesewords are used in the regular English
sense.

Definition A formal definition of aterm. Definitions are normative.

Example A representation of adefinition or arule. Examples are informative.

Note Explanatory information. Notes are informative.

RRRn Identification of arule that requires conformance to ensure that an XML Schema

isUBL conformant. The value RRR isaprefix to categorize the type of rule where
the value of RRR isasdefined in Table 1, “ Rule Prefix Token Value” and n (1..n)
indicates the sequential number of the rule within its category. In order to ensure

http://www.oasis-open.org/committees/ubl/ndrsc/
http://www.oasis-open.org/committees/ubl/ndrsc/

Universal Business Language (UBL)
Naming and Design Rules

continuity across versions of the specification, rule numbers that are deleted in
future versions will not be re-issued, and any new rules will be assigned the next
higher number — regardless of location in the text. Future versions will contain
an appendix that lists deleted rules and the reason for their deletion. Only rules
and definitions are normative; all other text is explanatory.

Table 1. RulePrefix Token Value

The bolding of words is used to represent example names or parts of names taken

All words appearing in courier font are values, objects, and keywords.

All words appearing in italics, when not titles or used for emphasis, are special

keywords reflect concepts or constructs expressed in the language of their source
standard. Keywords have been given an identifying prefix to reflect their source.

represents W3C XML Schema Definition Language. If a concept, the words will
be in upper camel case, and if a construct, they will be in lower camel case.

Rule Prefix Token Value
ATD Attribute Declaration
CDL Code List
CTD ComplexType Definition
CTN ComplexType Naming Rules (CTN)
DOC Documentation
ELD Element Declaration
ELN Element Naming
GNR General Naming
GTD General Type Definition
GXS Genera XML Schema
IND Instance Document
MDC Modeling Constraints
NMC Naming Constraints
NMS Namespace
RED Root Element Declaration
SSM Schema Structure Modularity
VER Versioning
Bold
from the library.
Couri er
Italics
terms defined in Appendix C, Technical Terminology.
Keywords
The following prefixes are used:
xsd:
xsd: complexType represents an X SD construct
xsd: SchemaExpression represents a concept
ccts:

epresents | SO 15000-5 ebXML Core Components Technical Specification

Universal Business Language (UBL)
Naming and Design Rules

ubl:

represents the OA SIS Universal Business Language

The terms "W3C XML Schema' and "XSD" are used throughout this document. They are considered synonymous;
both refer to XML Schemas that conform to Parts 1 and 2 of the W3C XML Schema Definition Language (XSD) Re-
commendations. See Appendix C, Technical Terminology for additional term definitions.

1.4. Guiding Principles

The UBL guiding principles encompass three areas:

» General UBL guiding principles

» Extensibility

» Relationship to tools

1.4.1. Adherence to General UBL Guiding Principles

The UBL Technical Committee has approved a set of high-level guiding principles. These principles were adhered to
during development of UBL NDR. These UBL guiding principles are;

Internet Use
Interchange and Application Use

Tool Use and Support

Legibility
Simplicity

80/20 Rule

Component Reuse

Standardization

Domain Expertise

Customization and Maintenance

Context Sensitivity

UBL shall be straightforwardly usable over the Internet.
UBL isintended for interchange and application use.

The design of UBL will not make any assumptions about sophisticated tools for
creation, management, storage, or presentation being available. Thelowest common
denominator for toolsisincredibly low (for example, Notepad) and the variety of
tools used is staggering. We do not see this situation changing in the near term.

UBL documents should be human-readable and reasonably clear.
The design of UBL must be as simple as possible (but no simpler).

The design of UBL should provide the 20% of features that accommodate 80% of
the needs.

The design of UBL document types should contain as many common features as
possible. The nature of e-commerce transactionsis to pass along information that
getsincorporated into the next transaction down the line. For example, a purchase
order contains information that will be copied into the purchase order response.
Thisformsthe basis of our need for a core library of reusable components. Reuse
in this context isimportant, not only for the efficient development of software, but
also for keeping audit trails.

The number of ways to express the same information in aUBL document isto be
kept as close to one as possible.

UBL will leverage expertise in a variety of domains through interaction with ap-
propriate development efforts.

The design of UBL must facilitate customization and maintenance.

The design of UBL must ensure that context-sensitive document types aren't pre-
cluded.

Universal Business Language (UBL)
Naming and Design Rules

Prescriptiveness UBL design will balance prescriptiveness in any single usage scenario with pre-
scriptiveness across the breadth of usage scenarios supported. Having precise, tight
content models and datatypes is a good thing (and for this reason, we might want
to advocate the creation of more document type "flavors' rather than less). However,
in an interchange format, it is often difficult to get the prescriptiveness that would
be desired in any single usage scenario.

Content Orientation Most UBL document types should be as " content-oriented" (as opposed to merely
structural) as possible. Some document types, such as product catal ogs, will likely
have a place for structural material such as paragraphs, but these will be rare.

XML Technology UBL design will avail itself of standard XML processing technology wherever
possible (XML itself, XML Schema, XSLT, XPath, and so on). However, UBL
will be cautious about basing decisionson "standards' (foundational or vocabulary)
that are works in progress.

Relationship to Other UBL design will be cautious about making dependencies on other namespaces.
Namespaces

Legacy formats UBL is not responsible for catering to legacy formats, companies (such as ERP
vendors) can compete to come up with good solutions to permanent conversion.
This is not to say that mappings to and from other XML dialects or non-XML
legacy formats wouldn't be very valuable.

1.4.2. Design for Extensibility

UBL Naming and Design Rules 2.0 provides an extension mechanism to the meet the needs of customizers. This ex-
tension mechanism is embodied within 3.4 of the specification.

1.4.3. Relationship to Tools

The UBL NDR makes no assumptions on the availability or capabilities of tools to generate UBL conformant XSD
schemas. In conformance with UBL guiding principles, the UBL NDR design process has scrupulously avoided estab-
lishing any naming or design rules that sub-optimize the UBL schemas in favor of tool generation. Additionally, in
conformance with UBL guiding principles, the NDR is sufficiently rigorous to avoid requiring human judgment at
schema generation time.

1.4.4. Choice of Schema Language

TheW3C XML Schema Definition Language has become the generally accepted schemalanguagethat is experiencing
the most widespread adoption. Although other schemalanguages exist that offer their own advantages and di sadvantages,
UBL has determined that the best approach for developing an international XML business standard is to base its work
on W3C XSD. Consequently, all UBL schema design rules are based on the W3C XML Schema Recommendations:
XML Schema Part 1: Structures and XML Schema Part 2: Datatypes.

By aligning with W3C specifications holding recommended status, UBL can ensure that its products and deliverables
are well suited for use by the widest possible audience with the best availability of common support tools.

2. Relationship to ebXML Core Components

UBL employs the methodology and model described in Core Components Technical Specification, 1SO 15000-5 to
build the UBL Component Library. The Core Components concept defines a new paradigm in the design and
implementation of reusable syntactically neutral information building blocks. Syntax neutral Core Components are

Universal Business Language (UBL)
Naming and Design Rules

intended to form the basis of business information standardization efforts and to be realized in syntactically specific
instantiations such asANSI ASC X12, UN/EDIFACT, and XML representations such as UBL.

The essence of the Core Components specification is captured in context neutral and context specific building blocks.
The context neutral components are defined as Core Components (ccts:CoreComponents). Context neutral ccts.Core-
Components are defined in CCTS as "A building block for the creation of a semantically correct and meaningful in-
formation exchange package. It contains only the information pieces necessary to describe a specific concept.” Figure
2-1illustrates the various pieces of the overall ccts:CoreComponents metamodel.

The context specific components are defined as Business Information Entities (ccts:Business| nformationEntities).
Context specific ccts:BusinessInformationEntities are defined in CCTS as "A piece of business data or a group of
pieces of business data with a unique Business Semantic definition." Figure 2-2 illustrates the various pieces of the
overall ccts:BusinesslnformationEntity metamodel and their relationship with the ccts:CoreComponents metamodel.

Asshownin Figure 2-2, there are different types of ccts:CoreComponents and ccts:Businessl nformationEntities. Each
type of ccts:CoreComponent and ccts:BusinesslnformationEntity has specific relationships between and amongst the
other components and entities. The context neutral ccts.CoreComponents are the linchpin that establishes the formal
relationship between the various context-specific ccts:BusinesslnformationEntities.

Figure 1. Core Components and Datatypes M etamodel

Regidy Qass |
a't‘;nm.uemerliler1.1
ictionery Erérdame 1.1 L=__
7| &netniion 1.1 [N

f
Ly

5, S
o Fropetty " e

P mpetty Tem 1.4
BsCordinality 1.1 |
L

o "
T B ! | Aemcigion Coe Comparert (2500 | ‘

f1

| o R 1 L | | lII
| Aspdation CC Poperty | ! |
\
1

| 1

o \

Brsic ©F Property Baic Core Component (B00) |

\
oA ! i /

\ /

\
. b

- !

\ 3
S|

Dl Type

i — WP imary ion Term 1.1
Spduslifer Tam 0.1 L8 iony Ropresentotion Tem 0.4

"-\n . o e

rd D Y G >
{ Contertt Comparent Fedridian TN ¥
N, L P —— e

Sugpla mantery Companest

0. 1] o Companent Type (cCT)

| Suped amertary Comgonert Fedndion |

Universal Business Language (UBL)
Naming and Design Rules

Figure 2. Business I nformation Entities Basic Definition M odel

Pegiv; Gl
Brunges 3 T 1,1
Dictbay Evayame 1.8
Dl ||

e Tz
,_;' b

mgam Busiuncs
Infom afos Dl EBIE
WA el e 0

Scaniualy 1.0

L F Ju'
! J \
¥
%
Y
\
R B BIE Frpeny Tty |

= Fal T
ki ” %

_.’ 1 -~ 8 p
B Tope | e A
B Todn 0.0 el g
il el
it Core Camr rea kBT

2.1. Mapping Business Information Entities to XSD

UBL consists of alibrary of ccts.BusinessinformationEntities (BIES). In creating this library, UBL has defined how
each of the BIE components map to an XSD construct (See figure 2-3). In defining this mapping, UBL has analyzed
the CCTS metamodel and determined the optimal usage of XSD to express the various BIE components.

Universal Business Language (UBL)
Naming and Design Rules

Figure 3. UBL Document M etamodel

Core Camponent
Typa
(o) .
xsd:complexType
r [or xsdisimpleTypa
Specifies
restrictions r
an i
Data
Oafa
Furthigr = Typa
Typa -
(T resiricts g o)
xsd:complexTypa wsd:alemant
Defines . + (Declared as BBIE
EE . Defines a set of {as BBEIE Proparty) Proparty]
values of walues of
Basic Gome " ts hithed g Basio Business Informatian xsd:elemant
Companent 4 Entity (EBIE)
{BGC) ' /
Aszociaiion Cone .) Is based on Assaciation Busness
ey < infarmation Enty —
[ASCC) - [ASEIE]
" A8
As Praperty Pripary xad:complexType + xadielement
Aggregated [apgrapatad
’ I ! "‘_.__.__.__n—'_'-‘-—. I
ﬂagwl‘z:ﬁm Cualifigs the Aggregare Susine s
omp . | - jaf
JAGE) Ubjper (ass of Entity (ABIE)
Assembly

b Ca t
" el Aggragased Aggregated
u in in
fdds
extra
irformatian

Q

Massage Assembily K

Core Component Libsary

Asstated above, a BI E can be accts:AggregateBusinessinformationEntity (ABIE), accts:.Basi cBusinessinformationEntity
(BBIE), or accts:AssociationBusinessl nformationEntity (ASBIE). In understanding the logic of the UBL binding of
BIEs to XSD expressions, it isimportant to understand the basic constructs of the ABIEs and their relationships as
shown in Figure 2-2.

Both Aggregate and Basic Business Information Entities must have a unique name (Dictionary Entry Name). The
ABIEs are treated as objects and are defined as xsd:complexTypes. The BBIEs are treated as attributes of the ABIE
and are found in the content model of the ABIE as a referenced xsd:element. The BBIEs are based on a reusable
ccts:BasicBusiness| nformationEntityProperty (BBIE Property) which are defined as xsd:complexTypes.

A BBIE Property represents an intrinsic property of an ABIE. BBIE Properties are linked to a Datatype. UBL uses
two types of Datatypes — unqualified, that are provided by the UN/CEFACT Unqualified Datatype (udt) schema
module, and qualified datatypes that are defined by UBL.

UBL's use of the UN/CEFACT Unqualified Datatype schema moduleis primarily confined to itsimportation. It must
not be assumed that UBL 's adoption of the UDT schema modul e extends to any of the Advanced Technology Group's
(ATG) rulesthat have a bearing on the use of the UDT.

Universal Business Language (UBL)
Naming and Design Rules

The ccts:UnqualifiedDatatypes correspond to ccts: RepresentationTerms. The ubl:QualifiedDatatypes are derived from
ccts:UnqualifiedDatatypeswith restrictions to the all owed values or ranges of the corresponding ccts: ContentComponent
or ccts: SupplementaryComponent.

CCTS defines an approved set of primary and secondary representation terms. However, these representation terms
are simply naming conventions to identify the Datatype of an object, not actual constructs. These representation terms
arein fact the basis for Datatypes as defined in the CCTS.

A ccts:Datatype defines the set of valid values that can be used for a particular Basic Core Component Property or
Basic Business Information Entity Property Datatype." The ccts:Datatypes can be either unqualified'no restrictions
applied”or qualified through the application of restrictions. The sum total of the datatypes is then instantiated as the
basis for the various XSD simple and complex types defined in the UBL schemas. CCTS supports datatypes that are
qualified, i.e. it enables usersto define their own datatypesfor their syntax neutral constructs. Thus ccts:Datatypesallow
UBL to identify restrictions for elements when restrictions to the corresponding ccts: ContentComponent or ccts: Sup-
plementaryComponent are required.

There are two kinds of Business Information Entity Properties - Basic and Association. A ccts.AssociationBusinessln-
formationEntityProperty (ASBIE Property) represents an extrinsic property — in other words an association from one
ABIE instance to another ABIE instance. It is the ASBIE Property that expresses the relationship between ABIEs .
Due to their unique extrinsic association role, ASBIEs are not defined as xsd:complexTypes, rather they are either
declared as elements that are then bound to the xsd:complexType of the associated ABIE ,or they are reclassified
ABIEs.

As stated above, BBIEs define the intrinsic structure of an ABIE. These BBIEs are the "leaf" types in the system in
that they contain no ASBIE Properties.

A BBIE must have a ccts:CoreComponentType. All ccts:CoreComponentTypes are low-level types, such as Identifiers
and Dates. A ccts.CoreComponentType describes these low-level types for use by ccts:CoreComponents, and (in par-
alel) a ccts:Datatype, corresponding to that ccts:CoreComponentType, describes these low-level types for use by
BBIEs. Every ccts:CoreComponentType has a single ccts:ContentComponent and one or more ccts: Supplementary-
Components. A ccts:ContentComponent is of some Primitive Type. All ccts:CoreComponentTypes and their corres-
ponding content and supplementary components are pre-defined in the CCTS. UBL has developed an
xsd:SchemaModule that defines each of the pre-defined ccts:CoreComponentTypes as an xsd:complexType or
xsd:simpleType and declares ccts: SupplementaryComponents as an xsd:attribute or uses the predefined facets of the
built-in xsd:Datatype for those that are used as the base expression for an xsd:simpleType. UBL continues to work
with UN/CEFACT and the Open Applications Group to develop a single normative schema for representing
ccts:CoreComponentTypes.

3. General XML Constructs

This chapter defines UBL rules related to general XML constructs to include:
 Overdl Schema Structure

* Naming and Modeling Constraints

* Reusability Scheme

» Namespace Scheme

» Versioning Scheme

* Modularity Strategy

« Annotation and Documentation Requirements

10

Universal Business Language (UBL)
Naming and Design Rules

3.1. Overall Schema Structure

A key aspect of developing standards is to ensure consistency in their implementation. Therefore, it is essential to
provide a mechanism that will guarantee that each occurrence of a UBL conformant schemawill have the same look
and feel.

[GXSL1] UBL Schema, except in the case of extension, where the 'UBL Extensions' element is used,
MUST conform to the following physical layout as applicable:

<l-- ======= XM. Decl| arati on======== -->
<?xm version="1.0" encodi ng="UTF-8"?> <!-- ======= Schema Header
======= --> Docunment Nane: < Docunment name as indicated in Section 3.6
> CGenerated On: < Date schema was generated > <!-- ===== xsd: schenn
El enent Wth Nanespaces Decl arations ===== --> xsd: schena el ement to include

version attri bute and nanespace declarations in the follow ng order: xm ns:xsd
Tar get nanespace Default nanespace CommonAggr egat eConmponent s

ConmonBasi cConponent s Cor eConponent Types Unqual i fi ed Dat atypes Qualified

Dat at ypes Identifier Schemes Code Lists Attribute Declarations -

el enent For nDef aul t =" qual i fi ed" attri but eFor nDef aul t ="unqual i fi ed" Version
Attribute <!-- ===== Inports ===== --> CommoDnAggr egat eConponents schena

nodul e CormonBasi cConponents schema nodul e Unqual i fied Types schena nodul e

Qualified Types schenma nodul e <!-- ===== Root El enent ===== --> Root
El ement Decl arati on Root El enent Type Definition <!-- ===== El enent
Decl arations ===== --> al phabeti zed order <!-- ===== Type Definitions

===== --> Al type definitions segregated by basic and aggregates as foll ows
<l-- ===== Aggregate Business Information Entity Type Definitions =====

--> al phabeti zed order of ccts: Aggregat eBusi nesslnformati onEntity
xsd: TypeDefinitions <!-- =====Basi c Business Information Entity Type

ccts: Basi cBusi nesslnformati onEntities <!-- ===== Copyright Notice =====

--> Required QASIS full copyright notice.

3.1.1. Element declarations within document schemas

Document schema The overarching schema within a specific namespace that conveys the business
document functionality of that namespace. The document schemadeclaresatarget
namespace and is likely to xsd:include internal schema modules or xsd:import
external schemamodules. Each namespace will have one, and only one, document
schema.

In order to facilitate the management and reuse of UBL constructs, all global ele-
ments, excluding the root element of the document schema, must reside in either
the Common A ggregate Components (CAC) or Common Basic Components (CBC)
schema modules.

3.1.1.1. Root Element

UBL has chosen aglobal element approach. Inside a UBL document schema only asingle global element is declared.
Because al UBL instance documents conform to a UBL document schema, the single global element declared in that
document schemawill be the root element of the instance.

[RED2] The root element MUST be the only global element declared in document schemas.

11

Universal Business Language (UBL)
Naming and Design Rules

3.2. Naming and Modeling Constraints

A key aspect of UBL isto base its work on process modeling and data analysis as precursors to developing the UBL
library. In determining how best to affect this work, several constraints have been identified that directly impact the
process modeling and data analysis, as well as the resultant UBL Schema.

3.2.1. Naming Constraints

A primary aspect of the UBL library documentation isits spreadsheet models. The entriesin these spreadsheet models
fully define the constructs available for use in UBL business documents. These spreadsheet entries contain fully con-
formant CCTS dictionary entry names aswell astruncated UBL XML element names developed in conformance with
therulesin section 4. The dictionary entry name ties the information to its standardized semantics, while the name of
the corresponding XML element is only shorthand for this full name. The rules for element naming and dictionary
entry naming are different.

[NMC1] Each dictionary entry name MUST define one and only one fully qualified path (FQP) for
an element or attribute.

Thefully qualified path anchors the use of that construct to a particular location in a business message. The definition
of the construct identifies any semantic dependenciesthat the FQP has on other elements and attributeswithin the UBL
library that are not otherwise enforced or made explicit in its structural definition.

3.2.2. Modeling Constraints

In keeping with UBL guiding principles, modeling constraints are limited to those necessary to ensure consistency in
development of the UBL library.

3.2.2.1. Defining Classes

UBL isbased oninstantiating eoXML ccts:BusinesslnformationEntities (BIES). UBL modelsand the XML expressions
of those models are class driven. Specifically, the UBL library defines classesfor each ccts:AggregateBusinessl nform-
ationEntity (ABIE) and the UBL schemas instantiate those classes. The attributes of those classes consist of ccts:Ba-
sicBusinessinformationEntities (BBIEs).

3.2.2.2. Core Component Types

Each BBIE has an associated ccts: CoreComponentType. The CCTS specifies an approved set of ccts.CoreComponent-
Types. To ensure conformance, UBL is limited to using this approved set.

[MDC1] UBL Libraries and Schemas MUST only use ebXML Core Component approved
ccts:CoreComponentTypes, except in the case of extension, where the 'UBLExtensions element is
used.

Customization is a key aspect of UBL's reusability across business verticals. The UBL rules have been developed in
recognition of the need to support customizations. Specific UBL customization rules are detailed in the UBL custom-
ization guidelines.

3.2.2.3. Mixed Content

UBL documents are designed to effect data-centric el ectronic commerce. Including mixed content in business documents
is undesirable because business transactions are based on exchange of discrete pieces of data that must be clearly un-
ambiguous. The white space aspects of mixed content make processing unnecessarily difficult and add a layer of
complexity not desirable in business exchanges.

12

Universal Business Language (UBL)
Naming and Design Rules

[MDC2] Mixed content MUST NOT be used except where contained in an xsd:documentation element.

3.3. Reusability Scheme

The effective management of the UBL library requires that all element declarations are unique across the breadth of
the UBL library. Consequently, UBL elements are declared globally.

3.3.1. Reusable Elements

UBL elements are global and qualified. Hence in the example below, the <Address> element is directly reusable asa
modular component and some software can be used without modification.

Example 1. Example

<xsd: el enent nanme="Party" type="PartyType"/>
<xsd: conpl exType nanme="PartyType"> <xsd: annot ati on>
<! Docunent ati on goes here --> </xsd: annot ati on>
<xsd: sequence> <xsd: el ement ref="chc: MarkCarel ndi cator" m nCccurs="0"
maxQccurs="1"> ... </xsd:el enent> <xsd: el ement
ref="cbc: MarkAttentionl ndi cator" m nCccurs="0" maxCccurs="1"> ..
</ xsd: el enent > <xsd: el enent ref="Partyldentification" m nCccurs="0"
maxQccur s="unbounded"> ... </xsd:el enent> <xsd: el ement
ref ="PartyNanme" m nCccurs="0" maxCccurs="1"> ... </xsd: el enent >
<xsd: el ement ref="Address" m nCccurs="0" maxCccurs="1"> ..
</ xsd: el enent > ... </xsd: sequence> </ xsd: conpl exType>
<xsd: el enent nane="Address" type="AddressType"/> <xsd: conpl exType
nane="AddressType"> ... <xsd:sequence> <xsd: el enent
ref ="chc: G tyNane" mi nCccurs="0" maxCccurs="1"> ... </xsd: el enent >
<xsd: el ement ref="cbc: Post al Zone" m nCccurs="0" maxCccurs="1"> ..
</ xsd: el enent > ... </xsd: sequence> </ xsd: conpl exType>

Software written to work with UBL's standard library will work with new assemblies of the same components since
global elements will remain consistent and unchanged. The globally declared <Address> element is fully reusable
without regard to the reusability of types and provides a solid mechanism for ensuring that extensionsto the UBL core
library will provide consistency and semantic clarity regardless of its placement within a particular type.

[ELD2] All element declarations MUST be global

3.4. Extension Scheme

There is a recognized requirement that some organizations are required by law to send additional information not
covered by the UBL document structure, thus requiring an extension to the UBL message. The xsd:any construct is
seen as the most efficient way to implement this requirement.

In genera, UBL restrictsthe use of xsd:any because thisfeature permitsthe introduction of potentially unknown elements
into an XML instance. However, limiting its use to asingle, predefined element mitigatesthisrisk. Sinceit isapriority
that there can be meaningful validation of the UBL document instances the value of the xsd: processContents attribute
of the element must be set to "skip", thereby removing the potential for errorsin the validation layer. There is cardin-
ality restriction in the case of extension.

[GXS14] The xsd:any element MUST NOT be used except within the 'ExtensionContentType' type
definition, and with xsd:processContents= "skip" for non-UBL namespaces.

13

Universal Business Language (UBL)
Naming and Design Rules

The following rules apply in the order below.

[ELD12] The'UBL Extensions element MUST be declared asthefirst child of the document element
with xsd:minOccurs="0".

[ELD13] The'UBLProfilel D' element MUST be declared immediately following the'UBL Extensions
element with xsd:minOccurs="0".".

[ELD14] The'UBL SubsetI D' element MUST be declared immediately following the'UBL Profilel D'
element with xsd:minOccurs="0".

3.5. Namespace Scheme

The concept of XML namespaces is defined in the W3C XML namespaces technical specification. The use of XML
namespaceis specified intheW3C XML Schema (XSD) Recommendation. A namespaceis declared in theroot element
of a Schema using a namespace identifier. Namespace declarations can also identify an associated prefix "shorthand
identifier" that allowsfor compression of the namespace name. For each UBL namespace, a normative token isdefined
asits prefix. These tokens are defined in the versioning scheme section.

3.5.1. Declaring Namespaces

Neither XML 1.0 nor XSD require the use of Namespaces. However the use of namespaces is essential to managing
the complex UBL library. UBL will use UBL-defined schemas (created by UBL) and UBL-used schemas (created by
external activities) and both require a consistent approach to namespace declarations.

[NMSL] Every UBL-defined or -used schemamodul e, except internal schemamodules, MUST have
a namespace declared using the xsd:targetNamespace attribute.

Each UBL schema module consists of alogical grouping of lower level artifacts that together comprise an association
that will be able to be used in avariety of UBL schemas. These schema modules are grouped into a schema set. Each
schema set is assigned a namespace that identifies that group of schema modules. As constructs are changed, new
versions will be created. The schema set is the versioned entity, all schema modules within that package are of the
same version, and each version has a unique namespace.

Schema Set A collection of schema instances that together comprise the names in a specific
UBL namespace.

Schemavalidation ensuresthat an instance conformsto its declared schema. There
should never be two (different) schemas with the same namespace Uniform Re-
source ldentifier (URI). In keeping with Rule NMS1, each UBL schema module
will be part of aversioned namespace.

[NMS2] Every UBL -defined-or -used major version schemaset MUST haveits own unique namespace.

UBL 's extension methodol ogy encourages awide variety in the number of schemamodulesthat are created as derivations
from UBL schema modules. Clarity and consistency requires that customized schema not be confused with those de-
veloped by UBL.

[NMS3] UBL namespaces MUST only contain UBL developed schema modules.
3.5.2. Namespace Uniform Resource Identifiers
A UBL namespace name must be aURI reference that conformsto RFC 2396. UBL has adopted the Uniform Resource

Name (URN) scheme asthe standard for URIsfor UBL namespaces, in conformance with IETF's RFC 3121, asdefined
in this next section.

14

Universal Business Language (UBL)
Naming and Design Rules

Rule NM S2 requires separate namespaces for each UBL schema set. The UBL namespace rules differentiate between
committee draft and OA SIS Standard status. For each schemaholding draft status, a UBL namespace must be declared
and named.

[NM$4] The namespace names for UBL Schemas holding committee draft status MUST be of the
form:

urn:oasis:names:tc:ubl :schema: <subtype>:<document-id>
The format for document-id is found in the next section.

For each UBL schemaholdi ng OASIS Standard status, aUBL namespace must be declared and named using the same
notation, but with the value A¢€ specification" replacing the value A¢€™tc'.

[NMSB] The namespace names for UBL Schemas holding OASIS Standard status MUST be of the
form:urn:oasi s:names: specification: ubl :schema: <subtype>: <document-id>

3.5.3. Schema Location

UBL schemasuse a URN namespace scheme. In contrast, schemalocations are typically defined asaUniform Resource
Locator (URL). UBL schemas must be available both at design time and run time. As such, the UBL schemalocations
will differ from the UBL namespace declarations. UBL, asan OASISTC, will utilizean OASIS URL for hosting UBL
schemas. UBL will use the committee directory http://www.oasis-open.org/committees/ubl/schemal.

3.5.4. Persistence

A key differentiator in selecting URNSs to define UBL namespacesis URN persistence. UBL namespaces must never
violate this functionality by subsequently changing once it has been declared. Conversely, changes to a schema may
result in anew namespace declaration. Thus a published schema version and its namespace association will always be
inviolate.

[NMS5] UBL published namespaces MUST never be changed.

3.6.Versioning Scheme

UBL has adopted a two-layer versioning scheme. Major version information is captured within the namespace name
of each UBL schema module while combined major and minor version information is captured within the xsd:version
attribute of the xsd:schema element.

UBL namespaces conform to the OA SIS namespace rules defined in RFC 3121. Thelast field of the namespace name
is called document-id. UBL has decided to include versioning information as part of the document-id component of
the namespace. Only magjor version information will be captured within the document-id. The major field has an op-
tional revision extension which can be used for draft schemas. For example, the namespace URI for the draft Invoice
domain has this form:

urn: oasi s: nanes: tc: ubl : schema: xsd: | nvoi ce- <maj or >[. <r evi si on>]

The major-version field is"1" for the first release of a namespace. Subsequent major releases increment the value by
1. For example, the first namespace URI for the first major release of the Invoice document has the form:

ur n: oasi s: nanmes: t c: ubl : schema: xsd: | nvoi ce- 1
The second major release will have a URI of the form:

ur n: oasi s: nanes: tc: ubl : schema: xsd: | nvoi ce- 2

15

http://www.oasis-open.org/committees/ubl/schema/

Universal Business Language (UBL)
Naming and Design Rules

In general, the namespace URI for every major release of the Invoice domain has the form:
urn: oasi s: nanes: tc: ubl : schenma: xsd: | nvoi ce: - <maj or - nunber >[. <r evi si on>]

[VER1] Every UBL Schemaand schemamodule major version committee draft MUST have an RFC
3121 document-id of the form .<revision>

[VER11] Every UBL Schema and schema module major version committee draft MUST captureits
version number in the xsd:version attribute of the xsd:schema element in the form [.<revision>]

[VER2] Every UBL Schema and schema module major version OASIS Standard MUST have an
RFC 3121 document-id of the form

<nane>- <mgj or >

[VER12] Every UBL Schema and schema module major version OASIS Standard MUST capture
its version number in the xsd:version attribute of the xsd:schema element in the form

<maj or>. 0

For each document produced by the TC, the TC will determine the value of the <name> variable. In UBL, the major-
version field must be changed in arelease that breaks compatibility with the previous release of that namespace. If a
change does not break compatibility then only the minor version need change. Subseguent minor releases begin with
minor-version 1.

Example 2. Example

The namespace URI for the first minor release of the Invoice domain has this form:
urn:oasis:names:tc:ubl:schema: xsd:| nvoice-<major>

The value of the xsd:schema xsd:version attribute for the first minor release of the Invoice domain has this form:
<mgjor>. 1

[VERS3] Every minor version release of a UBL schema or schema module committee draft MUST
have an RFC 3121 document-id of the form [.<revision>]

[VER13] Every minor version release of a UBL schema or schema module committee draft MUST
capture its version information in the xsd:version attribute in the form [.<revision>]

[VER4] Every minor version release of a UBL schema or schema module OASIS Standard MUST
have an RFC 3121 document-id of the form

<name>-<major>

[VER14] Every minor version release of a UBL schema or schemamodule OASIS Standard MUST
capture its version information in the xsd:version attribute in the form

<maj or >. <non- zer 0>

Once aschemaversion isassigned anamespace, that schemaversion and that namespace will be associated in perpetuity.
However, because minor schemaversionswill retain the major version namespace, thisisnot aone-to-onerel ationship.

[VER5] For UBL Minor version changes the namespace name MUST not change,

16

Universal Business Language (UBL)
Naming and Design Rules

UBL is composed of a number of interdependent namespaces. For instance, namespaces whose URI's start with
urn:oasis:names:tc:ubl:schema:xsd:Invoice-* are dependent upon the common basic and aggregate namespaces, whose
URI's have the form urn:oasis.names:tc;ubl:schemaxsd:CommonBasicComponents* and urn.oas-
is:names:tc: ubl:schema:xsd: CommonA ggregateComponents-* respectively. If either of the common namespacesrequires
amagjor version change then its namespace URI must change. If its namespace URI changesthen any schemathat imports
the new version of the namespace must also change (to update the namespace declaration). And since thiswould require
amajor version change to the importing schema, its namespace URI in turn must change. The outcome is twofold:

There should never be ambiguity at the point of reference in a namespace declaration or version identification. A de-
pendent schema imports precisely the version of the namespace that is needed. The dependent schema never needs to
account for the possibility that the imported namespace can change.

When a dependent schema is upgraded to import a new version of a schema, the dependent schema's version must
change.

Minor version changes, however, would not require changes to the namespace URI of any schemas. Because of this,
semantic compatibility across minor versions (as well as major versions) is essential. Semantic compatibility in this
sense pertains to preserving the business function.

[VER10] UBL Schema and schema module minor version changes MUST not break semantic com-
patibility with prior versions.

Version numbers are based on alogical progression. All major and minor version numbers will be based on positive
integers. Version numbers always increment positively by one.

[VER6] Every UBL Schema and schema module major version number MUST be a sequentially
assigned, incremental number greater than zero.

[VER7] Every UBL Schema and schema module minor version number MUST be a sequentially
assigned, incremental non-negative integer.

UBL versioninformation will also be captured in instances of UBL document schemasviaaubl:UBLVersionlD element.

[VER15] Every UBL document schemaMUST declare an optional element named "UBLVersionID"
immediately following the optional 'UBL Extensions' element.

3.7. Modularity Strategy

There are many possible mappings of XML schema constructs to namespaces and to files. In addition to the logical
taming of complexity that namespaces provide, dividing the physical realization of schemainto multiple files'schema
modules" provides a mechanism whereby reusable components can be imported as needed without the need to import
overly complex complete schema.

[SSM1] UBL Schema expressions MAY be split into multiple schema modules.

schema module A schemadocument containing type definitions and el ement decl arationsintended
to be reused in multiple schemas.

3.7.1. UBL Modularity Model

UBL relies extensively on modularity in schema design. There is no single UBL root schema. Rather, there are a
number of UBL document schemas, each of which expresses a separate businessfunction. The UBL modularity approach
is structured so that users can reuse individual document schemas without having to import the entire UBL document
schema library. Additionally, a document schema can import individual modules without having to import all UBL
schemamodules. Each document schemawill defineits own dependencies. The UBL schemamodularity model ensures

17

Universal Business Language (UBL)
Naming and Design Rules

that logical associations exist between document and internal schemamodules and that individual modules can be reused
to the maximum extent possible. This is accomplished through the use of document and internal schema modules as
shownin Figure 3-1.

If the contents of a namespace are small enough then they can be completely specified within a single schema.
Figure4. UBL Schema M odularity Model
W3C XML Schi ; ; N

In different
namespace than
Document

Schema

| Document Schema |

imported|
included

o
—{ Internal Schema Module | 5.°

N

Ve Intemal Schema Modules
Y are in same NEMESpace as

Document Schema
Shaded areaisa
"schema sat’

udt = Unspecialized Datatype, sdt = Specialized Datatype, cbe = Common Basic Components, cac = Common Aggregate Companents.

d
NAMespaces are
represented by their
prefixes - udt, sdt, cbe,
cac

Figure 3-1 shows the one-to-one correspondence between document schemas and namespaces. It also shows the one-
to-one correspondence between files and schema modules. As shown in figure 3-1, there are two types of schemain
the UBL library — document schema and schema modules. Document schemas are always in their own namespace.
Schema modules may be in adocument schema namespace as in the case of internal schemamodules, or in a separate
namespace as in the ubl:qdt, ubl:cbc and ubl:cac schemamodules. Both types of schemamodules are conformant with
W3C XSD.

A namespace is a collection of semantically related elements, types and attributes. For larger namespaces, schema
modules — internal schema modules — may be defined. UBL document schemas may have zero or more internal
modules that they include. The document schema for a namespace then includes those internal modules.

Internal schema module A schemathat is part of a schema set within a specific namespace.

18

Universal Business Language (UBL)
Naming and Design Rules

Figure 5. Schema M odules

Message Assembly

oM~ 0D3 =
a@~-0w3 —
am ~-0w 3 —
ag ~=0m 3 =
oM ~= 0T 3 —

Code List (CL)
Schema Medule(s)

Another way to visualize the structure is by example. Figure 3-2 depictsinstances of the various schemamodulesfrom
the previous diagram.

Figure 3-3 shows how the order and invoice document schemas import the "CommonA ggregateComponents Schema
Module" and "CommonBasicComponents Schema Module" external schema modules. It aso shows how the order
document schema includes various internal modules — modules local to that namespace. The clear boxes show how
the various schema modul es are grouped into namespaces.

Any UBL schemamodule, be it a document schema or an internal module, may import other document schemas from
other namespaces.

19

Universal Business Language (UBL)
Naming and Design Rules

Figure 6. Order and Invoice Schema Import of Common Component Schema M odules

3.7.1.1. Limitations on Import

If two namespaces are mutually dependent then clearly, importing one will cause the other to be imported as well. For
this reason there must not exist circular dependencies between UBL schema modules. By extension, there must not
exist circular dependencies between namespaces. A namespace " A" dependent upon type definitions or element declar-
ation defined in another namespace "B" must import "B's" document schema.

[SSVI2] A document schemain one UBL namespace that i s dependent upon type definitions or element
declarations defined in another namespace MUST only import the document schema from that
namespace.

To ensure thereisno ambiguity in understanding thisrule, an additional ruleisnecessary to address potentially circular
dependencies as well — schemaA must not import internal schema modules of schemaB.

[SSVI3] A document schemain one UBL namespacethat i s dependant upon type definitions or element
declarations defined in another namespace MUST NOT import internal schema modules from that
namespace.

3.7.2. Internal and External Schema Modules

Asillustrated in Figure 3-1 and 3-2 UBL schema modules will be either internal or external schema modules.

3.7.3. Internal Schema Modules

UBL internal schema modules do not declare a target namespace, but instead reside in the namespace of their parent
schema. All internal schema modules will be accessed using xsd:include.

[SSM6] All UBL internal schema modules MUST be in the same hamespace as their corresponding
document schema.

20

Universal Business Language (UBL)
Naming and Design Rules

UBL internal schema modules will necessarily have semantically meaningful names. Internal schema module names
will identify the parent schema module, the internal schema module function, and the schema modul e itself.

[SSM7] Each UBL internal schemamodule MUST be named { ParentSchemaM oduleName} { Intern-
al SchemaM odul eFunction} { schema modul €}

3.7.4. External Schema Modules

UBL isdedicated to maximizing reuse. Asthe complex types and global element declarationswill bereused in multiple
UBL schemas, alogical modularity approach isto create UBL schemamodules based on collections of reusable types
and elements.

[SSM8] A UBL schemamodule MAY be created for reusable components.

Asidentified in rule SSM2, UBL will create external schemamodules. These external schema modules will be based
on logical groupings of contents. At aminimum, UBL schema modules will be comprised of:

1. UBL CommonAggregateComponents

2. UBL CommonBasicComponents

3. UBL Quadlified Datatypes

In addition UBL will use the following schema modules provided by UN/CEFACT.
1. CCTS Core Component Types

2. CCTS Unqualified Datatypes

3. UN/CEFACT Code Lists

Furthermore, where extensions are used an extension schema module must be provided. This schema module must be
named:

ConmonExt ensi onConponent s
This schema module must not import UBL-defined external schema modules.

[SSM21] The UBL extensions schemamodule MUST beidentified as CommonExtensionComponents
in the document name within the schema header.

3.7.4.1. UBL Common Aggregate Components Schema Module

The UBL library will also contain awide variety of ccts:AggregateBusinessinformationEntities (ABIES). As defined
in rule CTD1, each of these ABIEs will be defined as an xsd:complexType. Although some of these complex types
may be used in only one UBL Schema, many will be reused in multiple UBL schema modules. An aggregation of all
of the ABIE xsd:complexType definitions that are used in multiple UBL schemamodulesinto asingle schemamodule
of common aggregate types will provide for maximum ease of reuse.

[SSMY] A schema module defining all UBL Common Aggregate Components MUST be created.
The normative name for this xsd: ComplexType schema module will be based on its ABIE content.

[SSM10] The UBL Common Aggregate Components schema module MUST be identified as Com-
monAggregateComponents in the document name within the schema header.

21

Universal Business Language (UBL)
Naming and Design Rules

Example 3. Example
Document Name: CommonA ggregateComponents
3.7.4.1.1. UBL CommonAggregateComponents Schema Module Namespace

In keeping with the overall UBL namespace approach, a singular namespace must be created for storing the
ubl:CommonA ggregateComponents schema module.

[NMS7] The ubl: CommonA ggregateComponents schemamodule MUST residein its own namespace.

To ensure consistency in expressing this module, a normative token that will be used consistently in all UBL Schemas
must be defined.

[NMS8] The ubl:CommonA ggregateComponents schema module namespace MUST be represented
by the namespace prefix "cac" when referenced in other schemas.

3.7.4.2. UBL CommonBasicComponents Schema Module

TheUBL library will contain awide variety of ccts:BasicBusinesslnformationEntities (BBIESs). These BBIEsare based
on ccts:Basi cBusinessl nformationEntityProperties (BBI E Properties). BBIE Propertiesare reusablein multiple BBIEs.
Asdefined in rule CTD25, each of these BBIE Properties is defined as an xsd:complexType. Although some of these
complex types may be used in only one UBL Schema, many will be reused in multiple UBL schema modules. To
maximize reuse and standardization, all of the BBIE properties xsd:ComplexType definitions that are used in multiple
UBL schema modules will be aggregated into a single schema module of common basic types.

[SSM11] A schema module defining all UBL Common Basic Components MUST be created.
The normative name for this schema module will be based on its BBIE property xsd:ComplexType content.

[SSM12] The UBL Common Basic Components schema module MUST be identified as Common-
BasicComponents in the document name within the schema header.

3.7.4.2.1. UBL CommonBasicComponents Schema Module Namespace

In keeping with the overall UBL namespace approach, a singular namespace must be created for storing the
ubl:CommonBasi cComponents schema module.

[NMS9] The ubl:CommonBasicComponents schema module MUST reside in its own namespace.

To ensure consistency in expressing the ubl:CommonBasicComponents schema module, a normative token that will
be used consistently in all UBL Schema must be defined.

[NMSL0] The ubl:CommonBasicComponents schema modul e namespace MUST be represented by
the namespace prefix "cbc" when referenced in other schemas.

3.7.4.3. CCTS CoreComponentType Schema Module

The CCTS defines an authorized set of Core Component Types (ccts.CoreComponentTypes) that convey content and
supplementary information related to exchanged data. As the basis for all higher level CCTS models, the ccts.Core-
ComponentTypes are reusable in every UBL schema. An external schema module consisting of a complex type
definition for each ccts.CoreComponentTypeis essential to maximize reusability. UBL usesthe ccts:CoreComponentType
schema module provided by the UN/CEFACT CCTS Datatypes Schema Modules

The CCTS defines an authorized set of primary and secondary Representation Terms (ccts: RepresentationTerms) that
describes the form of every ccts:BusinessinformationEntity. These ccts.RepresentationTerms are instantiated in the

22

Universal Business Language (UBL)
Naming and Design Rules

form of datatypes that are reusable in every UBL schema. The ccts.Datatype defines the set of valid values that can
be used for its associated ccts:BasicBusinessl nformationEntity Property. These datatypes may be qualified or unqual-
ified, that is to say restricted or unrestricted. We refer to these as ccts:UnqualifiedDatatypes (even though they are
technically ccts:Datatypes)or ubl:QualifiedDatatypes.

3.7.4.3.1. CCTS Unqualified Datatypes Schema Module

UBL has adopted the UN/CEFACT Unqualified Datatype schemamodule. Thisincludes the code list schemamodules
that are imported into this schema module. When the ccts:UnqualifiedDatatypes schema module is referenced, the
"udt" namespace prefix must be used.

[NMSL7] The ccts:UnqualifiedDatatypes schema module namespace MUST be represented by the
token "udt" when referenced in other schemas.

3.7.4.3.2. UBL Qualified Datatypes Schema Module

The ubl:QualifiedDatatype is defined by specifying restrictions on the ccts:UnqualifiedDatatype. To align the UBL
qualified Datatypes (ubl:QualifiedDatatypes) with the UBL modul arity and reuse goals, the creation of asingle schema
module that defines all ubl:QualifiedDatatypes is required.

[SSM18] A schema module defining all UBL Qualified Datatypes MUST be created.
The ubl:QualifiedDatatypes must be based upon the ccts:UnqualifiedDatypes.

[SSM20] The UBL Qualified Datatypes schemamodule MUST import the ccts:UnQualifiedDatatypes
schema module.

The ubl:QualifiedDatatypes schema modul e name must follow the UBL module naming approach.

[SSM19] The UBL Qualified Datatypes schema module MUST be identified as QualifiedDatatypes
in the document name in the schema header.

3.7.4.3.3. UBL Qualified Datatypes Schema Module Namespace

In keeping with the overall UBL namespace approach, a singular namespace must be created for storing the
ubl:QualifiedDatatypes schema module.

[NMS15] The ubl:QualifiedDatatypes schema module MUST reside in its own namespace.

To ensure consistency in expressing the ubl:QualifiedDatatypes schema module, a normative token that will be used
inall UBL schemas must be defined.

[NMSL16] The ubl:QualifiedDatatypes schema module namespace MUST be represented by the
namespace prefix "qdt" when referenced in other schemas.

To ensure consistency in expressing the CommonExtensionComponents schema module, a normative token that will
be used in al UBL schemas must be defined.

[NMSL18] The CommonExtensionComponents schema module namespace MUST be represented by
the namespace prefix 'ext’ when referenced in other schemas.

3.8. Annotation and Documentation Requirements

Annotation is an essential tool in understanding and reusing a schema. UBL, as an implementation of CCTS, requires
an extensive amount of annotation to provide all necessary metadata required by the CCT S specification. Each construct

23

Universal Business Language (UBL)
Naming and Design Rules

declared or defined within the UBL library contains the requisite associated metadata to fully describe its nature and
support the CCTS requirement.

3.8.1. Schema Annotation

Although the UBL schema annotation is necessary, its volume results in aconsiderable increase in the size of the UBL
schemas with undesirable performance impacts. To address this issue, two schemas will be devel oped for each UBL
schema. A normative, fully annotated schemawill be provided to facilitate greater understanding of the schemamodule
and its components, and to meet the CCTS metadata requirements. A non-normative schemadevoid of annotation will
also be provided that can be used at run-time if required to meet processor resource constraints.

[GXS2] UBL MUST provide two schemas for each transaction. One normative schemashall befully
annotated. One non-normative schema shall be a run-time schema devoid of documentation.

3.8.2. Embedded documentation

Theinformation about each UBL ccts:BusinessInformationEntity isin the UBL spreadsheet models. UBL spreadsheets
contain all necessary information to produce fully annotated schemas. Fully annotated schemas are valuable tools to
implementersto assist in understanding the nuances of the information contained therein. UBL annotationswill consist
of information currently required by Section 7 of the CCTS and supplemented by metadata from the UBL spreadsheet
models.

The absence of an optional annotation inside the structured set of annotations in the documentation element implies
the use of the default value. For example, there are several annotationsrelating to context such as ccts: BusinessContext
or ccts:IndustryContext whose absence implies that their value is "all contexts”.

Thefollowing rules describe the documentation requirementsfor each ubl: QualifiedDatatype and ccts:UnqualifiedData
type definition. None of these documentation rules apply in the case of extension wherethe 'UBL Extensions' element
isused.

[DOC1] The xsd:documentation element for every Datatype MUST contain a structured set of an-
notationsin the following sequence and pattern (as defined in CCTS Section 7):

« DictionaryEntryName (mandatory)

» Version (mandatory):

* Definition(mandatory)

» RepresentationTerm (mandatory)

» QuadifierTerm(s) (mandatory, where used)
» Uniqueldentifier (mandatory)

» Usage Ruleg(s) (optional)

» Content Component Restriction (optional)

[DOC2] A Datatype definition MAY contain one or more Content Component Restrictionsto provide
additional information on the rel ationship between the Datatype and its corresponding Core Component
Type. If used the Content Component Restrictions must contain a structured set of annotations in
the following patterns:

 RedtrictionType (mandatory): Defines the type of format restriction that applies to the Content
Component.

24

Universal Business Language (UBL)
Naming and Design Rules

 RedtrictionValue (mandatory): The actual value of theformat restriction that appliesto the Content
Component.

» ExpressionType (optional): Defines the type of the regular expression of the restriction value.

[DOC3] A Datatype definition MAY contain one or more Supplementary Component Restrictions
to provide additional information on the relationship between the Datatype and its corresponding
Core Component Type. If used the Supplementary Component Restrictions must contain astructured
set of annotations in the following patterns:

* SupplementaryComponentName (mandatory): | dentifies the Supplementary Component on which
the restriction applies.

 RedtrictionValue (mandatory, repetitive): The actual value(s) that is (are) valid for the Supplement-
ary Component

Thefollowing rule describes the documentation requirements for each ccts:Basi cBusi nessl nformationEntity definition.

[DOCA4] The xsd:documentation element for every Basic Business Information Entity MUST contain
a structured set of annotations in the following patterns:

» ComponentType (mandatory): The type of component to which the object belongs. For Basic
Business |nformation Entities this must be "BBIE".

* DictionaryEntryName (mandatory): The official name of a Basic Business Information Entity.

» Version (optional): An indication of the evolution over time of the Basic Business Information
Entity.

* Definition(mandatory): The semantic meaning of a Basic Business Information Entity.

» Cardinaity(mandatory): Indication whether the Basic Business Information Entity represents a
not-applicable, optional, mandatory and/or repetitive characteristic of the Aggregate Business In-
formation Entity.

» ObjectClassQualifier (optional): The qualifier for the object class.
» ObjectClass(mandatory): The Object Class containing the Basic Business Information Entity.

» PropertyTermQualifier (optional): A qualifier isaword or words which help define and differen-
tiate a Basic Business Information Entity.

 PropertyTerm(mandatory): Property Term represents the distinguishing characteristic or Property
of the Object Class and shall occur naturally in the definition of the Basic Business Information
Entity.

* RepresentationTerm (mandatory): A Representation Term describes the form in which the Basic
Business Information Entity is represented.

» DataTypeQualifier (optional): semantically meaningful name that differentiates the Datatype of
the Basic Business Information Entity from its underlying Core Component Type.

 DataType (mandatory): Defines the Datatype used for the Basic Business Information Entity.

* AlternativeBusinessTerms (optiond): Any synonym terms under which the Basic Business Inform-
ation Entity is commonly known and used in the business.

25

Universal Business Language (UBL)
Naming and Design Rules

The following rule describes the documentation requirements for each ccts:AggregateBusinessl nformationEntity
definition.

Examples (optional): Examples of possible values for the Basic Business Information Entity.

[DOC5] The xsd:documentation element for every Aggregate Business Information Entity MUST
contain a structured set of annotations in the following sequence and pattern:

The following rule describes the documentation requirements for each ccts:AssociationBusinessl nformationEntity
definition.

ComponentType (mandatory): The type of component to which the object belongs. For Aggregate
Business Information Entities this must be "ABIE".

DictionaryEntryName (mandatory): The official name of the Aggregate Business Information
Entity .

Version (optional): Anindication of the evolution over time of the Aggregate Business Information
Entity.

Definition(mandatory): The semantic meaning of the Aggregate Business Information Entity.
ObjectClassQualifier (optional): The qualifier for the object class.

ObjectClass(mandatory): The Object Class represented by the Aggregate Business Information
Entity.

AlternativeBusinessTerms (optional): Any synonym terms under which the Aggregate Business
Information Entity is commonly known and used in the business.

[DOCS6] The xsd:documentation element for every Association Business | nformation Entity el ement
declaration MUST contain a structured set of annotations in the following sequence and pattern:

ComponentType (mandatory): Thetype of component to which the object bel ongs. For Association
Business Information Entities this must be "ASBIE".

DictionaryEntryName (mandatory): The official name of the Association Business Information
Entity.

Version (optional): Anindication of the evolution over time of the Association Business Information
Entity.

Definition(mandatory): The semantic meaning of the Association Business Information Entity.

Cardinality(mandatory): Indication whether the A ssociation Business Information Entity represents
an optional, mandatory and/or repetitive assocation.

ObjectClass(mandatory): The Object Class containing the Association Business Information Entity.

Property TermQualifier (optional): A qualifier isaword or words which help define and differen-
tiate the Association Business Information Entity.

Property Term(mandatory): Property Term represents the Aggregate Business Information Entity
contained by the Association Business Information Entity.

AssociatedObjectClassQualifier (optional): Associated Object Class Qualifiers describe the'context’
of the relationship with another ABIE. That is, it isthe role the contained Aggregate Business I n-

26

Universal Business Language (UBL)
Naming and Design Rules

formation Entity plays within its association with the containing Aggregate Business Information
Entity.

 AssociatedObjectClass (mandatory); Associated Object Classis the Object Class at the other end
of this association. It represents the Aggregate Business Information Entity contained by the As-
sociation Business Information Entity.

[DOCS] The xsd:documentation element for every Supplementary Component attribute declaration-
MUST contain a structured set of annotations in the following sequence and pattern:

» Name (mandatory): Name in the Registry of a Supplementary Component of a Core Component
Type.

 Definition (mandatory): A clear, unambiguous and complete explanation of the meaning of a
Supplementary Component and its relevance for the related Core Component Type.

» Primitive type (mandatory): PrimitiveType to be used for the representation of the value of a
Supplementary Component.

 Possible Value(s) (optional): one possible value of a Supplementary Component.

[DOCY] The xsd:documentation element for every Supplementary Component attribute declaration
containing restrictions MUST include the following additional information appended to the inform-
ation required by DOCS:

* Restriction Value(s) (mandatory): The actual value(s) that is (are) valid for the Supplementary
Component.

4. Naming Rules

The rulesin this section make use of the following special concepts related to XML elements.

1. Top-level element: An element that encloses a whole UBL business message. Note that UBL business messages
might be carried by messaging transport protocols that themselves have higher-level XML structure. Thus, a UBL
top-level element is not necessarily the root element of the XML document that carriesit.

2. Lower-level element: An element that appears inside a UBL business message. Lower-level elements consist of
intermediate and leaf level.

3. Intermediate element: An element not at the top level that is of acomplex type, only containing other elements and
possibly attributes.

4. Leaf element: An element containing only character data (though it may also have attributes). Note that, because
of the XSD mechanismsinvolved, aleaf element that has attributes must be declared as having a complex type, but
aleaf element with no attributes may be declared with either a simple type or a complex type.

4.1. General Naming Rules

In keeping with CCTS, UBL will use English as its normative language. If the UBL Library is translated into other
languages for localization purposes, these additional languages might require additional restrictions. Such restrictions
are expected be formulated as additional rules and published as appropriate.

[GNR1] UBL XML element and type names MUST be in the English language, using the primary
English spellings provided in the Oxford English Dictionary.

27

Universal Business Language (UBL)
Naming and Design Rules

The CCTS adheresto the I nternational Organization for Standardization (1SO)/International Electrotechnical Commission
(IEC) Technical Specification 11179 Information technology — Specification and standardization of data elements.
The UBL component library, as a syntax-neutral representation, is also fully conformant to those rules. The UBL
syntax-specific XSD instantiation of the UBL component library"in some cases'refines the CCTS naming rules to
leverage the capabilities of XML and XSD. Specificaly, truncation rules are applied to allow for reuse of element
names across parent element environments and to maintain brevity and clarity. CCTS, as an implementation of 11179,
furthersitsbasic tenets of data standardization into higher-level constructs as expressed by the ccts:DictionaryEntryNames
of those constructs — such as those for ccts:BasicBusinesslnformationEntities and ccts: AggregateBusinesslnforma-
tionEntities. Since UBL isan implementation of CCTS, UBL uses CCTS dictionary entry names as the basisfor UBL
XML schema construct names. UBL converts these ccts.DictionaryEntryNames into UBL XML schema construct
names using strict transformation rules.

[GNR2] UBL XML element and type names MUST be consistently derived from CCTS conformant
dictionary entry names.

Dictionary entry names contain periods, spaces, other separators, and characters not alowed by W3C XML. These
separators and characters are not appropriate for UBL XML component names.

[GNR3] UBL XML element and type names constructed from ccts.DictionaryEntryNames MUST
NOT include periods, spaces, other separators, or characters not allowed by W3C XML 1.0 for XML
names.

Acronyms and abbreviationsimpact on semantic interoperability, and as such are to be avoided to the maximum extent
practicable. Since some abbreviations will inevitably be necessary, UBL will maintain a normative list of authorized
acronyms and abbreviations. The intent of this restriction is to facilitate the use of common semantics and greater un-
derstanding.

[GNR4] UBL XML element, and simple and complex type names MUST NOT use acronyms, abbre-
viations, or other word truncations, except those in the list of exceptions maintained and published
by the UBL TC.

UBL does not desire a proliferation of acronyms and abbreviations. An exception list will be maintained and tightly
controlled by UBL. Any additionswill only occur after careful scrutiny to include assurance that any additioniscritically
necessary, and that any addition will not in any way create semantic ambiguity.

Once an acronym or abbreviation has been approved, it is essentia to ensuring semantic clarity and interoperability
that the acronym or abbreviation is always used.

[GNR6] The acronyms and abbreviations listed in the UBL-approved list MUST aways be used in
place of the word or phrase they represent.

Generally speaking, the names for UBL XML constructs must always be singular. The only exception permissible is
where the concept itself is pluralized.

[GNR7] UBL XML element, and type names MUST bein singular form unless the concept itself is
plural.

Example 4. Example:

Terms

Approved acronyms and abbreviations must be used consistently across documents. To facilitate consistency the fol-
lowing rules must be applied.

28

Universal Business Language (UBL)
Naming and Design Rules

[GNR10] Acronyms and abbreviations at the beginning of an attribute name MUST appear in all
lower case. All other acronym and abbreviation usage in an attribute declaration MUST appear in
upper case.

[GNR11] Acronyms and abbreviations MUST appear in all upper case for all element declarations
and type definitions.

XML is case sensitive. Consistency in the use of case for a specific XML component (element, type) is essential to
ensure every occurrence of acomponent is treated as the same. Thisis especially true in a business-based data-centric
environment such aswhat is being addressed by UBL. Additionally, the use of visualization mechanisms such as cap-
italization techniques assist in ease of readability and ensure consistency in application and semantic clarity. The
ebXML architecture document specifies a standard use of upper and lower camel case for expressing XML elements
and attributes respectively. UBL will adhere to the ebXML standard. Specifically, UBL element and type names will
be in UpperCamel Case (UCC).

[GNR8] The UpperCamel Case (UCC) convention MUST be used for naming elements and types

Example 5. Example:
CurrencyBaseRate

CityNameType

4.2.Type Naming Rules

UBL identifies severa categories of naming rules for types, namely for complex types based on Aggregate Business
Information Entities, Basic Business Information Entities, and Basic Business Information Entity Properties.

Each of these CCTS constructs have accts:DictionaryEntryNamethat isafully qualified construct based on 1SO 11179.
As such, these names convey explicit semantic clarity with respect to the data being described. Accordingly, these
ccts:DictionaryEntryNames provide a mechanism for ensuring that UBL xsd:complexType names are semantically
unambiguous, and that there are no duplications of UBL type names.

4.2.1. Complex Type Names for CCTS Aggregate Business Information
Entities (ABIES)

UBL xsd:complexType names for ABIEs will be derived from their dictionary entry name by removing separators to
follow general naming rules, and appending the suffix "Type" to replace the word "Details.”

[CTN1] A UBL xsd:complexType name based on an ccts:AggregateBusinessl nformationEntity

MUST be the ccts:DictionaryEntryName with the separators removed and with the "Details" suffix
replaced with "Type".

Example 6. Example:

ccts: AggregateBusiness | nfor mationEntity UBL xsd:complexType
Address. Details AddressType
Financial Account. Details Financial AccountType

29

Universal Business Language (UBL)
Naming and Design Rules

4.2.2. Complex Type Names for CCTS Basic Business Information
Entity (BBIE) Properties

All BBIE Properties are reusabl e across multiple BBIEs. The CCTS does not specify, but implies, that BBIE Property
names are the reusable property term and representation term of the family of BBIESsthat are based on them. The UBL
xsd:complexType namesfor BBIE Propertieswill be derived from the shared property and representation terms portion
of the dictionary entry namesin which they appear by removing separatorsto follow general naming rules, and appending
the suffix "Type".

[CTN2] A UBL xsd:complexType name based on a ccts:BasicBusinessl nformationEntity Property
MUST be the ccts:DictionaryEntryName shared property term and its qualifiers and representation
term of the ccts:BasicBusinessnformationEntity, with the separators removed and with the "Type"
suffix appended after the representation term.

Example 7. Example:

<l --===== Basi c Business Information Entity Type
Definitions ===== --> <xsd: conpl exType nane="Char gel ndi cat or Type"> ...
</ xsd: com ext Type>

[CTN6] A UBL xsd:complexType name based on a ccts:BasicBusinessl nformationEntity Property
and with a. ccts:Basi cBusinessl nformationEntityRepresentationTerm of 'Text' MUST have theword
"Text" removed from the end of its name.

[CTN7] A UBL xsd:complexType name based on a ccts:BasicBusinessl nformationEntity Property
and with a. ccts:Basi cBusinessl nformationEntityRepresentationTerm of 'Identifier MUST have the
word "Identifier" replaced by the word "ID" at the end of its name.

[CTN8] A UBL xsd:complexType name based on a ccts:Basi cBusinessl nformationEntity Property
MUST remove al duplication of wordsthat occur as aresult of duplicate property terms and repres-
entation terms.

4.3. Element Naming Rules

Asdefined inthe UBL Model (See Figure 2-3), UBL elementswill be created for ccts: AggregateBusi nessl nformation-
Entities, ccts:BasicBusinessl nformationEntities, and ccts: Associ ationBusinessl nformationEntities. UBL element names
will reflect thisrelationship in full conformance with 1SO11179 element naming rules.

4.3.1. Element Names for CCTS Aggregate Business Information En-
tities (ABIES)

[ELN1] A UBL globa element name based on a ccts:ABIE MUST be the same as the name of the
corresponding xsd:complexType to which it is bound, with the word "Type" removed.

For example, a UBL xsd:complexType name based on the ABIE Party. Details will be Party Type. The global element
based on Party Type will be named Party .

30

Universal Business Language (UBL)
Naming and Design Rules

Example 8. Example:

<xsd: el enent nanme="Party" type="PartyType"/>
<xsd: conpl exType nanme="PartyType"> <xsd: annot ati on>
"I --Docunentati on goes here--> </xsd: annot ati on> <xsd: sequence>
<xsd: el enent ref="cbc: MarkCarel ndi cator" m nOccurs="0" maxCccurs="1"> ..
</ xsd: el enent > <xsd: el enent ref="chc: MarkAttenti onl ndi cat or"
m nQccur s="0" maxCccurs="1"> ... </xsd: el ement> <xsd: el enent
ref ="Partyldentification" m nQOccurs="0" maxCccurs="unbounded"> ..
</ xsd: el enent > <xsd: el ement ref="PartyNanme" m nCccurs="0"
maxQccurs="1"> ... </xsd: el enent > <xsd: el enent ref="Addr ess"
m nQccur s="0" maxCccurs="1"> ... </xsd: el enent> ..
</ xsd: sequence>

4.3.2. Element Names for CCTS Basic Business Information Entity
(BBIE) Properties

The same naming concept used for ABIES applies to BBIE Properties.

[ELN2] A UBL globa element name based on a ccts:BBIEProperty MUST be the same as the name
of the corresponding xsd:complexType to which it is bound, with the word "Type" removed.

Example 9. Example:

</ xsd: com ext Type> ... <!--===== Basic Business Information Entity
Property El enent Decl arati ons =====-> <xsd: el enent name="Char gel ndi cat or"
t ype="Char gel ndi cat or Type"/ >

4.3.3. Element Names for CCTS Association Business Information
Entities (ASBIES)

ANnASBIEisnot aclasslikean ABIE or aBBIE Property that isreused asaBBIE. Rather, it is an association between
two classes. As such, an element representing the ASBIE does not have its own unique xsd:complexType. Instead,
when an element representing an ASBIE is declared, the element is bound to the xsd:complexType of its associated
ABIE by referencing its global element declaration.

[ELN3] A UBL global element name based on a ccts:ASBIE MUST be the ccts:ASBIE dictionary
entry name property term and its qualifiers; and the object class term and qualifiers of its associated
ccts:ABIE. All ccts:DictionaryEntryName separators MUST be removed..

4.4. Attributes in UBL

UBL, as a transactional based XML exchange format, has chosen to significantly restrict the use of attributes. This
restriction isin keeping with the fact that attribute usageis relegated to supplementary components only; all "primary”
business data appears exclusively in element content. These attributes are defined in the UN/CEFACT Unqualified
Datatype schema module.

31

Universal Business Language (UBL)
Naming and Design Rules

5. Declarations and Definitions

In W3C XML Schema, elements are defined in terms of complex or simple types and attributes are defined in terms
of simple types. The rulesin this section govern the consistent structuring of these type constructs and the manner for
unambiguously and thoroughly documenting them in the UBL Library.

5.1. Type Definitions
5.1.1. General Type Definitions

Since UBL elements and typesareintended to be reusable, al types must be named. This permits other typesto establish
elementsthat reference these types, and also supports the use of extensionsfor the purposes of versioning and custom-
ization.

[GTD1] All types MUST be named.

Example 10. Example:

<xsd: conpl exType nanme="QuantityType"> ...
</ xsd: conpl exType>

UBL disallows the use of the type xsd:any Type, because this feature permits the introduction of potentially unknown
typesinto an XML instance. UBL intendsthat all constructswithin theinstance be described by the schemas describing
that instance - xsd:any Type is seen as working counter to the requirements of interoperability. In consequence, partic-
ular attention is given to the need to enable meaningful validation of the UBL document instances. Were it not for this,
xsd:any Type might have been allowed.

[GTD2] The predefined XML Schematype xsd:anyType MUST NOT be used.

5.1.2. Simple Types

The Core Components Technical Specification provides a set of constructs for the modeling of basic data, Core Com-
ponent Types. These are represented in UBL with alibrary of complex types, with the effect that most "simple" data
is represented as property sets defined according to the CCTs, made up of content components and supplementary
components. In most cases, the supplementary components are expressed as XML attributes, the content component
becomes element content, and the CCT is represented with an xsd:complexType. There are exceptions to thisrule in
those cases where al of a CCT's properties can be expressed without the use of attributes. In these cases, an xsd:sim-
pleTypeis used.

UBL does not define its own simple types. These are defined in the UN/CEFACT Unqualified Datatype schema
module. UBL may define restrictions of these simple typesin the UBL Qualified Datatype schema module.

5.1.3. Complex Types

Since even simple datatypes are model ed as property setsin most cases, the XML expression of these models primarily
employs xsd:complexType. To facilitate reuse, versioning, and customization, all complex types are named. In the
UBL model ABIEs, are considered classes (objects) .

[CTD1] For every classidentified in the UBL model, a named xsd:complexType MUST be defined.

32

Universal Business Language (UBL)
Naming and Design Rules

Example 11. Example:

<xsd: conpl exType name="Bui | di ngNaneType" >
</ xsd: conpl exType>

Every classidentified in the UBL model consists of properties. These properties are either ASBIEs, when the property
represents another class, or BBIE properties.

[CTD25] For every ccts.BBIEProperty identified in the UBL model anamed xsd:complexType must
be defined.

5.1.3.1. Aggregate Business Information Entities (ABIES)

The concept of an ABIE encapsulates the relationship between a class (the ABIE) and its properties (those data items
contained within the ABIE). UBL represents this relationship by defining an xsd:complexType for each ABIE with
its properties represented as a sequence of referencesto global elements.

[CTD2] Every ccts.ABIE xsd:complexType definition content model MUST use the xsd:sequence
element containing references to the appropriate global element declarations.

Example 12. Example:

<xsd: conpl exType nane="AddressType"> ...
<xsd: sequence> <xsd: el enent ref="chc: G tyNane" m nCccurs="0"
maxQccurs="1"> ... </xsd: el enent > <xsd: el enent ref="cbc: Post al Zone"
m nQccur s="0" maxCccurs="1"> ... </xsd:el enent>...
</ xsd: sequence> </ xsd: conpl exType>

5.1.3.2. Basic Business Information Entities (BBIES)

All BBIEs, in accordance with the Core Components Technical Specification, have a representation term. This may
beaprimary or secondary representation term. Representation terms describe the structural representation of the BBIE.
These representation terms are expressed in the UBL Model as Unqualified Datatypes bound to a Core Component
Type that describes their structure. In addition to the Unqualified Datatypes defined in CCTS, UBL has defined a set
of Qualified Datatypes that are derived from the CCTS Unqualified Datatypes.There are a set of rules concerning the
way these relationships are expressed in the UBL XML library. As discussed above, BBIE Properties are represented
with complex types. Within these are xsd:simpleContent elements that extend the Datatypes.

[CTD3] Every ccts:.BBIEProperty xsd:complexType definition content model MUST use the
xsd:simpleContent element.

[CTD4] Every ccts:BBIEProperty xsd:complexType content model xsd:simpleContent element
MUST consist of an xsd:extension element.

[CTD5] Every ccts:BBIEProperty xsd:complexType content model xsd:base attribute value MUST
be the UN/CEFACT Unqualified Datatype or UBL Qualified Datatype as appropriate.

Example 13. Example:

<xsd: conpl exType nanme="Street NanmeType" >
<xsd: si npl eCont ent > <xsd: ext ensi on base="udt: NaneType"/ >
</ xsd: si npl eCont ent > </ xsd: conpl exType>

33

Universal Business Language (UBL)
Naming and Design Rules

5.1.3.3. Datatypes

There is a direct one-to-one relationship between ccts: CoreComponentTypes and ccts:PrimaryRepresentationTerms.
Additionally, there are several ccts.SecondaryRepresentationTerms that are semantic refinements of their parent
ccts.PrimaryRepresentationTerm. The total set of ccts:RepresentationTerms by their nature represent ccts.Datatypes.
Specifically, for each ccts. PrimaryRepresentationTerm or ccts. SecondaryRepresentationTerm, accts.UnqualifiedDatatype
exists. In the UBL XML Library, these ccts:UnqualifiedDatatypes are expressed as complex or simple types that are
of the type of its corresponding ccts.CoreComponentType. UBL uses the ccts:UnqualifiedDatatypes that are provided
by the UN/CEFACT Unqualified Datatype (udt) schema module.

5.1.3.3.1. Qualified Datatypes

The data types defined in the unqualified data type schema module are intended to be suitable as the xsd:base type for
some, but not all BBIEs. As business process modeling reveals the need for specialized data types, new A¢€ qualified
types will need to be defined. These new ccts.QualifiedDatatype must be based on an ccts:UnqualifiedDatatype and
must represent a semantic or technical restriction of the ccts:UnqualifiedDatatype. Technical restrictions must be im-
plemented as a xsd:restriction or as a new xsd:simpleType if the supplementary components of the qualified data type
map directly to the properties of a built-in XSD data type.

[CTD6] For every Qualified Datatype used in the UBL model, a named xsd.complexType or
xsd:simpleType MUST be defined.

[CTD20] A ccts:QualifiedDataType MUST be based on an unqualified data type and add some se-
mantic and/or technical restriction to the unqualified data type.

[CTD21] The name of a ccts.QualifiedDataType MUST be the name of its base ccts.Unqualified-
DataType with separators and spaces removed and with its qualifier term added.

In accordance with rule GXS3 built-in XSD data types will be used whenever possible.

[CTD22] Every qualified datatype based on an unqualified datatype xsd:complexType whose supple-
mentary components map directly to the properties of an XSD built-in data type

MUST be defined as an xsd:simpleType
MUST contain one xsd:restriction element

MUST include an xsd:base attribute that defines the specific X SD built-in data type required for the
content component

[CTD23] Every qualified datatype based on an unqualified datatype xsd:complex Type whose supple-
mentary components do not map directly to the properties of an XSD built-in data type

MUST be defined as an xsd:complexType

MUST contain one xsd:simpleContent element

MUST contain one xsd:restriction element

MUST include the unqualified datatype as its xsd:base attribute

[CTD24] Every qualified datatype based on an unqualified datatype xsd:simpleType
MUST contain one xsd:restriction element

MUST include the unqualified datatype as its xsd:base attribute

Universal Business Language (UBL)
Naming and Design Rules

5.1.3.4. Core Component Types

UBL has adopted UN/CEFACT's Core Component Type schema module.

5.2. Element Declarations

5.2.1. Elements Bound to Complex Types

The binding of UBL elementsto their xsd:complexType is based on the associations identified in the UBL model. For
the ccts:BasicBusinesslnformationEntities (BBIES) and ccts: AggregateBusinessl nformationEntities (ABIEs), the UBL
elements will be directly associated to its corresponding xsd:complexType.

[ELD3] For every class and property identified in the UBL model, a global element bound to the
corresponding xsd:complexType MUST be declared.

Example 14. Example:

For the Party.Details object class, acomplex type/global element declaration pair is created through the declaration of
aParty element that is of type Party Type.

The element thus created is useful for reuse in the building of new business messages. The complex type thus created
is useful for both reuse and customization, in the building of both new and contextualized business messages.

Example 15. Example:

<xsd: el enent nanme="Buyer Party"
t ype="Buyer PartyType"/ > <xsd: conpl exType nane="Buyer PartyType". ..
</ xsd: conpl exType>

5.2.2. Elements Representing ASBIEs

A ccts:AssociationBusinesslnformationEntity (ASBIE) is not aclass like ABIEs. Rather, it is an association between
two classes. As such, the element declaration will bind the element to the xsd:complexType of the associatedABIE.
There are two types of ASBIEs — those that have qualifiers in the object class, and those that do not.

[ELD4] When accts:ASBIE isunqualified, it isbound viareference to the global ccts:ABIE element
to which it is associated.

[ELD11] When a cctsASBIE is qualified, a new element MUST be declared and bound to the
xsd:complexType of its associated ccts:ABIE.

5.3. Code List Import

[ELD6] The codelist xsd:import element MUST contain the namespace and schemalocation attributes.

5.4. Empty Elements

[ELD7] Empty elements MUST not be declared, except in the case of extension, where the 'UBL
Extensions' element is used.

35

Universal Business Language (UBL)
Naming and Design Rules

6. Code Lists

UBL has adopted the Code List Methodology proposed by G Ken Holman. Seethe UBL TC site for alink to the latest
draft.

In addition to the methodol ogy, the following rules apply.
[CDL1] All UBL Codes MUST be part of aUBL or externally maintained Code List.

Because the majority of code lists are owned and maintained by external agencies, UBL will make maximum use of
such external code lists where they exist.

[CDL2] The UBL Library SHOULD identify and use external standardized code lists rather than
develop its own UBL-native code lists.

In some casesthe UBL Library may extend an existing code list to meet specific business requirements. In others cases
the UBL Library may have to create and maintain a code list where a suitable code list does not exist in the public
domain. Both of these types of code lists would be considered UBL-internal code lists.

[CDL3] The UBL Library MAY design and use an internal code list where an existing external code
list needs to be extended, or where no suitable external code list exists.

UBL-internal code lists will be designed with maximum re-use in mind to facilitate maximum use by others.

7. Miscellaneous XSD Rules

UBL, asabusiness standard vocabul ary, requires consistency in its devel opment. The number of UBL Schemadevel opers
will expand over time. To ensure consistency, it is necessary to address the optional featuresin XSD that are not ad-
dressed el sewhere.

7.1. xsd:simpleType

UBL guiding principles require maximum reuse. XSD provides for forty four built-in Datatypes expressed as simple
types. In keeping with the maximize re-use guiding principle, these built-in simple types should be used wherever
possible.

[GXS3] Built-in XSD Simple Types SHOULD be used wherever possible.

7.2. Namespace Declaration

TheW3C X SD specification alows for the use of any token to represent its location. To ensure consistency, UBL has
adopted the generally accepted convention of using the "xsd" token for all UBL schema and schema modules.

[GXHA] All W3C XML Schema constructsin UBL Schema and schema modules MUST contain the
following namespace declaration on the xsd schema element:

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"

36

Universal Business Language (UBL)
Naming and Design Rules

7.3. xsd:substitutionGroup

The xsd:substitutionGroup feature enables a type definition to identify substitution elements in a group. Although a
useful feature in document centric XML applications, this feature is not used by UBL.

[GXS5] The xsd:substitutionGroup feature MUST NOT be used.

7.4. xsd:final

UBL does not use extensions in its normative schema. Extensions are allowed by customizers as outlined in the
Guidelinesfor Customization. UBL may determinethat certain type definitions areinnapropriate for any customization.
In those instances, the xsd:final attribute will be used.

[GXSB] Thexsd:final attribute MUST be used to control extensionswherethereisadesireto prohibit
further extensions.

7.5. xsd: notation

The xsd:notation attribute identifies a notation. Notation declarations corresponding to all the <notation> element in-
formation items in the [children], if any, plus any included or imported declarations. Per XSD Part 2, "It is an
A, A-errorA,A- for NOTATION to be used directly in a schema. Only Datatypes that are A, A-derivedA, A- from
NOTATION by specifying avalue for A, A-enumerationA, A- can be used in aschema." The UBL schemamodel does
not require or support the use of this feature.

[GXS7] xsd:notation MUST NOT be used.

7.6. xsd:all

The xsd:all compositor requires occurrence indicators of minOccurs = 0 and maxOccurs = 1. The xsd:all compositor
allowsfor elementsto occur in any order. The result isthat in an instance document, elements can occur in any order,
are always optional, and never occur more than once. Such restrictions are inconsistent with data-centric scenarios
such as UBL.

[GXSB] The xsd:all element MUST NOT be used.

7.7. xsd:choice

The xsd:choice compositor alows for any element declared inside it to occur in the instance document, but only one.
As with the xsd:all compositor, this feature is inconsistent with business transaction exchanges. UBL recognizes that
it isavery useful construct in situations where customization and extensibility are not a concern, however, UBL does
not recommend its use because xsd:choice cannot be extended.

[GXS9] The xsd:choice element SHOULD NOT be used where customisation and extensibility are
aconcern.

7.8. xsd:include

xsd:include can only be used when the including schemaiis in the same namespace as the included schema.

37

Universal Business Language (UBL)
Naming and Design Rules

7.9. xsd:union

The xsd:union feature provides amechani sm whereby adatatypeis created as aunion of two or more existing datatypes.
With UBL's strict adherence to the use of ccts:Datatypes that are explicitly declared in the UBL library, thisfeatureis
inappropriate except for codelists. In some cases external customizers may choose to use this technique for codelists
and as such the use of the union technique may prove beneficia for customizers.

[GXSL11] Thexsd:union technique MUST NOT be used except for Code Lists. The xsd:uniontechnique
MAY be used for Code Lists.

7.10. xsd:appinfo

The xsd:appinfo feature is used by schemato convey processing instructions to a processing application, Stylesheet,
or other tool. Some users of UBL have determined that thistechnique posesasecurity risk and have employed techniques
for stripping xsd:appinfo from schemas. As UBL is committed to ensuring the widest possible target audience for its
XML library, thisfeature is not used — except to convey non-normative information.

[GXS12] UBL designed schema SHOULD NOT use xsd:appinfo. If used, xsd:appinfo MUST only
be used to convey non-normative information.

7.11. xsd:schemalLocation

UBL is an international standard that will be used in perpetuity by companies around the globe. It is important that
these users have unfettered access to all UBL schema.

[GXSL15] Each xsd:schemal ocation attribute declaration MUST contain a system-resolvable URL,
which at the time of release from OASIS shall be a relative URL referencing the location of the
schema or schema module in the rel ease package.

7.12. xsd:nillable

[GXS16] The built in xsd:nillable attribute MUST NOT be used for any UBL declared element.

7.13. xsd:anyAttribute

UBL disallowsthe use of xsd:anyAttribute, because thisfeature permitstheintroduction of potentialy unknown attributes
into an XML instance. UBL intendsthat all constructs within the instance be described by the schemas describing that
"Iinstance" - xsd:anyAttribute is seen as working counter to the requirements of interoperability. In consequence, par-
ticular attention is given to the need to enable meaningful validation of the UBL document instances. Were it not for
this, xsd:anyAttribute might have been allowed.

[GXSL7] The xsd:anyAttribute MUST NOT be used.

7.14. Extension and Restriction

UBL fully recognizes the value of supporting extension and restriction of its core library by customizers. The UBL
extension and restriction recommendations are discussed in the Guidelines for the Customization of UBL Schemas
available as part of UBL 1.0.

[GXS13] Complex Type extension or restriction MAY be used where appropriate.

38

Universal Business Language (UBL)
Naming and Design Rules

8. Instance Documents

Previous drafts of this document contained a section specifying several rules governing conformant UBL instances.
Since these rules, addressing instance validation, character encoding, and empty elements, do not pertain to schema
design or the naming of information items, they have been rel ocated to the UBL 2.0 specification as document constraints
to be observed in addition to the constraints expressed in the UBL 2.0 schemas. They have also been attached below
as Appendix B, Additional Document Constraints.

A. UBL NDR 2.0 Checklist

The following checklist constitutes all UBL XML naming and design rules as defined in UBL Naming and Design
Rules version 2.0, 26 January 2006. The checklist isin alphabetical sequence as follows:

Attribute Declaration Rules (ATD)
Code List Rules (CDL)

ComplexType Definition Rules (CTD)
ComplexType Naming Rules (CTN)
Documentation Rules (DOC)

Element Declaration Rules (ELD)
Element Naming Rules (ELN)

General Naming Rules (GNR)

General Type Definition Rules (GTD)
General XML SchemaRules (GXS)
Modeling Constraints Rules (MDC)
Naming Constraints Rules (NMC)
Namespace Rules (NMS)

Root Element Declaration Rules (RED)
Schema Structure Modularity Rules (SSM)

Versioning Rules (VER)

Attribute Declaration rules

[ATD6] (See GXS15)
[ATD7] (See GXS16)
[ATDS§] (See GXS17)
‘ Code List rules

39

Universal Business Language (UBL)
Naming and Design Rules

[CDL1] All UBL Codes MUST be part of a UBL or externally maintained Code List.

[CDLZ2] The UBL Library SHOULD identify and use external standardized code lists rather than develop its own UBL-
native code lists.

[CDL3] The UBL Library MAY design and use an interna code list where an existing external code list needs to be ex-
tended, or where no suitable external code list exists.

ComplexType Definition rules

[CTD1] For every classidentified in the UBL model, a named xsd:complexType MUST be defined.

[CTD2] Every ccts:ABIE xsd:complexType definition content model MUST use the xsd:sequence element containing
references to the appropriate global element declarations.

[CTD3] Every ccts:BBIEProperty xsd:complexType definition content model MUST use the xsd:simpleContent element.

[CTD4] Every ccts:BBIEProperty xsd:complexType content model xsd:simpleContent element MUST consist of an
xsd:extension element.

[CTD5] Every ccts:BBIEProperty xsd:complexType content model xsd:base attribute value MUST be the UN/CEFACT
Unqualified Datatype or UBL qualified Datatype as appropriate.

[CTD#g] For every Qualified Datatype used in the UBL model, a named xsd:complexType or xsd:simpleType MUST be
defined.

[CTD20] A ccts:QualifiedDataType MUST be based on an unqualified data type and add some semantic and/or technical
restriction to the unqualified data type.

[CTD21] The name of accts;QualifiedDataType MUST be the name of its base ccts:UnqualifiedDataType with separators

and spaces removed and with its qualifier term added.

[CTD22] Every qualified datatype based on an unqualified datatype xsd:complexType whose supplementary components
map directly to the properties of an XSD built-in data type

MUST be defined as an xsd:simpleType
MUST contain one xsd:restriction element

MUST include an xsd:base attribute that defines the specific XSD built-in data type required for the content
component

[CTD23] Every qualified datatype based on an unqualified datatype xsd:complexType whose supplementary components
do not map directly to the properties of an XSD built-in data type

MUST be defined as an xsd:complexType
MUST contain one xsd:simpleContent element
MUST contain one xsd:restriction element

MUST include the unqualified datatype as its xsd:base attribute
[CTD24] Every qualified datatype based on an unqualified datatype xsd:simpleType

MUST contain one xsd:restriction element

MUST include the unqualified datatype as its xsd:base attribute
[CTD25] For every ccts:BBIEProperty identified in the UBL model a named xsd:complexType must be defined.

‘ Complex Type Naming rules

40

Universal Business Language (UBL)
Naming and Design Rules

[CTN1]

A UBL xsd:complexType name based on an ccts:Aggregate Businessl nformationEntity MUST be the ccts:Dic-
tionaryEntryName with the separators removed and with the "Details" suffix replaced with "Type".

[CTNZ]

A UBL xsd:complexType name based on a ccts:BasicBusiness InformationEntityProperty MUST be the
ccts:Dictionary EntryName shared property term and its qualifiers and representation term of the ccts:BasicBusi-
ness| nformationEntity, with the separators removed and with the "Type" suffix appended after the representation
term.

[CTN6]

A UBL xsd:complexType name based on a ccts:Basi cBusinessl nformationEntityProperty and with a . ccts:Ba-
sicBusinessl nformationEntityRepresentationTerm of 'Text' MUST have the word "Text" removed from the end
of its name.

[CTN7]

A UBL xsd:complexType name based on a ccts:BasicBusinessl nformationEntityProperty and with a . ccts:Ba-
sicBusinessl nformationEntityRepresentationTerm of 'Identifier MUST have the word "ldentifier" replaced by
the word "ID" at the end of its name.

[CTNS]

A UBL xsd:complexType name based on a ccts:Basi cBusiness! nformati onEntityProperty MUST remove all
duplication of words that occur as aresult of duplicate property terms and representation terms.

Documentation rules

[DOC1] The xsd:documentation element for every Datatype MUST contain astructured set of annotationsin thefollowing
sequence and pattern (as defined in CCTS Section 7):
DictionaryEntryName (mandatory)
Version (mandatory):
Definition(mandatory)
RepresentationTerm (mandatory)
QualifierTerm(s) (mandatory, where used)
Uniquel dentifier (mandatory)
Usage Rule(s) (optional)
Content Component Restriction (optional)

[DOC?] A Datatype definition MAY contain one or more Content Component Restrictions to provide additional inform-
ation on the relationship between the Datatype and its corresponding Core Component Type. If used the Content
Component Restrictions must contain a structured set of annotationsin the following patterns:
RestrictionType (mandatory): Defines the type of format restriction that applies to the Content Component.
RestrictionValue (mandatory): The actual value of the format restriction that applies to the Content Component.
ExpressionType (optional): Defines the type of the regular expression of the restriction value.

[DOC3] A Datatype definition MAY contain one or more Supplementary Component Restrictions to provide additional

information on the relationship between the Datatype and its corresponding Core Component Type. If used the
Supplementary Component Restrictions must contain a structured set of annotations in the following patterns:

SupplementaryComponentName (mandatory): |dentifies the Supplementary Component on which therestriction
applies.

RestrictionValue (mandatory, repetitive): The actual value(s) that is (are) valid for the Supplementary Component

41

Universal Business Language (UBL)
Naming and Design Rules

[DOC4]

The xsd:documentation element for every Basic Business Information Entity MUST contain a structured set of
annotationsin the following petterns:

ComponentType (mandatory): Thetype of component to which the object belongs. For Basic Business Information
Entities this must be "BBIE".

DictionaryEntryName (mandatory): The official name of a Basic Business Information Entity.
Version (optional): An indication of the evolution over time of the Basic Business Information Entity.
Definition(mandatory): The semantic meaning of a Basic Business Information Entity.

Cardinality(mandatory): Indication whether the Basic Business Information Entity represents a not-applicable,
optional, mandatory and/or repetitive characteristic of the Aggregate Business Information Entity.

ObjectClassQualifier (optional): The qualifier for the object class.
ObjectClass(mandatory): The Object Class containing the Basic Business Information Entity.

Property TermQualifier (optional): A qualifier is a word or words which help define and differentiate a Basic
Business Information Entity.

Property Term(mandatory): Property Term represents the distinguishing characteristic or Property of the Object
Class and shall occur naturally in the definition of the Basic Business Information Entity.

RepresentationTerm (mandatory): A Representation Term describes the form in which the Basic Business Inform-
ation Entity is represented.

DataTypeQualifier (optional): semantically meaningful namethat differentiates the Datatype of the Basic Business
Information Entity from its underlying Core Component Type.

DataType (mandatory): Defines the Datatype used for the Basic Business Information Entity.

AlternativeBusinessTerms (optional): Any synonym terms under which the Basic Business Information Entity
is commonly known and used in the business.

Examples (optional): Examples of possible values for the Basic Business Information Entity

[DOCS5]

The xsd:documentation element for every Aggregate Business Information Entity MUST contain a structured
set of annotations in the following sequence and pattern:

ComponentType (mandatory): The type of component to which the object belongs. For Aggregate Business In-
formation Entities this must be "ABIE".

DictionaryEntryName (mandatory): The official name of the Aggregate Business Information Entity .
Version (optional): An indication of the evolution over time of the Aggregate Business Information Entity.
Definition(mandatory): The semantic meaning of the Aggregate Business Information Entity.
ObjectClassQualifier (optional): The qualifier for the object class.

ObjectClass(mandatory): The Object Class represented by the Aggregate Business Information Entity.

AlternativeBusinessTerms (optional): Any synonym terms under which the Aggregate Business Information
Entity is commonly known and used in the business.

42

Universal Business Language (UBL)
Naming and Design Rules

[DOCE] The xsd:documentation element for every Association Business Information Entity element declaration MUST
contain a structured set of annotations in the following sequence and pattern:
ComponentType (mandatory): The type of component to which the object belongs. For Association Business
Information Entities this must be "ASBIE".
DictionaryEntryName (mandatory): The official name of the Association Business Information Entity.
Version (optional): An indication of the evolution over time of the Association Business Information Entity.
Definition(mandatory): The semantic meaning of the Association Business Information Entity.
Cardinality(mandatory): Indication whether the Association Business Information Entity represents an optional,
mandatory and/or repetitive assocation.
ObjectClass(mandatory): The Object Class containing the Association Business Information Entity.
PropertyTermQualifier (optiona): A qualifier isaword or wordswhich help define and differentiate the Association
Business Information Entity.
Property Term(mandatory): Property Term represents the Aggregate Business Information Entity contained by
the Association Business Information Entity.
AssociatedObjectClassQualifier (optional): Associated Object Class Qualifiers describe the 'context' of the rela-
tionship with another ABIE. That is, it is the role the contained Aggregate Business Information Entity plays
within its association with the containing Aggregate Business Information Entity.
AssociatedObjectClass (mandatory); Associated Object Classisthe Object Class at the other end of thisassociation.
It representsthe Aggregate Business | nformation Entity contained by the Association Business Information Entity.
[DOCSg] The xsd:documentation element for every Supplementary Component attribute declarationMUST contain a
structured set of annotations in the following sequence and pattern:
Name (mandatory): Name in the Registry of a Supplementary Component of a Core Component Type.
Definition (mandatory): A clear, unambiguous and complete explanation of the meaning of a Supplementary
Component and its relevance for the related Core Component Type.
Primitive type (mandatory): PrimitiveType to be used for the representation of the value of a Supplementary
Component.
Possible Value(s) (optional): one possible value of a Supplementary Component.
[DOCY] The xsd:documentation element for every Supplementary Component attribute declaration containing restrictions

MUST include the following additional information appended to the information required by DOCS:

Restriction Value(s) (mandatory): The actual value(s) that is (are) valid for the Supplementary Component.

Element Declaration rules

[ELD2] All element declarations MUST be global

[ELD3] For every class and property identified in the UBL model, a global element bound to the corresponding
xsd:complexType MUST be declared.

[ELD4] When accts:ASBIE is unqualified, it is bound viareference to the global ccts:ABIE element to which it is asso-
ciated.

[ELD6] The code list xsd:import element MUST contain the namespace and schema |ocation attributes.

43

Universal Business Language (UBL)
Naming and Design Rules

[ELD7] Empty elements MUST not be declared, except in the case of extension, where the 'UBLExtensions' element is
used.

[ELD9] (See GXS14)

[ELD11] When a ccts:ASBIE is qualified, a new element MUST be declared and bound to the xsd:complexType of its
associated ccts:ABIE.

[ELD12] The 'UBLExtensions' element MUST be declared as the first child of the document element with xsd:minOc-
curs="0".

[ELD13] The 'UBLProfilelD' element MUST be declared immediately following the 'UBLExtensions element with
xsd:minOccurs="0".

[ELD14] The 'UBLSubsetlD' element MUST be declared immediately following the 'UBLProfilelD' element with

xsd:minOccurs="0".

Element Naming rul

les

[ELN1]

A UBL global element name based on a ccts:ABIE MUST be the same as the name of the corresponding
xsd:complexType to which it is bound, with the word "Type" removed.

[ELNZ2] A UBL global element name based on a ccts:BBIEProperty MUST be the same as the name of the corresponding
xsd:complexType to which it is bound, with the word "Type" removed.
[ELN3] A UBL global element name based on a ccts:ASBIE MUST be the ccts:ASBIE dictionary entry name property

term and its qualifiers; and the object class term and qualifiers of its associated ccts:ABIE. All ccts:Dictionary-
EntryName separators MUST be removed..

General Naming rul

es

[GNR1]

UBL XML element and type names MUST be in the English language, using the primary English spellings
provided in the Oxford English Dictionary.

[GNR2] UBL XML element and type names MUST be consistently derived from CCTS conformant dictionary entry
names.

[GNR3] UBL XML element and type names constructed from ccts:DictionaryEntryNames MUST NOT include periods,
spaces, other separators, or characters not allowed by W3C XML 1.0 for XML names

[GNR4] UBL XML element, and simple and complex type names MUST NOT use acronyms, abbreviations, or other
word truncations, except those in the list of exceptions maintained and published by the UBL TC.

[GNR6] The acronyms and abbreviations listed in the UBL-approved list MUST always be used in place of the word or
phrase they represent.

[GNRY7] UBL XML element, and type names MUST be in singular form unless the concept itself is plural.

[GNRS] The UpperCamel Case (UCC) convention MUST be used for naming elements and types.

[GNR10] Acronyms and abbreviations at the beginning of an attribute name MUST appear in all lower case. A, A All other
acronym and abbreviation usage in an attribute declaration MUST appear in upper case.

[GNR11] Acronyms and abbreviations MUST appear in al upper case for all element declarations and type definitions.

General Type Defin

ition Rules

[GTD1]

All types MUST be named.

[GTD2]

The predefined XML Schema type xsd:anyType MUST NOT be used.

‘ Genera XML Schema Rules

Universal Business Language (UBL)
Naming and Design Rules

[GXS1]

UBL Schema MUST conform to the following physical layout as applicable:

<l-- ======= XM. Decl| ar ati on======== -->
<?xm version="1.0" encodi ng="UTF-8"?> <!-- ======= Schema Header
======= --> Docunment Nane: < Docunent name as indicated in Section 3.
> Cenerated On: < Date schema was generated > <!-- ===== Copyri ght
Noti ce ===== --> "Copyright —2001-2004 The Organi zation for the
Advancenent of Structured Information Standards (OASIS). All rights
<l-- ===== xsd: schema El enent Wth Namespaces Decl arati ons ===== --

xsd:schema element to include version attribute and namespace declarations in the following order:
xmlns:xsd

Target namespace

Default namespace

CommonA ggregateComponents

CommonBasicComponents

CoreComponentTypes

Unspeciaized Unqualified Datatypes

Specialized Qualified Datatypes

Identifier Schemes

Code Lists

Attribute Declarations — elementFormDefault=""qualified"" attributeFormDefault=""unqualified""

Version Attribute

CommonA ggregateComponents schema module
CommonBasicComponents schema module
Unspecialized Unqualified Types schema module

Specialized Qualified Types schema module

Root Element Declaration

Root Element Type Definition

45

6

e

Universal Business Language (UBL)
Naming and Design Rules

<!-- ===== E|lement Declarations ===== -->
alphabetized order
<l-- ===== Type Definitions ===== -->

Required OASIS full copyright notice.

[GXS2] UBL MUST providetwo schemasfor each transaction. One normative schemashall befully annotated. One non-
normative schema shall be a run-time schema devoid of documentation..

[GXS3] Built-in XSD Simple Types SHOULD be used wherever possible.

[GXA] AllW3C XML Schemaconstructsin UBL Schemaand schemamodulesMUST contain the following namespace
declaration on the xsd schema element: xmlns:xsd="http://www.w3.0rg/2001/X M L Schema"

[GXSH] The xsd:substitutionGroup feature MUST NOT be used.

[GXS6] The xsd:final attribute MUST be used to control extensions where there isa desire to prohibit further extensions.

[GXS7] xsd:notation MUST NOT be used.

[GXSE] The xsd:all element MUST NOT be used.

[GXS9] The xsd:choice element SHOULD NOT be used where customisation and extensibility are a concern.

[GXS11] The xsd:union technique MUST NOT be used except for Code Lists. The xsd:union technique MAY be used for
Code Lists.

[GXS12] UBL designed schema SHOULD NOT use xsd:appinfo. If used, xsd:appinfo MUST only be used to convey non-
normative information.

[GXS13] Complex Type extension or restriction MAY be used where appropriate.

[GXS14] The xsd:any element MUST NOT be used except within the 'ExtensionContentType' type definition, and with
xsd:processContents= "skip" for non-UBL namespaces.

[GXS15] Each xsd:schemal ocation attribute declaration MUST contain a system-resolvable URL, which at the time of
releasefrom OASIS shall bearelative URL referencing thelocation of the schemaor schemamoduleintherelease
package.

[GXS16] The built in xsd:nillable attribute MUST NOT be used for any UBL declared element.

[GXS17] The xsd:anyAttribute MUST NOT be used.

Modelling constraint rules

[MDC1]] UBL Librariesand Schemas MUST only use ebXML Core Component approved ccts:CoreComponentTypes, except
in the case of extension, where the 'UBL Extensions element is used
[MDC2] Mixed content MUST NOT be used except where contained in an xsd:documentation element

46

Universal Business Language (UBL)
Naming and Design Rules

Naming constraint rules

[NMC1]

Each dictionary entry name MUST define one and only one fully qualified path (FQP) for an element or attribut

Namespace Rules

[NMS1] Every UBL-defined —or -used schema module, except internal schemamodules, MUST have a namespace declared
using the xsd:targetNamespace attribute.

[NMS2] Every UBL-defined-or -used major version schema set MUST have its own unique hamespace.

[NMS3] UBL namespaces MUST only contain UBL developed schema modules.

[NM4] The namespace names for UBL Schemas holding committee draft status MUST be of the form:
urn:oasis:names:tc:ubl:schema: <subtype>:<document-id>

[NMS5] The namespace names for UBL Schemas holding OASIS Standard status MUST be of the form:
urn:oasi s:names: specification: ubl: schema: <subty pe>:<document-id>

[NMSE] UBL published namespaces MUST never be changed.

[NMS7] The ubl:CommonA ggregateComponents schema module MUST reside in its own namespace.

[NMSE] The ubl:CommonA ggregateComponents schema module namespace MUST be represented by the namespace prefix
"cac" when referenced in other schemas.

[NMS9] The ubl:CommonBasicComponents schema module MUST reside in its own hamespace.

[NMS10] The UBL:CommonBasicComponents schema module namespace MUST be represented by the namespace prefix
"cbc" when referenced in other schemas.

[NMS15] The ubl:QualifiedDatatypes schema module MUST reside in its own namespace.

[NMS16] The ubl:QualifiedDatatypes schema module namespace MUST be represented by the namespace prefix "qdt" when
referenced in other schemas.

[NMS17] The ccts:UnqualifiedDatatypes schema modul e namespace MUST be represented by the token "udt"when referenced
in other schemas.

[NMS18] The CommonExtensionComponents schema module namespace MUST be represented by the namespace prefix ‘ext'

when referenced in other schemas.

Root element declaration rules

[RED2]

Theroot element MUST be the only global element declared in document schemas.

Schema structure modularity rules

[SSM1] UBL Schemaexpressions MAY be split into multiple schema modules.

[SSM2] A document schemain one UBL namespace that is dependent upon type definitions or element declarations defined
in another namespace MUST only import the document schema from that namespace.

[SSM3] A document schemain one UBL namespace that is dependant upon type definitions or element declarations defined
in another namespace MUST NOT import internal schema modules from that namespace.

[SSM5] UBL schema modules MUST either be treated as external schema modules or as internal schema modules of the
document schema.

[SSME] All UBL internal schema modules MUST be in the same namespace as their corresponding document schema.

[SSM7] Each UBL internal schema module MUST be named { ParentSchemaM oduleName} { I nternal SchemaM odul eFunc-

tion} { schema modul e}

47

Universal Business Language (UBL)
Naming and Design Rules

[SSM8] A UBL schemamodule MAY be created for reusable components.

[SSM9] A schema module defining all UBL Common Aggregate Components MUST be created.

[SSM10] The UBL Common Aggregate Components schemamodule MUST beidentified as CommonA ggregateComponents
in the document name within the schema header.

[SSM11] A schema module defining all UBLCommon Basic Components MUST be created.

[SSM12] The UBL Common Basic Components schema module MUST be identified as CommonBasicComponents in the
document name within the schema header.

[SSM18] A schemamodule defining all UBL Qualified Datatypes MUST be created.

[SSM19] The UBL Qualified Datatypes schema module MUST be identified as QualifiedDatatypes in the document namein
the schema header.

[SSM20] The UBL Qualified Datatypes schema module MUST import the ccts:UnQualifiedDatatypes schema module.

SSM21 The UBL extensions schemamodule MUST beidentified as CommonExtensionComponents in the document name

within the schema header.

Standards Adherence rules

Versioning rules

[VER1]

Every UBL Schema and schema module major version committee draft MUST have an RFC 3121 document-id of
the form

<name>-<major>[.<revision>]

[VERZ] Every UBL Schemaand schema module major version OASIS Standard MUST have an RFC 3121 document-id of
the form
<name>-<major>

[VERS] Every minor version release of aUBL schemaor schemamodule committee draft MUST have an RFC 3121 document-
id of theform
<name>-<major>[.<revision>]

[VER4] Every minor version release of a UBL schema or schema module OASIS Standard MUST have an RFC 3121 docu-
ment-id of the form
<name>-<major >

[VER5] For UBL Minor version changes the namespace name MUST not change

[VERG] Every UBL Schema and schema module major version number MUST be a sequentially assigned, incremental
number greater than zero.

[VERT7] Every UBL Schemaand schemamodule minor version number MUST be a sequentially assigned, incremental non-
negative integer.

f[VER10] UBL Schemaand schemamodule minor version changes MUST not break semantic compatibility with prior versions.

[VER11] Every UBL Schema and schema module major version committee draft MUST capture its version number in the
xsd:version éttribute of the xsd:schema element in the form
<maj or >. O[. <r evi si on>]

[VER12] Every UBL Schema and schema module major version OASIS Standard MUST capture its version number in the

xsd:version attribute of the xsd:schema element in the form

<major>.0

48

Universal Business Language (UBL)
Naming and Design Rules

[VER13] Every minor version release of aUBL schema or schemamodule committee draft MUST captureitsversion inform-
ation in the xsd:version attribute in the form

<maj or >. <non- zer 0>[. <r evi si on>]

[VER14] Every minor version release of aUBL schemaor schemamodule OASIS Standard MUST captureitsversion inform-
ation in the xsd:version attribute in the form

<mmj or >. <non- zer 0>

[VER15] Every UBL document schema MUST declare an optional element named "UBLVersionID" immediately following
the optional 'UBL Extensions' element.

B. Additional Document Constraints

In addition to the UBL 2.0 document constraints formally expressed in the schemas, UBL mandates several other rules
governing conformant UBL 2.0 instancesthat cannot be expressed using W3C Schema. These additional UBL document
rules, addressing instance validation, character encoding, and empty elements, are specified below.

Note that these rules first appeared in the OASIS UBL 1.0 and UBL 1.0 NDR Standards, as well as in the Universal
Business Language v2.0 release package. They have been moved here in order to separate them from the schema-
specific rules contained in the rest of the NDR.

The UBL library and document schemas are targeted at supporting business information exchanges. Businessinform-
ation exchanges require a high degree of precision to ensure that application processing and corresponding business
cycle actions arereflective of the purpose, intent, and information content agreed to by both trading partners. Schemas
provide the necessary mechanism for ensuring that instance documents do in fact support these requirements.

[IND1] All UBL instance documents MUST validate to a corresponding schema.

XML supportsawide variety of character encodings. Processors must understand which character encoding is employed
ineach XML document. XML 1.0 supportsadefault value of UTF-8 for character encoding, but best practiceisto aways
identify the character encoding being employed.

[IND2] All UBL instance documents MUST identify their character encoding within the XML de-
claration.

Example:

<?xm version="1.0"
encodi ng="UTF- 8" ?>

UBL, asan OASISTC, is obligated to conform to agreements OA SIS has entered into. OASISis aliaison member of
thelSO IEC ITU UN/CEFACT eBusiness Memorandum of Understanding Management Group (MOUMG). Resolution
01/08 (MOU/MGO01n83) requires the use of UTF-8.

[IND3] In conformancewith ISO IEC ITU UN/CEFACT eBusiness Memorandum of Understanding
Management Group (MOUMG) Resolution 01/08 (MOU/MGO01n83) as agreed to by OASIS, al
UBL XML SHOULD be expressed using UTF-8.

Example:

49

Universal Business Language (UBL)
Naming and Design Rules

<?xm version="1.0" encodi ng="UTF-8"?>

Use of empty elements within XML instance documentsis a source of controversy for avariety of reasons. An empty
element does not simply represent data that is missing. It may express data that is not applicable for some reason,
trigger the expression of an attribute, denote all possible valuesinstead of just one, mark the end of a series of data, or
appear as aresult of an error in XML file generation. Conversely, missing data elements can al so have meaning " data
not provided by atrading partner. In information exchange environments, different trading partners may allow, require,
or ban empty elements. UBL has determined that empty elements do not provide the level of assurance necessary for

business information exchanges and therefore will not be used.

[IND5] UBL conformant instance documents MUST NOT contain an element devoid of content or
containing null values, except in the case of extension, where theUBL ExtensionContent element is

used.

To ensure that no attempt is made to circumvent rule IND5, UBL also prohibits attempting to convey meaning by not

conveying an element.

[IND6] The absence of aconstruct or datain a UBL instance document MUST NOT carry meaning.

C.Technical Terminology

Ad hoc schema processing

Doing partial schema processing, but not with official schema validator software;
e.g., reading through schemato get the default values out of it.

Aggregate Business Information Entity (ABIE)

A collection of related pieces of businessinformation that together convey adistinct
business meaning in a specific Business Context. Expressed in modelling terms, it
is the representation of an Object Class, in a specific Business Context.

Application-level validation

Adherence to business requirements, such as valid account numbers.

Assembly

Using parts of the library of reusable UBL components to create a new kind of
business document type.

Business Context

Defines a context in which a business has chosen to employ an information entity.

Theformal description of aspecific business circumstance asidentified by the values
of a set of Context Categories, alowing different business circumstances to be
uniquely distinguished.

Business Object

An unambiguously identified, specified, referenceable, registerable and re-useable
scenario or scenario component of a business transaction.

The term business object is used in two distinct but related ways, with dlightly dif-
ferent meanings for each usage:

In a business model, business objects describe a business itself, and its business
context. The business objects capture business concepts and express an abstract view
of thebusiness's"real world". Theterm "modeling business object" isused to desig-
nate this usage.

In adesign for a software system or in program code, business objects reflects how
business concepts are represented in software. The abstraction here reflects the
transformation of business ideas into a software realization. The term "systems
business objects’ is used to designate this usage.

50

Universal Business Language (UBL)
Naming and Design Rules

Business semantic(s)

A precise meaning of words from a business perspective.

Business Term

Thisisasynonym under which the Core Component or Business Information Entity
is commonly known and used in the business. A Core Component or Business In-
formation Entity may have several business terms or synonyms.

Class

A description of aset of objectsthat share the same attributes, operations, methods,
relationships, and semantics. A classmay use a set of interfacesto specify collections
of operationsit provides to its environment. See interface.

Class diagram

Shows static structure of concepts, types, and classes. Concepts show how users
think about the world; types show interfaces of software components; classes show
implementation of software components. (OMG Distilled)

A diagram that shows a collection of declarative (static) model elements, such as
classes, types, and their contents and relationships. (Rational Unified Process)

Classification scheme

Thisisan officially supported scheme to describe a given Context Category

Common attribute

An attribute that hasidentical meaning on the multiple elementsonwhichit appears.
A common attribute might or might not correspond to an XSD global attribute.

Component One of theindividual entities contributing to awhole.

Context Definesthe circumstancesin which aBusiness Process may be used. Thisis specified
by aset of Context Categories known as Business Context. (See Business Context.)

Context category A group of one or more related values used to express a characteristic of a business

circumstance.

Document schema

A schema document corresponding to a single namespace, whichislikely to pull in
(by including or importing) schema modules.

Core Component

A building block for the creation of asemantically correct and meaningful information
exchange package. It contains only the information pieces necessary to describe a
specific concept.

Core Component Type

A Core Component which consists of one and only one Content Component that
carries the actual content plus one or more Supplementary Components giving an
essential extra definition to the Content Component. Core Component Types do not
have business semantics.

Datatype

A descriptor of a set of values that lack identity and whose operations do not have
side effects. Datatypesinclude primitive pre-defined types and user-definabl e types.
Pre-defined types include numbers, string and time. User-definable types include
enumerations. (XSD)

Definesthe set of valid valuesthat can be used for a particular Basic Core Component
Property or Basic Business Information Entity Property. It is defined by specifying
restrictions on the Core Component Type that forms the basis of the Datatype.
(CCT9

Generic BIE

A semantic model that has a "zeroed" context. We are assuming that it covers the
requirements of 80% of business uses, and therefore is useful in that state.

Instance

Anindividual entity satisfying the description of aclass or type.

Instance constraint checking

Additional validation checking of an instance, beyond what XSD makes available,
that relies only on constraints describable in terms of the instance and not additional
business knowledge; e.g., checking co-occurrence constraints across elements and
attributes. Such constraints might be able to be described in terms of Schematron.

51

Universal Business Language (UBL)
Naming and Design Rules

I nstance root/doctype This is still mushy. The transitive closure of al the declarations imported from
whatever namespaces are necessary. A doctype may have several namespaces used
within it.

Intermediate element An element not at the top level that is of a complex type, only containing other ele-
ments and attributes.

Internal schema module: A schema module that does not declare a target namespace.

Leaf element An element containing only character data (though it may also have attributes). Note

that, because of the XSD mechanisms involved, a leaf element that has attributes
must be declared as having a complex type, but a leaf element with no attributes
may be declared with either asimple type or acomplex type.

Lower-level element An element that appears inside a business message. Lower-level elements consist
of intermediate and leaf level.
Object Class Thelogical datagrouping (in alogical data model) to which adata element belongs

(1SO11179). The Object Classiis the part of a Core Component's Dictionary Entry
Name that represents an activity or object in a specific Context.

Namespace schema module: A schemamodul ethat declares atarget namespace and islikely to pull in (by includ-
ing or importing) schema modules.

Naming Convention The set of rules that together comprise how the dictionary entry name for Core
Components and Business Information Entities are constructed.

(XML) Schema An XML Schema consists of components such as type definitions and element de-
clarations. These can be used to assess the validity of well-formed element and at-
tribute information items (as defined in "http://www.w3.0rg/TR/2004/REC-xmls-
chema-1-20041028/" [XM L-Infoset]), and furthermore may specify augmentations
to those items and their descendants.

Schemamodule A collection of XML constructsthat together constitute an XSD conformant schema.
Schemamodules are intended to be used in combination with other XSD conformant
schema.

Schema Processing Schema validation checking plus provision of default values and provision of new
infoset properties.

SchemaValidation Adherence to an XSD schema.

Semantic Relating to meaning in language; relating to the connotations of words.

Top-level element An element that encloses a whole UBL business message. Note that UBL business

messages might be carried by messaging transport protocols that themselves have
higher-level XML structure. Thus, a UBL top-level element is not necessarily the
root element of the XML document that carriesit.

Type Description of aset of entitiesthat share common characteristics, relations, attributes,
and semantics.

A stereotype of class that is used to specify an area of instances (objects) together
with the operations applicable to the objects. A type may not contain any methods.
See class, instance. Contrast interface.

D. References

[CCTS]ISO 15000-5 ebXML Core Components Technical Specification

52

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

Universal Business Language (UBL)
Naming and Design Rules

[SONaming] ISO/IEC 11179, Final committee draft, Parts 1-6.

[RFC 2119]S. Bradner, Key wordsfor usein RFCsto I ndicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt,
IETF RFC 2119, March 1997.

[UBLChart] UBL TC Charter, http://oasis-open.or g/committees/ubl/charter/ubl.
[XML] Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, October 6, 2000
[XSD] XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001.

[XHTML] XHTML Basic, W3C Recommendation 19 December 2000: http://mwww.w3.org/ TR/2000/REC-xhtml-basic-
20001219

E. Notices

OASIStakes no position regarding the validity or scope of any intellectual property or other rightsthat might be claimed
to pertain to the implementation or use of the technology described in this document or the extent to which any license
under such rights might or might not be available; neither does it represent that it has made any effort to identify any
such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the
OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other
proprietary rights which may cover technology that may be required to implement this specification. Please address
the information to the OA SIS Executive Director.

Copyright A© The Organization for the Advancement of Structured Information Standards [OASIS] 2006. All Rights
Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explainit or assist in its implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on al
such copies and derivative works. However, this document itself does not be modified in any way, such as by removing
the copyright notice or references to OASIS, except as heeded for the purpose of developing OASIS specifications, in
which case the proceduresfor copyrights defined in the OA SIS Intellectual Property Rights document must be followed,
or asrequired to trandate it into languages other than English.

The limited permissions granted above are perpetua and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an AS IS basis and OASIS DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TOANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGEANY RIGHTSORANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FORA PARTICULAR PURPOSE.

53

http://www.ietf.org/rfc/rfc2119.txt
http://oasis-open.org/committees/ubl/charter/ubl
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219

