OASIS 13

Universal Business Language (UBL) 2.1
Naming and Design Rules

Committee Draft in Progress 20090817, 16 August 2010

Document identifier:
prd2-UBL-NDR-20090817

Locations:
Persistent version: ht t p: / / docs. oasi s- open. or g/ ubl / pr d2- UBL- NDR- 2. 0/
Current version: htt p: // docs. oasi s- open. or g/ ubl / prd2- UBL- NDR- 2. 0/

Technical committee:
OASIS Universal Business Language (UBL) TC

Chairs:
Jon Bosak, Pinax <bosak @i nax. con®
Tim McGrath, Document Engineering Ser-
vices <ti m ntgr at h@ocunent engi neeri ngservi ces. conp

Editors:
Mike Grimley, US Navy <MIGri ml ey@cm or g>
Mavis Cournane, Cognitran Limited <mavi s. Cour nane@ogni t r an. con

Abstract:

This specification documents the naming and design rules and guidelines for the construction of XML
components for the UBL vocabulary.

Status:
This document was last revised or approved by the UBL TC on the above date. The level of approval
is also listed above. Check the current location noted above for possible later revisions of this document.
This document is updated periodically on no particular schedule.

Technical Committee members should send comments on this specification to the Technical Committee's
email list. Others should send comments to the Technical Committee by using the "Send A Comment"
button on the Technical Committee's web page at http://www.oasis-open.org/committees/ubl.

For information on whether any patents have been disclosed that may be essential to implementing
this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights
section of the Technical Committee web page (http://www.oasis-open.org/committees/ubl/ipr.php).

The non-normative errata page (if any) for this specification is located at http://www.oasis-
open.org/committees/ubl.

http://docs.oasis-open.org/ubl/prd2-UBL-NDR-2.0/
http://docs.oasis-open.org/ubl/prd2-UBL-NDR-2.0/
mailto:bosak@pinax.com
mailto:tim.mcgrath@documentengineeringservices.com
mailto:MJGrimley@acm.org
mailto:mavis.Cournane@cognitran.com
http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl/ipr.php
http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl

Universal Business Language (UBL)
2.1 Naming and Design Rules

Table of Contents

O | 11 o [F 1 o T I PPN 4
O N0 o 1= o= PP 4
S ol o PP 4
1.3. Terminology and NOTBLIONcuuuneieii ettt ettt e et e et eeeena s 4
1.4, GUITING PIINCIPIES ...ttt ettt e et et e et et e e e era e eeneas 5
2. Relationship to ebXML COre COMPOMNENTSeeierteeieti e eeti e ettt e ettt e e e et e e et e et et e e et e eerea s 5
2.1. Mapping Business Information ENtitieSt0 XSDciiiiiiiiiiii e 6
3. GENEAl XIML CONSIIUCES ...t ettt ettt ettt ettt ettt e et e et e e et e e et e e et e e e et e e et e e et e e ean s eeanaeeenneeennaaes 7
3.1 OVErall SCREMA SLIUCTUIE ... et et e et e e e et e e et s e e e e e e en e e e et e eeaneeeens 7
3.2. Naming and MOdeling CONSIIAINTSccieuuneeietiie ettt e et e e e e e e e e nea s 9
3.3. RaUSADITILY SChEIME ... et 10
34 EXTENSION SCNEIMIE ... ettt e et e et e et e e et e e et e e et e e e an e e eaeeaaaaes 11
3.5, NAMESPACE SCNEIMIE ... ettt et e e e e e s 11
3.6. VEISIONING SCHEME ... ettt e e e s 12
3.7 MOAUIBITEY SIFBLEGY .. eeevrneeeentn ettt ettt et e et et e et e et e e ettt e et e eb e e et eb e e e e rb e e e eban s 14
4. Annotation and Documentation REQUITEMENTSu.iiirtieeiiii ettt e e e e e e e 18
IS o0 0 = AN 11 0 = 1o o PP 18
4.2. Embedded DOCUMENEELIONieeniiie ettt e e et e et e e et e e e et e e ea e e et e eeanaeeeneeeen 18
B NBMING RUIES ...ttt e et e et et r e et et e e e e et e e e e eaa s 21
5.1. General NamMiNG RUIESuiiiiieiiei ettt et e et e e e eaa s 21
5.2. TYPENAMING RUIES ... ettt e et e e e s 23
5.3. Element NamiNg RUIEScoouuieiiiii ettt e e e e e e e e 24
3 N 1] o181 (== 1 11 = P 26
6. Declarations and DEfiNITIONScouuiii e e e et e e e e e et ean s 26
6.1, TYPE DEFINITIONSceeetiieeeit et ettt ettt e e et ettt e e et et e e e e et reeeentaneeeenes 26
6.2. E1emMent DECIAratiONScvu ettt et e et e et e et e et e et e et e et e e e e ae 28
B.3. EMPLY EIBMENTS ... et 29
A e o L I = £ T PR 29
8. MISCElANEOUS X SD RUIES ...ttt e et et e et e et e e et e e e e eanas 29
D o BT 1010 L= 1Y o TSP OPPTPTSPPPTTN 29
8.2. NAMESPACE DECIAIBLION ... eeeeet ettt ettt ettt ettt e e et e e e e e e e nen s 30
8.3, XSO:SUDSHITULIONGIOU ... eeet ettt ettt ettt et e e et e et et e et e e e ena e e ennens 30
S S o b 114 7= | PP 30
I o Ml 0 [o o PO 30
S o 8- | PR 30
S A o Mo 1o o= T PSP 30
oS s W1 o 11 o L= PP 31
oIS I o WU o o [PP 31
L O o = 1o o] o) o T PSP SPPPPTPRPPPIN 31
8.11. XSA:SCEMBLOCALIONeei ettt e et e e et e e e et e e et e e ean e aeees 31
ST A o M T =" = PP 31
BLL3. XSHIBNY ettt ettt ettt e e e e e 31
8.14. EXtenSiON @nd RESEICHIONi ittt e e e s e et e e et e et e e aeens 32
Appendixes
A. Code List Metadata (INfOMMELIVE)cuuiiiiiiie et e e e e e e e e e e e e e enaeens 32
B. UBL-approved Acronyms and Abbreviations (INfOrmMative)ccouiiiiiiiiii e 33
C. Technical Terminology (INFOrMELIVE)iiuieiie e e e e e e e e e et aanaas 34
D REFEIEINCES ...ttt ettt 36
B NOLICES ..ottt 37

Universal Business Language (UBL)
2.1 Naming and Design Rules

F. UBL NDR Checklist

Universal Business Language (UBL)
2.1 Naming and Design Rules

1. Introduction

XML isoften described asthe linguafrancaof e-commerce. Theimplication isthat by standardizing on XML, enterprises
will be able to trade with anyone, any time, without the need for the costly custom integration work that has been ne-
cessary in the past. But thisvision of XML-based "plug-and-play” commerceisoverly simplistic. Of course XML can
be used to create electronic catalogs, purchase orders, invoices, shipping notices, and the other documents needed to
conduct business. But XML by itself doesn't guarantee that these documents can be understood by any business other
than the one that creates them. XML is only the foundation on which additional standards can be defined to achieve
the goal of true interoperability. The Universal Business Language (UBL) initiative is the next step in achieving this
goal.

The task of creating a universal XML business language is a challenging one. Most large enterprises have already in-
vested significant time and money in an e-business infrastructure and are reluctant to change the way they conduct
electronic business. Furthermore, every company has different requirements for the information exchanged in aspecific
business process, such as procurement or supply-chain optimization. A standard business language must strike adifficult
balance, adapting to the specific needs of a given company while remaining general enough to let different companies
in different industries communicate with each other.

The UBL effort addresses this problem by building on the work of the electronic business XML (ebXML) initiative.
UBL isorganized as an OASIS Technica Committee to guarantee a rigorous, open process for the standardization of
the XML businesslanguage. The development of UBL within OASIS also helps ensure afit with other essential ebXML
specifications.

This specification documents the rules and guidelines for the naming and design of XML components for the UBL
library. It contains only rules that have been agreed on by the OASIS UBL Technical Committee. Consumers of the
Naming and Design Rules Specification should consult previous UBL position papersthat are available at http://www.oas-
is-open.org/committees/ubl/ndrsc/. These provide a useful background to the devel opment of the current rule set.

1.1. Audiences

This document has several primary and secondary targets that together constitute its intended audience. Our primary
target audience is the members of the UBL Technical Committee. Specifically, the UBL Technical Committee uses
the rulesin this document to create normative form schemas for business transactions. Other XML schema devel opers
may find the rules contained herein sufficiently useful to merit consideration for adoption as, or infusion into, their
own approachesto XML schema devel opment.

1.2. Scope

This specification conveys a normative set of XML schema design rules and naming conventions for the creation of
UBL schemasfor business documents being exchanged between two partiesusing XML constructs defined in accordance
with the ebXML Core Components Technical Specification.

1.3. Terminology and Notation

Thekey wordsMUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMEN-
DED, MAY, and OPTIONAL in this document are to be interpreted as described in Internet Engineering Task Force
(IETF) Reguest for Comments (RFC) 2119. Non-capitalized forms of thesewordsare used in the regular English sense.

Definition A formal definition of aterm. Definitions are normative.

Example An example of adefinition or arule. Examples are informative.

http://www.oasis-open.org/committees/ubl/ndrsc/
http://www.oasis-open.org/committees/ubl/ndrsc/

Universal Business Language (UBL)
2.1 Naming and Design Rules

Note Explanatory information. Notes are informative.

RRRn Identifier of arule to which an XML schema must comply in order to be UBL
conformant. The value RRR is a prefix to categorize the type of rule where the
value of RRR isas defined in Table 1, “Rule Prefix Value’, and n (1..n) isthe se-
quentia number of the rule within its category. To ensure continuity acrossversions
of the specification, rule numbersthat are deleted in future versions will not be re-
issued, and any new rules will be assigned the next higher number — regardless
of location in the text. Only rules and definitions are normative; al other text is

explanatory.

Table 1. Rule Prefix Value

Rule Prefix Value

CDL Code List

CTD ComplexType Definition
CTN ComplexType Naming Rules
DOC Documentation

ELD Element Declaration

ELN Element Naming

GNR General Naming

GTD General Type Definition
GXS General XML Schema

MDC Modeling Constraints

NMC Naming Constraints

NMS Namespace

RED Root Element Declaration
SSM Schema Structure Modularity
VER Versioning

Theterm "X SD" isused throughout this document to refer to Parts 1 and 2 of the W3C XML Schema Definition Language
(XSD) Recommendation.

1.4. Guiding Principles

The UBL NDR primary objectives are to provide the UBL TC with a set of unambiguous, consistent rules for the de-
velopment of extensible, reusable UBL schemas.

2. Relationship to ebXML Core Components

UBL employs the methodology and model described in ISO TS 15000-5: 2005 -- ebXML Core Components Technical
Soecification, Version 2.01 [CCTS to build the UBL Component Library. CCTS defines anew paradigm in the design
and implementation of reusable, syntactically neutral information building blocks. Syntax-neutral Core Components
areintended to form the basis of businessinformation standardization efforts and to be realized in syntactically specific
instantiations such asANSI ASC X12, UN/EDIFACT, and various XML representations such as UBL .

Universal Business Language (UBL)
2.1 Naming and Design Rules

Context-neutral and context-specific building blocks are the essence of the Core Components specification. The context-
neutral components are called Core Components. A Core Component is defined in CCTS as "a building block for the
creation of a semantically correct and meaningful information exchange package. It contains only the information
pieces necessary to describe a specific concept”. Figure 1 illustrates the various pieces of the overall Core Components
metamodel.

The context-specific components are called Business Information Entities (BIES). A BIE is defined in CCTS as "a
piece of business data or a group of pieces of business data with a unique Business Semantic definition". Figure 2 il-
lustrates the various pieces of the overall BIE metamodel and its relationship to the Core Components metamodel. As
shown here, there are different types of Core Components and BIEs, each of which has specific relationships to the
other components and entities. The context-neutral Core Components establish the formal relationship between the
various context-specific BIEs.

Figure 1. Core Components and Datatypes M etamodel

E]

Figure 2. Business I nformation Entities Basic Definition M odel
E]

2.1. Mapping Business Information Entities to XSD

UBL consists of alibrary of CCTS BIEs, each of which is mapped to an XSD construct (See Figure 3).

Figure 3. UBL Document Metamodel

il

A BIE can be a CCTS Aggregate Business Information Entity (ABIE), a CCTS Basic Business Information Entity
(BBIE), or aCCTS Association Business Information Entity (ASBIE). In understanding the logic of the UBL binding
of BIEsto XSD expressions, it isimportant to understand the basic constructs of the BIEs and their relationships as
shown in Figure 2. The ABIESs are treated as objects and are defined as xsd:complexTypes. The BBIEs are treated as
properties of the ABIE and are found in the content model of the ABIE as a referenced xsd:element. The BBIES are
based on reusable CCTS Basic Business Information Entity Properties (BBIE Properties), which are defined as
xsd:complexTypes.

A BBIE Property represents an intrinsic property of an ABIE. BBIE Properties are linked to a data type.

CCTS defines an approved set of primary and secondary representation terms. However, these representation terms
are ssimply naming conventions to identify the data type of an object, not actual constructs.

There aretwo kinds of BIE Properties— Basic and Association. A CCTSAssociation BIE Property (ASBIE Property)
represents an extrinsic property — in other words, an association from one ABIE instance to another ABIE instance.
It isthe ASBIE Property that expresses the relationship between ABIEs.

Due to their unique extrinsic association role, ASBIEs are not defined as xsd:complexTypes; rather, they are either
declared as elements that are then bound to the xsd:complexType of the associated ABIE, or they are reclassified as
ABIEs.

BBIEs define the intrinsic structure of an ABIE. These BBIEs are the "leaf" types in the system in that they contain
no other BIEs.

Universal Business Language (UBL)
2.1 Naming and Design Rules

A BBIE must have a CCTS Core Component Type. All CCTS Core Component Types are low-level types such as
Identifiersand Dates. A CCTS Core Component Type describesthese low-leve typesfor useby CCTS Core Components,
and (in parallel) aCCTSdatatype, corresponding to that CCTS Core Component Type, describesthese low-level types
for use by BBIEs. Every CCTS Core Component Type has asingle CCTS Content Component and one or more CCTS
Supplementary Components. A CCTS Content Component is of some Primitive Type. All CCTS Core Component
Types and their corresponding content and supplementary components are predefined in CCTS.

UBL has developed an X SD schema module that declares each of the predefined CCTS Core Component Types as an
xsd:complexType or xsd:simpleType and declares each CCTS Supplementary Component as an xsd:attribute or uses
the predefined facets of the built-in X SD datatypesfor those that are used as the base expression for an xsd:simpleType.

3. General XML Constructs

This chapter defines UBL rules related to general XML constructs, including overall schema structure, naming and
modeling constraints, reusability, namespaces, versioning, modularity, and documentation.

3.1. Overall Schema Structure

A key aspect of developing standards is to ensure consistency in their implementation. Therefore, it is essential to
provide a mechanism that will guarantee that each occurrence of a UBL conformant schemawill have the same look
and feel.

[GXSL1] Except in the case of extension, wherethe"UBL Extensions' element isused, UBL schemas
SHOULD conform to the following physical layout as applicable: See Figure 4.

Universal Business Language (UBL)
2.1 Naming and Design Rules

Figure 4. Physical layout

As shown above, a UBL schema should contain a comment block at the top of the schemathat functions asa"schema
header".

3.1.1. Element Declarations within Document Schemas

A document schemais a schema within a specific namespace that conveys the business document functionality of that
namespace. The document schema declares a target namespace and is likely to include (xsd:include) internal schema
modules or import (xsd:import) external schemamodules. Each namespace will have one, and only one, major version
of adocument schema as well as any related minor versions.

In order to facilitate the management and reuse of UBL constructs, all global elements, excluding the root element of
the document schema, must be declared in either the Common Aggregate Components (CAC) or Common Basic
Components (CBC) schema modules and referenced from within the document schema.

3.1.2. Root Element

Only asingle global element isdeclared inside a UBL document schema. The single global element isthe root element
of every conforming instance.

[RED2] The root element MUST be the only global element declared in the document schema.

Universal Business Language (UBL)
2.1 Naming and Design Rules

3.2. Naming and Modeling Constraints

UBL has the following naming and modeling constraints.

3.2.1. Naming Constraints

A primary aspect of the UBL library documentation isits spreadsheet models. The entriesin these spreadsheet models
fully definethe constructs availablefor usein UBL business documents. The spreadsheet entries contain fully conformant
CCTS Dictionary Entry Names (DENSs) as well as truncated UBL XML element names developed in conformance
with therulesin Section 4. The XML element name s the short form of the DEN. The rules for element naming differ
from the rules for DEN naming.

[NMC1] Each Dictionary Entry Name MUST define one and only one fully qualified path (FQP)
for an element or attribute.

The FQP anchors the use of the element or attribute to a particular location in a business message. Any semantic de-
pendenciesthat the element or attribute has on other elements and attributeswithin the UBL library that are not otherwise
enforced or made explicit inits structural definition can be found in its prose definition.

3.2.1.1. Modeling Constraints
Modeling constraints are limited to those necessary to ensure consistency in development of the UBL library.
3.2.1.1.1. Defining Classes

UBL isbased on instantiating ebXML CCTS BIEs. UBL models and the XML expressions of those models are class
driven. Specifically, the UBL library defines classes for each CCTS ABIE and the UBL schemas instantiate those
classes. The properties of those classes consist of CCTS BBIEs and ASBIEs.

3.2.1.1.2. Core Component Types
Each BBIE is associated with one of an approved set of CCTS Core Component Types.

[MDC1] UBL libraries and schemas MUST only use CCTS Core Component Types, except in the
case of extension, where the UBL Extensions element is used.

3.2.1.1.3. XML Mixed Content

UBL documents are designed to effect data-centric electronic commerce transactions. Including XML mixed content
in business documents is undesirable because business transactions are based on exchange of discrete pieces of data.
The white space aspects of XML mixed content make processing unnecessarily difficult and add alayer of complexity
not desirable in business exchanges.

[MDC2] XML mixed content MUST NOT be used except where contained in an xsd:documentation
element.

3.2.1.1.4. Sequencing

In the UBL model, the prescribed order for the contents of an ABIE is that ASBIEs follow BBIEs. However, thisis,
strictly speaking, arule of the modeling methodology rather than an NDR. The NDR in this caseis that the sequential
order of entities in the model must be preserved.

[MDCQ] The sequence of the businessinformation entitiesthat is expressed in the UBL model MUST
be preserved in the schema.

Universal Business Language (UBL)
2.1 Naming and Design Rules

3.3. Reusability Scheme

To promote effective management of the UBL library, all element declarations are unique. Consequently, UBL elements
are declared globally.

3.3.1. Reusable Elements

UBL elements are global and qualified. Hence in the example below, the Address element is directly reusable as a
modular component.

Example 1.

<xsd: el ement nane="Party" type="PartyType"/>
<xsd: conpl exType nane="PartyType">
<xsd: annot at i on>
<!-- Docunentati on goes here -->
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement ref="cbc: MarkCar el ndi cator" m nCccurs="0" maxCccurs="1">

</ xsd: el ement >
<xsd: el enent ref="cbc: MarkAttentionlndi cator” m nCccurs="0" maxCccurs="1">

</ xsd: el ement >
<xsd: el ement ref="Partyldentification" m nCccurs="0" maxCOccurs="unbounded" >

</ xsd: el enent >
<xsd: el ement ref="PartyNanme" m nCccurs="0" maxCccurs="1">

</ xsd: el ement >
<xsd: el enent ref="Address" m nCccurs="0" maxCccurs="1">

</ xsd: el ement >

</ xsd: sequence>
</ xsd: conpl exType>

<xsd: el ement nane="Address" type="AddressType"/>
<xsd: conpl exType nane="Addr essType">

<xsd: sequence>
<xsd: el ement ref="cbc: CityName" m nCccurs="0" maxCccurs="1">

</ xsd: el ement >
<xsd: el enment ref="cbc: Post al Zone" m nCccurs="0" maxCccurs="1">

</ xsd: el ement >

</ xsd: sequence>
</ xsd: conpl exType>

Software written to work with UBL's standard library should work with new assemblies of the same components, since
global elements will remain consistent and unchanged. The globally declared <Address> element is fully reusable
without regard to the reusability of types and provides a solid mechanism for ensuring that extensionsto the UBL core
library will provide consistency and semantic clarity regardless of their placement within a particular type.

[ELD2] All element declarations MUST be global.

10

Universal Business Language (UBL)
2.1 Naming and Design Rules

3.4. Extension Scheme

Some organizations are required by law to send additional information not covered by the UBL document structure,
thus requiring an extension to the UBL message. The xsd:any construct is seen as the most efficient way to implement
this requirement.

In general, UBL restricts the use of xsd:any because this feature permits the introduction of unknown elements into
an XML instance. However, limiting its useto asingle, predefined element mitigates thisrisk. For meaningful validation
of UBL document instances, the val ue of the xsd: processContents attribute of the element must be set to "skip", thereby
removing the potential for errors in the validation layer. Extension imposes cardinality constraints.

The following rules apply in the order below.

[ELD12] The UBL Extensions element MUST be declared asthefirst child of the document element
with xsd:minOccurs="0".

[ELD13] The UBLProfilel D element MUST be declared immediately following the UBL Extensions
element with xsd:minOccurs="0".

[ELD14] The UBL SubsetID element MUST be declared immediately following the UBL Profilel D
element with xsd:minOccurs="0".

3.5. Namespace Scheme

The concept of XML namespaces is defined in the W3C XML namespaces technical specification. The use of XML
namespaceis specified intheW3C XML Schema (XSD) Recommendation. A namespaceisdeclared in theroot element
of a schema using a namespace identifier. Namespace declarations can also identify an associated prefix "shorthand
identifier" that allowsfor compression of the namespace name. For each UBL namespace, a normative token is defined
asits prefix. These tokens (currently udt, qdt, cac, cbc, ext) are defined in Section 3.7.

3.5.1. Declaring Namespaces

Neither XML 1.0 nor XSD requires the use of hamespaces. However, the use of namespacesis essential to managing
the complex UBL library. UBL uses UBL -defined schemas (created by the UBL TC) and UBL -used schemas (created
by external activities), and both require a consistent approach to namespace declarations.

[NMSL] Every UBL -defined or -used schemamodule, except internal schemamodules, MUST declare
a namespace using the xsd:targetNamespace attribute.

Each UBL schema module consists of alogical grouping of lower level artefacts that can be used in avariety of UBL
schemas. These schemamodul es are grouped into aschema set. Each schemaset is assigned anamespacethat identifies
that group of schemamodules. As constructs are changed, new versionsare to be created. The schemaset isthe versioned
entity; all schemamoduleswithin that package are of the same version, and each major version has a unique namespace.

Schema set A collection of schemas that constitute a specific UBL namespace.

Schema validation ensures that an instance conforms to its declared schema. In keeping with Rule NMS1, each UBL
schemamoduleis part of aversioned namespace.

[NMS2] Every UBL -defined or -used major version schemaset MUST haveits own unique namespace.

11

Universal Business Language (UBL)
2.1 Naming and Design Rules

UBL 'sextension methodol ogy encourages awide variety in the number of schemamodulesthat are created asderivations
from UBL schema modules. Customized schemas should not be confused with those developed by UBL.

[NMS3] UBL namespaces MUST only contain UBL developed schema modules.

3.5.2. Namespace Uniform Resource Identifiers

A UBL namespace name must be a URI that conforms to RFC 2396. UBL has adopted the Uniform Resource Name
(URN) scheme as the standard for URIs for UBL namespaces, in conformance with IETF's RFC 3121.

Rule NM S2 requires separate namespacesfor each UBL major version schemaset. I n accordance with OA SIS procedures,
the UBL namespace rules differentiate between committee draft and OASIS Standard status. For each schemaholding
draft status, a UBL namespace must be declared and named.

[NM$4] The namespace names for UBL schemas holding committee draft status MUST be of the
form

urn:oasis:names:tc:ubl :schema: <subtype>:<document-id>
The format for document-id is found in Section 3.6.

For each UBL schemaholding OA SIS Committee Specification or Standard status, a UBL namespace must be declared
and named using the same notation, but with the value "specification” replacing the value "tc".

[NMSB] The namespace names for UBL schemas holding OASIS Standard status MUST be of the
form

urn:oasis:names: specification: ubl: schema: <subtype>:<document-id>

3.5.3. Schema Location

UBL schemas use a URN namespace scheme. |n contrast, schemalocations are defined as a Uniform Resource L ocator
(URL). UBL schemas must be available both at design time and run time. Therefore, the UBL schema locations will
differ from the UBL namespace declarations. UBL uses an OASIS URL for hosting retrievable copies of UBL
schemas.

3.5.4. Persistence

UBL namespaces use URNSs to provide name persistence. UBL namespaces must never change once they have been
declared. Conversely, changes to a schema may result in a new namespace declaration. Thus, a published schema
version and its namespace association will aways be inviolate.

[NMS5] UBL published namespaces MUST never be changed.

3.6.Versioning Scheme

UBL distinguishes between major versions and minor versions. Mgjor versions are not backwards compatible. Minor
versions do not break backwards compatibility. In other words, a document instance that validates against version 1
of the schemamust also validate against version 1.1 of the schema, where version 1.1 isaminor version change based
on version 1. However, the same document instances would not necessarily be valid against version 2 of the schema,
where version 2 isamajor version change.

Versioning information is indicated both in the namespace URI and in the version attribute of the schema module.
However, thisinformation is represented somewhat differently in these two locations.

12

Universal Business Language (UBL)
2.1 Naming and Design Rules

3.6.1. Versioning Information in the Namespace URI

UBL namespaces conform to the OASIS namespace rules defined in RFC 3121. All UBL namespace URIs have the
form:

urn: oasi s: nanes: speci fi cati on: ubl : schema: xsd: <nodul ename>- <maj or >

where <modulename> is the name of the schema module and <mgjor> is a positive integer representing the major
version. The field containing <modulename>-<major> is called the document-id.

[VERZ2] Every UBL schema module major version MUST have an RFC 3121 document-id of the
form <modulename>-<major>

[VERG] Every UBL schemamodule major version number MUST be a sequentially assigned integer
greater than zero.

The value of <magjor>is"1" for the first release of a namespace. For example, the namespace URI for the first major
release of the Invoice domain has the form:

ur n: oasi s: nanes: speci fi cati on: ubl : schema: xsd: | nvoi ce-1

Subsequent major releases increment the value by 1. For example, the second major release of the Invoice domain has
the URI

ur n: oasi s: nanes: speci fi cati on: ubl : schema: xsd: | nvoi ce- 2

The rule for minor version releasesis as follows:

[VER4] Every minor version release of a UBL schema module MUST have a document-id of the
form <modulename>-<major>

For example, the fifth minor version of the release based on the second major release mentioned above will have the
URI

urn: oasi s: nanes: speci fi cati on: ubl : schema: xsd: | nvoi ce- 2

As can be seen, both the rule and the example for the minor version releasesis exactly the same as that for the major
version. Thereis even arule stating this directly.

[VER5] For UBL minor version changes, the namespace name MUST not change.

However, minor versioning is handled differently in the xsd:schema el ement.

3.6.2. Versioning representation in the xsd:schema element
UBL usesthe version attribute in the xsd:schema element to convey minor version releases of the schema module.
[VER12] Every major version release of a UBL schema module MUST capture its version number

in the xsd:version attribute of the xsd:schema element in the form <major>.0

[VER14] Every minor version release of aUBL schemamodule MUST captureitsversion information
in the xsd:version attribute in the form <major>.<non-zero>

[VERTY] Every UBL schema module minor version number MUST be a sequentially assigned, non-
negative integer.

13

Universal Business Language (UBL)
2.1 Naming and Design Rules

3.6.3. Instance Versioning

UBL version information can also be captured in instances of UBL document schemas via the ubl:UBLVersionID
element.

[VER15] Every UBL document schema MUST declare an optional element named UBLVersionlD
immediately following the optional UBL Extensions element.

3.7. Modularity Strategy

There are many possible mappings of XML schema constructs to namespaces and to files. In addition to the logical
taming of complexity that namespaces provide, dividing the physical realization of schemas into multiple schema
modul es provides a mechanism whereby reusable components can be imported as needed without the need to import
complete schemas.

[SSM1] UBL schema expressions MAY be split into multiple schema modules.

Schema module A schemadocument containing type definitions and el ement declarationsintended
to be reused in multiple schemas.

3.7.1. UBL Modularity Model

UBL relies extensively on modularity in schema design. There is no single UBL root schema. Rather, there are a
number of UBL document schemas used to perform different business functions. UBL is structured so that users can
reuse individual document schemas without having to import the entire UBL document schema library. A document
schema can import individual modules without having to import al UBL schema modules. Each document schema
defines its own dependencies. The UBL schema modularity approach reflects logical associations that exist between
document and internal schema modules,and it ensures that individual modules can be reused to the maximum extent
possible. If the contents of anamespace are small enough then they can be compl etely specified within asingle document.
Document and internal schema modules are shown in Figure 5.

Figure 5. UBL Schema Modularity Model

i

Figure 5 shows the one-to-one correspondence between document schemas and namespaces. It also shows the one-to-
one correspondence between files and schema modules. As shown here, there are two types of schemas in the UBL
library — document schemas and schema modules. Both types of schemas are conformant with XSD.

Each document schema occupies its own namespace and may include zero or more internal modules. The namespace
for adocument schemaincludes any of itsinternal modules. Schemamodulesthat are not internal to adocument occupy
adifferent namespace, asin the qdt, cbc, and cac schema modules.

Figure 6. Schema M odules

i

Another way to visualize the structure is by example. Figure 6 depicts instances of the various schema modules from
the previous diagram.

Figure 7 shows how the Order and I nvoice document schemas import the CommonA ggregateComponents and Com-
monBasicComponents external schema modules. It also shows how the Order document schema may include internal

14

Universal Business Language (UBL)
2.1 Naming and Design Rules

schema modules — modules local to that namespace. The clear boxes show how the various schema modules are
grouped into namespaces.

Any UBL schemamodule, be it a document schema or an internal module, may import other document schemas from
other namespaces.

Figure 7. Order and Invoice Schema Import of Common Component Schema M odules

il

If two namespaces are mutually dependent, then importing one will cause the other to be imported as well. For this
reason there must not exist circular dependencies between UBL schema modules. By extension, there must notexist
circular dependencies between namespaces. A namespace A dependent upon type definitions or element declarations
defined in another namespace B must import B's document schema.

[SSM2] A schemain one UBL namespace that is dependent upon type definitions or el ement declar-
ations in another schema namespace MUST only import that schema.

An additional rule is necessary to address potentially circular dependencies as well — schema A must not import in-
ternal schema modules of schema B.

[SSM3] A schemain one UBL namespace that is dependent upon type definitions or el ement declar-

ations defined in another schema namespace MUST NOT import the internal schema modules of
that schema.

3.7.2. Internal and External Schema Modules

Asillustrated in figures 5 and 6, UBL schema modules are either internal or external.

3.7.3. Internal Schema Modules

UBL internal schema modules do not declare a target namespace, but instead reside in the namespace of their parent
schema. All internal schema modules are accessed using xsd:include.

[SSM6] All UBL internal schemamodules MUST be in the same namespace as their corresponding
document schema.

UBL internal schema modules must have semantically meaningful names. Internal schema module namesidentify the
parent schema module, the internal schema module function, and the schema modul e itself.

[SSM7] Each UBL internal schemamodule MUST be named <ParentSchemaM oduleName><Intern-
al SchemaM odul eFunction>

Exanpl e: Ext ensi onCont ent Dat at ype
3.7.4. External Schema Modules

External schema modules are used to group complex types and global elements that are used in multiple document
schemas.

[SSM8] UBL schema modules MAY be created for reusable components.

UBL external schema modules organize the reusable componentsinto logical groupings. At aminimum, UBL defines
the following external schema modules:

15

Universal Business Language (UBL)
2.1 Naming and Design Rules

1. UBL CommonAggregateComponents

2. UBL CommonBasicComponents

3. UBL Quadlified Datatypes

In addition, UBL 2.1 imports the following schema module provided by UN/CEFACT.

1. CCTS Core Component Types
[NMSL9] The CCTS Core Component Type schema module must be represented by the namespace
prefix "ccts-cct”.

Furthermore, where extensions are used, an extension schema module must be provided. This schema module must
be named:

CommonExt ensi onConponent s

[SSM21] The UBL extension schemamodule MUST beidentified as CommonExtensionComponents
in the document name within the schema header.

[SSVI22] The UBL Qualified Datatypes schemamodule MUST import the UBL Ungualified Datatypes
schema module.

To ensure consistency in expressing the CommonExtensionComponents schema module, a namespace prefix that will
be used in all UBL schemas must be defined.

[NMSL8] The CommonExtensionComponents schemamodule namespace MUST be represented by
the namespace prefix "ext" when referenced in other schemas.

3.7.4.1. UBL Common Aggregate Components Schema Module

The UBL library contains a wide variety of CCTS ABIEs, each defined as an xsd:complexType. Although some of
these complex types may be used in only one UBL schema, many will be reused in multiple UBL schema modules.
For ease of reuse, all the ABIE xsd:complexType definitions used in more than one UBL schema module are grouped
into a single schema module of their own.

[SSM9] A schema module defining all UBL Common Aggregate Components MUST be created.

[SSM10] The UBL Common Aggregate Components schema module MUST be identified as Com-
monAggregateComponents in the document name within the schema header.

[NMS7] The UBL Common Aggregate Components schema module MUST reside in its own
namespace.

[NMS8] The UBL Common Aggregate Components schemamodule namespace MUST be represented
by the namespace prefix "“cac" when referenced in other schemas.

16

Universal Business Language (UBL)
2.1 Naming and Design Rules

3.7.4.2. UBL CommonBasicComponents Schema Module

The UBL library containsawidevariety of CCTS BBIEsbased on CCTSBBIE Properties. BBIE Propertiesarereusable
in multiple BBIES, and each is defined as an xsd:complexType. Although some of these complex types may be used
in only one UBL schema, many will be reused in multiple UBL schema modules. For ease of reuse, al the BBIE

Property xsd:complexType definitions used in more than one UBL schema module are grouped into a single schema
module of their own.

[SSM11] A schema module defining all UBL Common Basic Components MUST be created.

[SSM12] The UBL Common Basic Components schema module MUST be identified as Common-
BasicComponents in the document name within the schema header.

[NMS9] The UBL Common Basic Components schemamodule MUST residein its own namespace.

[NMSL0] The UBL Common Basic Components schema module namespace MUST be represented
by the namespace prefix "cbc" when referenced in other schemas.

3.7.4.3. CCTS CoreComponentType Schema Module

CCTS defines an authorized set of Core Component Types that convey content and supplementary information related
to exchanged data. Asthe basisfor all higher level CCTS models, these Core Component Types are reusable in every
UBL schema. The complex type definitionsfor al CCTS Core Component Types are collected in the Core Component
Type schema module published by UN/CEFACT.

3.7.4.4. UBL Unqualified Datatypes Schema Module
The UBL Unqualified Datatypes Schema Module imports the CCTS CoreComponentType Schema Maodule.

[NMS20] The UBL Unqualified Datatypes schema module namespace MUST be represented by the
prefix "udt" when referenced in other schemas.

3.7.4.5. UBL Qualified Datatypes Schema Module

UBL Qualified Datatypes are not expressed in the schema. Rather, data type qualifcations are expressed in the cvafile.
[SSM18] A schema module without any declarations must exist.
[SSM19] The UBL Qualified Datatypes schema module MUST be identified as QualifiedDatatypes
in the document name in the schema header.

[NMSL15] The UBL Qualified Datatypes schemamodule MUST reside in its own namespace.

To ensure consistency in expressing the UBL Qualified Datatypes schema module, a namespace prefix that will be
used in all UBL schemas must be defined.

[NMSL6] The UBL Qualified Datatypes schema module namespace MUST be represented by the
namespace prefix "qdt" when referenced in other schemas.

17

Universal Business Language (UBL)
2.1 Naming and Design Rules

4. Annotation and Documentation Requirements

Annotation is an essential tool in understanding and reusing a schema. UBL, as an implementation of CCTS, requires
an extensive amount of annotation to provide all necessary metadata required by the CCTS specification.

4.1. Schema Annotation

The annotation needed to satisfy CCT S requirements considerably increases the size of the UBL schemas, with undesir-
able performance impacts. To address this issue, a cut-down alternative has been devel oped for each UBL schema. A
normative, fully annotated schema s provided to facilitate greater understanding of the schema module and its com-
ponents and to meet the CCTS metadata requirements. A non-normative schema devoid of annotation is provided that
can be used at run-time if required to meet processor resource constraints.

[GXS2] UBL MUST providetwo schemasfor each transaction. One normative schemashall befully
annotated. One non-normative schema shall be a run-time schema devoid of documentation.

4.2. Embedded Documentation

UBL spreadsheets contain al necessary information to produce fully annotated schemas, including information about
each UBL BBIE. UBL annotations consist of information currently required by Section 7 of the CCTS and supplemented
by metadata from the UBL spreadsheet models.

The absence of an optional annotation from the structured set of annotations in a documentation element implies the
use of the default value. For example, there are several annotations relating to context, such as CCTS Business Context
and CCTS Industry Context; their absence implies that their valueis"all contexts'.

The following rules describe the documentation requirements for each UBL Qualified Datatype and UBL Unqualified
Datatype definition. None of these documentation rules apply in the case of extension wherethe UBL Extensions element
is used.

[DOC1] The xsd:documentation element for every data type MUST contain a set of annotationsin
the following order (as defined in CCTS Section 7):

* DictionaryEntryName (mandatory)

» Version (mandatory)

* Definition (mandatory)

* RepresentationTerm (mandatory)

o QuadlifierTerm(s) (mandatory, where used)
» Uniqueldentifier (mandatory)

» Usage Rule(s) (optional)

» Content Component Restriction (optional)

[DOC2] A datatypedefinition MAY contain one or more Content Component Restrictionsto provide
additional information on the relationship between the datatype and its corresponding Core Component

18

Universal Business Language (UBL)
2.1 Naming and Design Rules

Type. If used, the Content Component Restrictions MUST contain aset of annotationsin thefollowing
order:

» RedtrictionType (mandatory): Defines the type of format restriction that applies to the Content
Component.

* RestrictionValue (mandatory): The actual value of the format restriction that appliesto the Content
Component.

» ExpressionType (optional): Defines the type of the regular expression of the restriction value.

[DOC3] A datatype definition MAY contain one or more Supplementary Component Restrictions
to provide additional information on the relationship between the datatype and its corresponding
Core Component Type. If used, the Supplementary Component Restrictions MUST contain a set of
annotations in the following order:

* SupplementaryComponentName (mandatory): | dentifiesthe Supplementary Component to which
the restriction applies.

* RestrictionValue (mandatory, repetitive): The actual value(s) that is (are) valid for the Supplement-
ary Component.
The following rule describes the documentation requirements for each Basic Business Information Entity definition.

[DOCA4] The xsd:documentation element for every BBIE MUST contain a set of annotations in the
following order:

» ComponentType (mandatory): The type of component to which the object belongs. For BBIEs
thisMUST be "BBIE".

« DictionaryEntryName (mandatory): The official name of a BBIE.
» Version (optional): Anindication of the evolution over time of the BBIE Entity.
* Definition (mandatory): The meaning of a BBIE.

» Cardinality (mandatory): Indicates whether the BBIE represents a not-applicable, optional, man-
datory, or repetitive characteristic of the Aggregate Business I nformation Entity to which it belongs.

» ObjectClassQualifier (optional): The qualifier for the Object Class.

» ObjectClass (mandatory): The Object Class containing the BBIE.

» PropertyTermQualifier (optional): A word or words which help define and differentiate a BBIE.
 PropertyTerm (mandatory): Conveys the characteristic or Property of the Object Class.

* RepresentationTerm (mandatory): Describes the form in which the BBIE is represented.

» DataTypeQualifier (optional): A meaningful name that differentiates the data type of the BBIE
from its underlying Core Component Type.

 DataType (mandatory): Defines the data type used for the BBIE.

19

Universal Business Language (UBL)
2.1 Naming and Design Rules

The following rule describes the documentation requirements for each CCTS Aggregate Business Information Entity
definition.

AlternativeBusinessTerms (optional): Any synonymousterms under which the BBIE iscommonly
known and used in the business.

Examples (optional): Examples of possible values for the BBIE.

[DOCS5] The xsd:documentation element for every ABIE MUST contain a set of annotations in the
following order:

Thefollowing rule describes the documentation requirements for each CCTS A ssociation Business Information Entity
definition.

ComponentType (mandatory): The type of component to which the object belongs. For ABIEs
thisMUST be"ABIE".

DictionaryEntryName (mandatory): The official name of the ABIE .
Version (optional): An indication of the evolution over time of the ABIE.
Definition (mandatory): The meaning of the ABIE.

ObjectClassQualifier (optional): The qualifier for the Object Class.
ObjectClass (mandatory): The Object Class represented by the ABIE.

AlternativeBusinessTerms (optional): Any synonymousterms under which the ABIE iscommonly
known and used in the business.

[DOCS6] The xsd:documentation element for every ASBIE element declaration MUST contain a set
of annotations in the following order:

ComponentType (mandatory): The type of component to which the object belongs. For ASBIEs
thisMUST be"ASBIE".

DictionaryEntryName (mandatory): The official hame of the ASBIE.
Version (optional): An indication of the evolution over time of the ASBIE.
Definition (mandatory): The meaning of the ASBIE.

Cardinality (mandatory): Indicates whether the ASBIE represents an optional, mandatory, or re-
petitive assocation.

ObjectClass (mandatory): The Object Class containing the ASBIE.
Property TermQualifier (optional): A word or words which help define and identify the ASBIE.

Property Term (mandatory): Representsthe A SBIE contained by the A ssociation Business|nform-
ation Entity.

AssociatedObjectClassQualifier (optional): The Associated Object Class Qualifiers describe the
"context" of the relationship with another ABIE. That is, it is the role the contained ABIE plays
within its association with the containing ABIE.

20

Universal Business Language (UBL)
2.1 Naming and Design Rules

» AssociatedObjectClass (mandatory): The Object Class at the other end of the association. It rep-
resents the ABIE contained by the ASBIE.

[DOCS8] The xsd:documentation element for every Supplementary Component attribute declaration
MUST contain a set of annotations in the following order:

» Name (mandatory): Name in the Registry of a Supplementary Component of a Core Component
Type.

 Definition (mandatory): An explanation of the meaning of a Supplementary Component and its
relevance for the related Core Component Type.

» Primitive type (mandatory): The PrimitiveType to be used for the representation of the value of
a Supplementary Component.

 Possible Value(s) (optional): Possible values of Supplementary Components.

[DOCY] The xsd:documentation element for every Supplementary Component attribute declaration
containing restrictions MUST include the following additional information appended to the inform-
ation required by DOCS:

» Redtriction Valueg(s) (mandatory): The actua value(s) that is (are) valid for the Supplementary
Component.

5. Naming Rules

Therulesin this section make use of the following special concepts related to XML elements.

1. Top-level element: An element that encloses a whole UBL business message. Note that UBL business messages
might be carried by messaging transport protocols that themselves have higher-level XML structure. Thus, a UBL
top-level element is not necessarily the root element of the XML document that carriesiit.

2. Lower-level element: An element that appears inside a UBL business message. Lower-level elements consist of
intermediate elements and leaf level elements.

3. Intermediate element: An element not at the top level that is of acomplex type, containing only other elements and
possibly attributes, but no mixed content.

4. Leaf element: An element containing only character data (though it may also have attributes). Note that, because
of the XSD mechanismsinvolved, aleaf element that has attributes must be declared as having a complex type, but
aleaf element with no attributes may be declared with either a simple type or a complex type.

5.1. General Naming Rules

In keeping with CCTS, UBL uses English as its normative language.

[GNR1] UBL XML element and type names MUST be in the English language, using the primary
English spellings provided in the Oxford English Dictionary.

21

Universal Business Language (UBL)
2.1 Naming and Design Rules

CCTSadheresto ISO/IEC 11179. The UBL component library is also fully conformant to those rules. The UBL XSD
instantiation of the UBL component library in some cases refines the CCTS naming rules to leverage the capabilities
of XML and XSD. Specifically, truncation rules are applied to allow for reuse of element names across parent element
environments and to maintain brevity and clarity. Following 11179, CCTS mandates three-part Dictionary Entry Names
(DENS) for information items. As an implementation of CCTS, UBL assigns an official DEN to each item and then
converts this to the name in UBL schemas using determinate transformation rules.

[GNR2] UBL XML element and type names MUST be consistently derived from CCTS conformant
Dictionary Entry Names.

DENSs contain spaces and characters not allowed by XML and therefore not appropriate for UBL XML component
names.

[GNR3] UBL XML element and type hames constructed from CCTS Dictionary Entry NamesMUST
NOT include periods, spaces, other separators, or characters not allowed by XSD.

Acronymsand abbreviationsimpair interoperability and therefore are to be avoided to the maximum extent practicable.
Since some abbreviations will inevitably be necessary, UBL maintains a normative list of authorized acronyms and
abbreviations. Creation and maintainance of thislist belongsto content definition rather than Naming and Design, but
for convenience, thelist used for UBL 2.0 is provided in Appendix B.

[GNR4] UBL XML element names and simple and complex type names MUST NOT use acronyms,
abbreviations, or other word truncations, except those in the list of exceptions maintained and pub-
lished by the UBL TC.

Theexceptionlist ismaintained and tightly controlled by UBL . Additions are made only when necessary. Once approved,
an acronym or abbreviation must always be used to replace the term it stands for.

[GNR6] The acronyms and abbreviations listed in the UBL-approved list MUST always be used in
place of the word or phrase they represent.

Generally speaking, the names for UBL XML constructs must always be singular. The only exception is where the
concept itself is plural.

[GNR7] UBL XML element and type names MUST be in singular form unless the concept itself is
plural.

Approved acronyms and abbreviations must be used consistently across documents.

[GNR10] Acronyms and abbreviations at the beginning of an attribute name MUST appear in all
lower case. Acronyms and abbreviations elsewherein an attribute name MUST appear in upper case.

[GNR11] Acronyms and abbreviations MUST appear in all upper case for al element and type
names.

XML is case sensitive. Consistency in the use of case for a specific XML component (element, type, attribute) is es-
sential to ensure that every occurrence of a component is treated as the same. Capitalization helps readability and
consistency. The ebXML architecture document specifies a standard use of upper and lower camel case for expressing
XML elementsand attributes, respectively. Following this practice, UBL element and type names use UpperCamel Case
(UCC), and attribute names use lowerCamel Case (LCC).

[GNRS] The UpperCamel Case (UCC) convention MUST be used for naming elements and types.

22

Universal Business Language (UBL)
2.1 Naming and Design Rules

Example 2.
CurrencyBaseRate

CityNameType

[GNR9] The lowerCamel Case (L CC) convention MUST be used for naming attributes.

Example 3.
currencylD

unitCode

5.2. Type Naming Rules

UBL specifiesnaming rulesfor complex types based on CCTSABIEs, BBIEs, and BBIE Properties. The use of unique
CCTS Dictionary Entry Names for these constructs disambiguates their meanings and prevents duplication.

5.2.1. Complex Type Names for CCTS Aggregate Business Information
Entities (ABIES)

UBL xsd:complexType names for ABIEs are derived from their DENs by removing separators to follow general
naming rules and appending the suffix "Type" to replace the word "Details".

[CTN1] A UBL xsd:complexType name based on a CCTS ABIE MUST be the CCTS Dictionary
Entry Name with the separators removed and with the "Details" suffix replaced with "Type".

Example 4.

CCTSAggregate Business I nformation Entity UBL xsd:complexType
Address. Details AddressType

Financial Account. Details Financial AccountType

5.2.2. Complex Type Names for CCTS Basic Business Information
Entity (BBIE) Properties

All BBIE Properties are reusabl e across multiple BBIEs. The CCTS does not specify, but implies, that BBIE Property
names are the reusable property term and representation term of the family of BBIESsthat are based on them. The UBL
xsd:complexType names for BBIE Properties are derived from the shared Property and Representation terms portion
of the DENs in which they appear by removing separators to follow general naming rules and appending the suffix
"Type".

[CTN2] A UBL xsd:complexType name based on a CCTS BBIE Property MUST be the CCTS
Dictionary Entry Name shared Property Term and its qualifiers and the Representation Term of the
BBIE with the separators removed and with the "Type" suffix appended after the Representation
Term.

23

Universal Business Language (UBL)
2.1 Naming and Design Rules

Example5.

CCTSBusiness Information Entity Property

UBL xsd:complexType

Declared Customs_ Value. Amount

DeclaredCustomsValueAmountType

Gross_Weight. Measure

GrossWeightM easureType

[CTN6] A UBL xsd:complexType name based on a CCTS BBIE Property and with a CCTS BBIE
Representation Term of "Text" MUST have the word "Text" removed from the end of its name.

Example 6.

CCTSBasic Business I nformation Entity

UBL xsd:complexType

Agency Name. Text

AgencyNameType

Floor. Text

FloorType

[CTN7] A UBL xsd:complexType name based on a CCTS BBIE Property and with a CCTS BBIE
Representation Term of "Identifier" MUST replace "Identifier" with "ID" at the end of its name.

Example7.

CCTSBasic Business I nfor mation Entity

UBL xsd:complexType

Agency ldentifier. Identifier

AgencylDType

Vessel |dentifier. Identifier

VesselIDType

[CTN8] A UBL xsd:complexType name based on a CCTS BBIE Property MUST remove all duplic-
ation of words that occurs as a result of duplicate Property Terms and Representation Terms.

Example 8.

CCTSBasic Business I nformation Entity

UBL xsd:complexType

Issue Date. Date

IssueDateType

Issue Time. Time

IssueTimeType

5.3. Element Naming Rules

Asshown in Figure 3, UBL elements are created for each UBL ABIE, BBIE, and ASBIE.

5.3.1. Element Names for CCTS ABIEs (ABIES)

[ELN1] A UBL globa element name based on a CCTS ABIE MUST be the same as the name of
the corresponding xsd:complexType to which it is bound, with the word "Type" removed.

For example, a UBL xsd:complexType name based on the ABIE Party. Details will be Party Type. The global element

based on Party Type will be named Party.

24

Universal Business Language (UBL)
2.1 Naming and Design Rules

Example 9.

<xsd: el ement name="Party" type="PartyType"/>
<xsd: conpl exType nane="PartyType">
<xsd: annot at i on>
<!-- Docunentati on goes here -->
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement ref="cbc: MarkCarel ndi cator" m nCccurs="0" nmaxCccurs="1">

</ xsd: el enent >
<xsd: el enent ref="chc: MarkAttentionlndi cator” m nCccurs="0" nmaxQccurs="1">

</ xsd: el ement >
<xsd: el ement ref="Partyldentification" m nCccurs="0" maxCccurs="unbounded" >

</ xsd: el ement >
<xsd: el ement ref="PartyNane" m nCccurs="0" naxCQccurs="1">

</ xsd: el enent >
<xsd: el ement ref="Address" m nCccurs="0" maxCccurs="1">

</ xsd: el enent >

</%§d:sequence>
5.3.2. Element Names for CCTS BBIE Properties

The same naming concept used for ABIES applies to BBIE Properties.

[ELN2] A UBL global element name based on a CCTS BBIE Property MUST be the same as the
name of the corresponding xsd:complexType to which it is bound, with the word " Type" removed.

Example 10.

<l--===== Basi c Business Information Entity Type Definitions =====-->
<xsd: conpl exType nane="Char gel ndi cat or Type" >

</ xsd: conpl exType>

<l--===== Basi c Business Information Entity Property El ement Declarati ons =====-->
<xsd: el ement nane="Char gel ndi cat or" type="Chargel ndi cat or Type"/ >

5.3.3. Element Names for CCTS ASBIEs

AnASBIEisnot aclasslikean ABIE or aBBIE Property that isreused asaBBIE. Rather, it is an association between
two classes. Therefore, an element representing an ASBIE does not have its own unique xsd:complexType. Instead,
when an element representing an ASBIE is declared, the element is bound to the xsd:complexType of its associated
ABIE by referencing the ABIE's global element declaration.

[ELN3] A UBL global element namebased on aCCTSASBIE MUST bethe CCTSASBIE Dictionary
Entry Name Property Term and its qualifiers and the Object Class Term and qualifiers of its associated
CCTSABIE. All CCTS Dictionary Entry Name separators MUST be removed.

25

Universal Business Language (UBL)
2.1 Naming and Design Rules

Example 11.

CCTSASBIE Property Term Associated ABIE Object Class Global Element Name
Buyer_Contact Contact.Details BuyerContact
Origin_Address Address.Details OriginAddress

5.4. Attributes in UBL

As atransaction-based XML exchange format, UBL significantly restricts the use of XML attributes. Attribute usage
is relegated to supplementary components only; all "primary" business data appears exclusively in element content.
Attributes are defined CCTS CCT schema module.

6. Declarations and Definitions

In XSD, elements are defined in terms of complex or simple types, and attributes are defined in terms of simple types.
Therulesin this section govern the consistent structuring of these types and their documentation in the UBL Library.

6.1. Type Definitions
6.1.1. General Type Definitions

Since UBL elements and types areintended to be reusable, al types must be named. This permits other typesto establish
elements that reference these types, and a so supports the use of extensions for the purposes of versioning and custom-
ization.

[GTD1] All types MUST be named.

Example 12.
<xsd: conpl exType name="QuantityType">
</ xsd: conpl exType>

UBL disallows the use of the type xsd:any Type, because this feature permits the introduction of potentially unknown
typesinto an XML instance.

[GTD2] The predefined XML schema type xsd:anyType MUST NOT be used.

6.1.2. BBIE Data Types

CCTS provides a set of constructs called Core Component Types (CCTs) for the modeling of basic data. These are
represented in UBL with alibrary of complex types. BBIE content is represented as property sets defined according
to the CCTs, made up of content components and supplementary components. The supplementary components are
expressed as XML attributes, the content component becomes element content, and the CCT is represented with an
xsd:complexType.

UBL defines BBIE content typesin the UBL Unqualified Datatypes Schema Module, which importsthe CCT schema
module. Since even BBIE data types are modeled as property sets, the XML expression of these models primarily
employs xsd:complexType.

26

Universal Business Language (UBL)
2.1 Naming and Design Rules

6.1.3. ABIE Data Types

In the UBL model, ABIEs are considered classes (objects). To facilitate reuse, versioning, and customization, all
complex types are named.

[CTD1] For every classidentified in the UBL model, anamed xsd:complexType MUST be defined.

Example 13.

<xsd: conpl exType nane="Bui | di ngNaneType" >
</ xsd: conpl exType>

Every classidentified in the UBL model consists of properties. These properties are either ASBIEs, when the property
represents another class, or BBIEs.

[CTD25] For every CCTS BBIE Property identified in the UBL model, a named xsd:complexType
MUST be defined.

6.1.3.1. Aggregate Business Information Entities (ABIES)

An ABIE encapsulates the relationship between a class (the ABIE) and its properties (those data items contained
within the ABIE). UBL represents this relationship by defining an xsd:complexType for each ABIE with its properties
represented as a sequence of referencesto global elements.

[CTD2] Every CCTS ABIE xsd:complexType definition content model MUST contain an xsd:se-
guence element containing the appropriate global element declarations.

Example 14.

<xsd: conpl exType nane="AddressType">

<xsd: sequence>

</ xsd: el ement >
<xsd: el enent ref="cbc: Post al Zone" m nCccurs="0" maxCccurs="1">

</ xsd: el ement >

</ xsd: sequence>
</ xsd: conpl exType>

6.1.3.2. Basic Business Information Entities (BBIES)

In accordance with CCTS, all BBIEs have a primary or secondary Representation Term. Representation Terms are
expressed in the UBL Model as Unqualified Datatypes bound to a Core Component Type that describestheir structure.
The following set of rules specifies the way these relationships are expressed in the UBL XML library. As discussed
above, BBIE Properties are represented with complex types. Within these are xsd:simpleContent elements that extend
the Datatypes.

[CTD3] Every CCTS BBIE Property xsd:complexType definition content model MUST contain an

xsd:simpleContent element.

[CTD4] Every CCTS BBIE Property xsd:complexType content model xsd:simpleContent element
MUST consist of an xsd:extension element.

27

Universal Business Language (UBL)
2.1 Naming and Design Rules

[CTD26] Every CCTS BBIE Property xsd:complexType xsd:base attribute value MUST be the UBL
Unqualified Datatype.

Example 15.
<xsd: conpl exType nanme="Street NaneType" >
<xsd: si npl eCont ent >
<xsd: ext ensi on base="udt: NanmeType"/ >

</ xsd: si nmpl eCont ent >
</ xsd: conpl exType>

[CTD27] Every BBIE property with the representation term Code MUST be based on the UBL un-
qualified code data type.

6.1.3.3. Datatypes

UBL Unqualified Datatypes and UBL Qualified Datatypes are identified in the UBL Unqualified Datatype Schema
Module and inthe UBL Qualified Datatype Schema M odul e, though it must be noted that the UBL Qualified Datatype
Schema Module does not contain any datatype declarations.

6.1.3.4. Core Component Types

UBL uses UN/CEFACT's Core Component Type schema module.

6.2. Element Declarations

6.2.1. Elements Bound to Complex Types

The binding of UBL elements to their xsd:complexTypes is based on the associations identified in the UBL model.
For the BBIEs and ABIEs, the UBL elements are directly associated to their corresponding xsd:complexTypes.

[ELD3] For every class and property identified in the UBL model, a global element bound to the
corresponding xsd:complexType MUST be declared.

Example 16.

For the Party.Details object class, acomplex type/global element declaration pair is created through the declaration of
a Party element that is of type Party Type.

The element thus created can be reused in the building of new business messages. The complex type thus created can
be used through the declaration of new elements of that type in the building of both new and contextualized business

messages.
Example 17.

<xsd: el ement name="SupplierParty" type="SupplierPartyType"/>
<xsd: conpl exType nanme="SupplierPartyType"/>

</ xsd: conpl exType>

28

Universal Business Language (UBL)
2.1 Naming and Design Rules

6.2.2. Elements Representing ASBIEs

AnASBIE isnot aclass like an ABIE. Rather, it is an association between two classes, and therefore the element de-
claration binds the element to the xsd:complexType of the associated ABIE. There are two types of ASBIEs — those
that have qualifiersin the object class, and those that do not.

[ELD4] When a CCTS ASBIE is unqualified, it is bound via reference to the global CCTS ABIE
element with which it is associated.

[ELD11] When a CCTS ASBIE is qualified, a new element MUST be declared and bound to the
xsd:complexType of its associated CCTS ABIE.

6.3. Empty Elements

[ELD7] Empty elements MUST not be declared, except in the case of extension where the UBL
Extensions element is used.

7. Code Lists

UBL uses the Code List Methodology proposed by G. Ken Holman. See the OASIS Code List Representation Tech-
nical Committee specifications Code List Representation (Genericode) Version 1.0 and Context/val ue association using
genericode 1.0..

In addition to the methodol ogy, the following rules apply.
[CDL1] All UBL codes MUST be part of a UBL or externally maintained code list.

The magjority of code lists are owned and maintained by external agencies. UBL makes maximum use of such external
code lists where they exist.

[CDL2] The UBL Library SHOULD identify and use external standardized code lists rather than
develop its own UBL-native code lists.

In some cases, UBL may extend an existing code list to meet specific business requirements. In others cases, UBL
may create and maintain a code list where a suitable code list does not exist in the public domain. Both of these types
of code lists would be considered UBL -internal code lists.

[CDL3] The UBL Library MAY design and use an internally maintained code list where an existing
externally maintained code list needs to be extended, or where no suitable externally maintained
code list exists.

8. Miscellaneous XSD Rules

Asabusiness standard vocabulary, UBL requires consistency inits devel opment. The number of UBL schemadevel opers
will expand over time. To ensure consistency, it is necessary to address the optional featuresin XSD that are not ad-
dressed el sewhere.

8.1. xsd:simpleType

XSD provides for 44 built-in data types expressed as simple types. For maximum reuse, these built-in simple types
should be used wherever possible.

29

Universal Business Language (UBL)
2.1 Naming and Design Rules

[GXS3] Built-in xsd:simpleTypes SHOULD be used wherever possible.

8.2. Namespace Declaration

XSD alows any prefixes to be used in referencing its namespaces. To ensure consistency, UBL has adopted the gen-
eraly accepted convention of using the "xsd" prefix for the X SD namespace.

[GXHA] All XSD constructs in UBL schema and schema modules MUST contain the following
namespace declaration on the xsd:schema element:

xm ns: xsd="htt p: // www. w3. or g/ 2001/ XM_Schenma"

8.3. xsd:substitutionGroup

The xsd:substitutionGroup feature enables a type definition to identify substitution elements in a group. Although a
useful feature in document-centric XML applications, this feature is not used by UBL.

[GXSB] The xsd:substitutionGroup feature MUST NOT be used.

8.4. xsd:final

UBL does not use extensions in its normative schemas. Extensions are allowed by customizers as outlined in the
Guidelines for Customization. In cases where type definitions are inappropriate for any customization, the xsd:final
attribute is used.

[GXS6] Thexsd:final attribute MUST be used to control extensionswherethereisadesireto prohibit
further extensions.

8.5. Xxsd: notation

The UBL schemamodel does not require or support the use of xsd:notation.

[GXS7] xsd:notation MUST NOT be used.

8.6. xsd:all

When xsd:all is used, elements can occur in any order, are always optional, and can never occur more than once. Such
restrictions are inconsistent with the applications of UBL.

[GXS8] xsd:all MUST NOT be used.

8.7. xsd:choice

xsd:choice alows one of a set of alternatives to appear in a document instance. This is useful in some contexts but
xsd:choice cannot be extended and therefore is not recommended.

[GXS9] The xsd:choice element SHOULD NOT be used where customization and extensibility are
aconcern.

30

Universal Business Language (UBL)
2.1 Naming and Design Rules

8.8. xsd:include

xsd:include may be used in accordance with rule GXS10.

[GXS10] xsd:include can only be used when the including schemais in the same namespace as the
included schema.

8.9. xsd:union

The xsd:union feature provides amechanism whereby adatatypeis created as a union of two or more existing datatypes.
As UBL dtrictly adheres to the use of CCTS Datatypes that are explicitly declared in the UBL library, this feature is
inappropriate except for code lists.

[GXS11] The xsd:union technique MUST NOT be used except for code lists.

8.10. xsd:appinfo

The xsd:appinfo feature is used by schemas to convey processing instructions to a processing application, stylesheet,
or other tool. Some users of UBL believe that this technique poses a security risk and have employed techniques for
stripping xsd:appinfo from schemas. As UBL iscommitted to ensuring the widest possible target audience for its XML
library, thisfeature is used only to convey information.

[GXS12] UBL schemas SHOULD NOT use xsd:appinfo. If used, xsd:appinfo MUST be used only
to convey non-normative information.

8.11. xsd:schemalLocation

UBL is an international standard that will be used in perpetuity by companies around the globe. It is important that
these users have unfettered access to all UBL schemas.

[GXS15] Each xsd:schemalocation attribute declaration MUST contain a system-resolvable URL,
which at the time of release from OASIS shall be a relative URL referencing the location of the
schema or schema module in the release package.

8.12. xsd:nillable

[GXS16] The built in xsd:nillable attribute MUST NOT be used for any UBL declared element.

8.13. xsd:any

UBL disalows the use of xsd:any because this feature permits the introduction of unknown attributes into an XML
instance. UBL intends that all constructs within an instance be governed by the schemas describing that instance, and
therefore xsd:any is not allowed outside of the ExtensionContent Type definition.

[GXS14] xsd:any MUST NOT be used except within the ExtensionContentType type definition, and
with xsd:processContents= "skip" for non-UBL namespaces.

31

Universal Business Language (UBL)
2.1 Naming and Design Rules

8.14. Extension and Restriction

UBL recognizes the value of supporting extension and restriction of its core schemallibrary by customizers. The UBL
schema extension and restriction recommendations are discussed in the Guidelines for the Customization of UBL 1.0
Schemas (SchCust) available as part of the UBL 1.0 Standard.

[GXS13] Complex type extension or restriction MAY be used where appropriate.

A. Code List Metadata (Informative)

Included here for convenience are some observations regarding instance-level code list metadata defined in UBL 2.0
schemas for the information items governed by code lists. Note that what follows are not UBL Naming and Design
Rules but rather implications of UBL's use of the UN/CEFACT Unqualified Data Type Schema Module.

For items based on the unqualified data type Amount, the attribute currencylD has the coded value, and the instance-
level metadatais one attribute:

currencyCodeL istVersionlD

For items based on the unqualified datatype MeasureType, the attribute unitCode has the coded value, and the instance-
level metadatais one attribute:

unitCodeL istVersionlD

For items based on the unqualified data type Quantity Type, the attribute unitCode has the coded value, and the instance-
level metadata consists of three attributes:

unitCodeListID
unitCodeL istAgencyl D
unitCodeL istAgencyName

For an element named <xxxxxCode> based on the unqualified data type CodeType, the element has the coded value,
and the instance-level metadata consists of seven attributes:

listName

listID
listVersionlD
listSchemeURI
listURI
listAgencyName
listAgencylD

For an element named <yyyyyl D> based on the unqualified data type | dentifierType, the element has the coded value,
and the instance-level metadata consists of six attributes:

schemeName

32

Universal Business Language (UBL)
2.1 Naming and Design Rules

schemeVersionl D
schemeURI
schemeDataURI
schemeAgencyName
schemeAgencylD

All instance-level code list metadata attributes are optional and can be specified separately for each coded value used;
there are no global document-wide properties representing these attributes.

Any combination of allowable metadata attributes can be specified by the author of the UBL instance to identify the
semantics associated with the coded value in the information item. Absent any of these attributes, an implementation
must make its own judgements about the implied semantics of the code based on the information available.

In some cases, an incomplete set of metadata attributes may be enough to uniquely identify an associated code list.
For example, alistSchemeURI or schemeURI valueis probably sufficient to uniquely identify, respectively, a code or
identifier. A combination of listName or listID with listVersionl D for a code, or schemeName and schemeVersionlD
for an identifier, would probably also be sufficient.

In the extreme case, all code list information associated with a coded value may be missing; for example:
<cbc:DocumentCurrency Code>USD</cbc: DocumentCurrency Code>

Thereisno harm in omitting code list identification for this code valueif the application can safely assume that avalue
of "USD" for DocumentCurrencyCode means U.S. Doallar, which is usualy a safe assumption if the instance comes
from a known trading partner.

Omission of code list metadata can be useful when it is desired to leave the exact version unspecified, as for example
when making updatesto a particular code list within a particular trading community. Omitting the metadata attributes
associating instance data with a particular release of a code list makesit unnecessary to change instance generation at
the moment the update is deployed. This assumes, of course, that such changes are being managed out-of-band by
protocols within the community.

| dentifying metadata should be included in the instance if the sender thinks the receiver might misinterpret the code.
And if aninformation item allows the union of two lists, and there happens to be an overlap between the two lists such
that one or more codes appear on both lists, then identifying metadata must be used to unambiguously specify which
code isintended.

B. UBL-approved Acronyms and Abbreviations
(Informative)

Theinformation included in this appendix is historical and has been included for informational purposes only.

33

Universal Business Language (UBL)
2.1 Naming and Design Rules

Table B.1. Abbreviation and Acronym Table for UBL 2.0

Credit Card Verification Numbering System
| dentifier

Uniform Resource Identifier

United Nations Dangerous Goods

Universal Business Language

Universally Unique Identifier

Cv2
ID
URI
UNDG
UBL
uuiD

C.Technical Terminology (Informative)

Aggregate Business Information Entity (ABIE)

A collection of related pieces of businessinformation that
together convey a distinct business meaning in a specific
Business Context. Expressed in modelling terms, it is the
representation of an Object Class, in a specific Business
Context.

Application-level validation

Adherenceto business requirements, such asvalid account
numbers.

Assembly Using parts of the library of reusable UBL components to
create a new kind of business document type.
Business Context Definesacontext in which abusiness has chosen to employ

an information entity.

Theformal description of aspecific business circumstance
as identified by the values of a set of Context Categories
allowing different business circumstances to be uniquely
distinguished.

Business Object

Anunambiguously identified, specified, referenceable, re-
gisterable, and re-useable scenario or scenario component
of abusiness transaction.

Theterm business object isused in two distinct but related
ways, with slightly different meanings for each usage:

In abusiness model, business abjects describe its business
context. The business objects capture business concepts
and express an abstract view of the business's"real world".
The term "modeling business object” is used to designate

this usage.

In a design for a software system or in program code,
business objects reflect how business concepts are repres-
ented in software. The term "system business objects’ is
used to designate this usage.

Business semantic(s)

The precise meaning of words from abusiness perspective.

Business Term

A synonym under which the Core Component or Business
Information Entity is commonly known and used in the

Universal Business Language (UBL)
2.1 Naming and Design Rules

business. A Core Component or Business | nformation En-
tity may be known by several businessterms or synonyms.

Class A description of aset of objects that share the same attrib-
utes, operations, methods, relationships, and semantics. A
class may use a set of interfaces to specify collections of
operations it providesto its environment.

Class diagram (OMG Distilled) Shows Static structure of concepts, types,
and classes. Concepts show how users think about the
world; types show interfaces of software components;
classes show implementation of software components.

(Rational Unified Process) A diagram that shows a collec-
tion of declarative (static) model elements, such asclasses,
types, and their contents and relationships.

Classification scheme Officially supported scheme to describe a given Context
Category.
Document schema A schemadocument corresponding to a single namespace,

which islikely to include or import schema modules.

Core Component A building block for the creation of a semantically correct
and meaningful information exchange package. It contains
only theinformation pieces necessary to describe aspecific
concept.

Core Component Type A Core Component which consists of one and only one
Content Component that carriesthe actual content plus one
or more Supplementary Components giving an essential
extradefinition to the Content Component. Core Compon-
ent Types do not have business semantics.

Datatype (XSD) A descriptor of aset of valuesthat lack identity and
whose operations do not have side effects. XSD datatypes
include primitive pre-defined types and user-definable
types. Pre-defined typesinclude numbers, string, and time.
User-definable types include enumerations.

(CCTYS) Definesthe set of valid valuesthat can be used for
a particular Basic Core Component Property or Basic
Business Information Entity Property. It is defined by
specifying restrictions on the Core Component Type that
forms the basis of the data type.

Instance Anindividual entity satisfying the description of aclassor
type. In XML, anindividual document of acertain type (a
specific purchase order, invoice, etc.).

I nstance constraint checking Additional validation checking of an instance, beyond what
XSD makes available, that relies only on constraints de-
scribable in terms of the instance and not additional busi-
ness knowledge; e.g., checking co-occurrence constraints
across elements and attributes. Such constraints might be
described using Schematron, for example.

Intermediate element An element not at the top level that is of a complex type,
only containing other elements and attributes.

35

Universal Business Language (UBL)
2.1 Naming and Design Rules

Internal schema module

A schemamodul e that does not declare atarget namespace.

Leaf element

An element containing only character data (though it may
also have attributes). Note that, because of the XSD
mechanisms involved, a leaf element that has attributes
must be declared as having a complex type, but aleaf ele-
ment with no attributes may be declared with either a
simple type or acomplex type.

Lower-level element

An element that appearsinside abusiness message. L ower-
level elements consist of intermediate and leaf level.

Object Class

Thelogical datagrouping (in alogical datamodel) towhich
a data element belongs (1S011179). The Object Class is
the part of a Core Component's Dictionary Entry Name
that represents an activity or object in a specific Context.

Namespace schema module

A schema module that declares atarget namespace and is
likely to include or import schema modules.

Naming convention

The set of rulesthat together comprise how the Dictionary
Entry Name for Core Components and Business Informa-
tion Entities are constructed.

(XML) Schema

An XML Schema consists of components such as type
definitions and element declarations. These can be used to
assess the validity of well-formed element and attribute
information items (as defined in [XSD]), and furthermore
may specify augmentations to those items and their des-
cendants.

Schema module

A schema that can be included or imported by other
schemas.

Schema processing

Schemavalidation checking plus provision of default values
and provision of new infoset properties.

Schemavalidation

The process of programmatically checking a document
instance for adherence to an XSD schema.

Semantic

Relating to meaning in language; relating to the connota-
tions of words.

Top-level element

An element that encloses awhole UBL business message.
Note that UBL business messages might be carried by
messaging transport protocol sthat themselves have higher-
level XML structure. Thus, aUBL top-level element isnot
necessarily the root element of the XML document that
carriesit.

Type

Description of aset of entities that share common charac-
teristics, relations, attributes, and semantics.

D. References

[CCTS] I1SO 15000-5 ebXML Core Components Technical Specification.

[SONaming] ISO/IEC 11179, Fina committee draft, Parts 1-6.

36

Universal Business Language (UBL)
2.1 Naming and Design Rules

[RFC 2119] S. Bradner, Key wordsfor usein RFCsto I ndicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt,
IETF RFC 2119, March 1997.

[SchCust] Guidelines for the Customization of UBL v1.0 Schemas, http://docs.oasis-open.org/ubl/cd-UBL-
1.0/doc/cm/wd-ubl-cmsc-cmguidelines-1.0.html, an informative annex to the UBL 1.0 Standard.

[XML] Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, October 6, 2000.

[XSD] XML Schema, W3C Recommendations Parts 0, 1, and 2, 2 May 2001.

E. Notices

OASI Stakes no position regarding the validity or scope of any intellectual property or other rightsthat might be claimed
to pertain to the implementation or use of the technology described in this document or the extent to which any license
under such rights might or might not be available; neither does it represent that it has made any effort to identify any
such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the
OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other
proprietary rights which may cover technology that may be required to implement this specification. Please address
the information to the OA SIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001-2009. All
Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in itsimplementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all
such copies and derivative works. However, this document itself cannot be modified in any way, such as by removing
the copyright notice or referencesto OASIS, except as needed for the purpose of developing OASIS specifications, in
which case the proceduresfor copyrights defined in the OA SIS Intellectual Property Rights document must be followed,
or as required to trandate it into languages other than English.

The limited permissions granted above are perpetua and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an AS IS basis and OASIS DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TOANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGEANY RIGHTSORANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FORA PARTICULAR PURPOSE.

F. UBL NDR Checklist

UBL NDR 2.0 Checklist Thefollowing checklist constitutesall UBL XML naming and design rulesasdefined in UBL
Naming and Design Rules version 2.0, 19 July 2006. The checklist isin alphabetical sequence as follows:

* Attribute Declaration Rules (ATD)
* CodelList Rules(CDL)

e ComplexType Definition Rules (CTD)

37

http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/ubl/cd-UBL-1.0/doc/cm/wd-ubl-cmsc-cmguidelines-1.0.html
http://docs.oasis-open.org/ubl/cd-UBL-1.0/doc/cm/wd-ubl-cmsc-cmguidelines-1.0.html

Universal Business Language (UBL)
2.1 Naming and Design Rules

e ComplexType Naming Rules (CTN)

» Documentation Rules (DOC)

» Element Declaration Rules (ELD)

e Element Naming Rules (ELN)

» General Naming Rules (GNR)

» Genera Type Definition Rules (GTD)

e Genera XML SchemaRules (GXS)

* Instance Document Rules (IND)

» Modeling Constraints Rules (MDC)

» Naming Constraints Rules (NMC)

» Namespace Rules (NMS)

* Root Element Declaration Rules (RED)

 Schema Structure Modularity Rules (SSM)

» Standards Adherence Rules (STA)

» Versioning Rules (VER

CodelList Rules

CDL1 All UBL codes MUST be part of aUBL or externally maintained code list.

CDL2 The UBL Library SHOULD identify and use external standardized code lists rather than develop its
own UBL-native code lists.

CDL3 The UBL Library MAY design and use an internally maintained code list where an existing externally
maintained code list needs to be extended, or where no suitable externally maintained code list exists.

ComplexType Definition rules

CTD1 For every class identified in the UBL model, a named xsd:complexType MUST be defined.

CTD2 Every CCTSABIE xsd:complexType definition content model MUST contain an xsd: sequence el ement
containing the appropriate global element declarations.

CTD3 Every CCTS BBIE Property xsd:complexType definition content model MUST contain an xsd:simple-
Content element.

CTD4 Every CCTSBBIE Property xsd:complexType content model xsd:simpleContent element MUST consist
of an xsd:extension element.

CTD25 For every CCTS BBIE Property identified in the UBL model, a named xsd:complexType MUST be
defined.

CTD26 Every CCTS BBIE Property xsd:complexType xsd:base attribute value MUST be the UBL Unqualified
Datatype.

CTD27 Every BBIE property with the representation term Code MUST be based on the UBL unqualified code

data type.

38

Universal Business Language (UBL)
2.1 Naming and Design Rules

Complex Type Naming rules

CTN1 A UBL xsd:complexType name based on a CCTS ABIE MUST be the CCTS Dictionary Entry Name
with the separators removed and with the "Details" suffix replaced with "Type".

CTN2 A UBL xsd:complexType name based on a CCTS BBIE Property MUST bethe CCTS Dictionary Entry
Name shared Property Term and its qualifiers and the Representation Term of the BBIE with the separ-
ators removed and with the "Type" suffix appended after the Representation Term.

CTN6 A UBL xsd:complexType namebased on aCCTS BBI E Property and with aCCTS BBIE Representation
Term of "Text" MUST have the word "Text" removed from the end of its name.

CTN7 A UBL xsd:complexType name based on aCCTS BBIE Property and withaCCTS BBIE Representation
Term of "Identifier" MUST replace "ldentifier" with "ID" at the end of its name.

CTNS8 A UBL xsd:complexType name based on a CCTS BBIE Property MUST remove all duplication of
words that occurs as aresult of duplicate Property Terms and Representation Terms.

Documentation rules

DOC1 The xsd:documentation element for every datatype MUST contain a set of annotationsin the following
order (as defined in CCTS Section 7):

DOC2 A datatype definition MAY contain one or more Content Component Restrictions to provide additional
information on the relationship between the datatype and its corresponding Core Component Type. If
used, the Content Component Restrictions MUST contain a set of annotations in the following order:

DOC3 A datatype definition MAY contain one or more Supplementary Component Restrictions to provide
additional information on the relationship between the datatype and its corresponding Core Component
Type. If used, the Supplementary Component Restrictions MUST contain a set of annotations in the
following order:

DOC4 The xsd:documentation element for every BBIE MUST contain a set of annotations in the following
order:

DOC5 The xsd:documentation element for every ABIE MUST contain a set of annotations in the following
order:

DOC6 The xsd:documentation element for every ASBIE element declaration MUST contain a set of annotations
in the following order:

DOC8 The xsd:documentation element for every Supplementary Component attribute declaration MUST contain
aset of annotationsin the following order:

DOC9 The xsd:documentation element for every Supplementary Component attribute declaration containing
restrictions MUST include the following additional information appended to the information required
by DOCS:

Element Declaration rules

ELD2 All element declarations MUST be global.

ELD3 For every class and property identified in the UBL model, aglobal element bound to the corresponding
xsd:complexType MUST be declared.

ELD4 When a CCTSASBIE is unqualified, it is bound via reference to the global CCTS ABIE element with
which it is associated.

ELD7 Empty elements MUST not be declared, except in the case of extension where the UBL Extensions
element is used.

ELD11 WhenaCCTSASBIEisqualified, anew element MUST be declared and bound to the xsd:complexType

of itsassociated CCTSABIE.

39

Universal Business Language (UBL)
2.1 Naming and Design Rules

Element Declaration rules

ELD12 The UBL Extensions element MUST be declared as the first child of the document element with
xsd:minOccurs="0".

ELD13 The UBLProfilelD element MUST be declared immediately following the UBL Extensions element
with xsd:minOccurs="0".

ELD14 The UBL SubsetI D element MUST be declared immediately following the UBL Profilel D element with
xsd:minOccurs="0".

Element Naming rules

ELN1 A UBL global element name based onaCCTSABIE MUST bethe same asthe name of the corresponding
xsd:complexType to which it is bound, with the word " Type" removed.

ELN2 A UBL global element name based on a CCTS BBIE Property MUST be the same as the name of the
corresponding xsd:complexType to which it is bound, with the word "Type" removed.

ELN3 A UBL global element name based on a CCTS ASBIE MUST be the CCTS ASBIE Dictionary Entry
Name Property Term and its qualifiers and the Object Class Term and qualifiers of its associated CCTS
ABIE. All CCTS Dictionary Entry Name separators MUST be removed.

General Naming rules

GNR1 UBL XML element and type names MUST be in the English language, using the primary English
spellings provided in the Oxford English Dictionary.

GNR2 UBL XML element and type names MUST be consistently derived from CCTS conformant Dictionary
Entry Names.

GNR3 UBL XML element and type names constructed from CCTS Dictionary Entry NamesMUST NOT include
periods, spaces, other separators, or characters not allowed by XSD.

GNR4 UBL XML element namesand simple and complex type namesMUST NOT use acronyms, abbreviations,
or other word truncations, except those in the list of exceptions maintained and published by the UBL
TC.

GNRG6 The acronyms and abbreviations listed in the UBL -approved list MUST always be used in place of the
word or phrase they represent.

GNR7 UBL XML element and type names MUST be in singular form unless the concept itself is plural.

GNRS8 The UpperCamel Case (UCC) convention MUST be used for naming elements and types.

GNR9 The lowerCamel Case (LCC) convention MUST be used for naming attributes.

GNR10 Acronyms and abbreviations at the beginning of an attribute name MUST appear in al lower case. Ac-
ronyms and abbreviations el sewhere in an attribute name MUST appear in upper case.

GNR11 Acronyms and abbreviations MUST appear in all upper case for all element and type names.

General Type Definition Rules
GTD1 All types MUST be named.
GTD2 The predefined XML schema type xsd:anyType MUST NOT be used.
General XML Schema Rules
GXS1 Except in the case of extension, wherethe "UBL Extensions’ element isused, UBL schemas SHOULD

conform to the following physical layout as applicable: See.

40

Universal Business Language (UBL)
2.1 Naming and Design Rules

General XML Schema Rules

GXS82 UBL MUST provide two schemas for each transaction. One normative schemashall be fully annotated.
One non-normative schema shall be a run-time schema devoid of documentation.

GXS3 Built-in xsd:simpleTypes SHOULD be used wherever possible.

GX4 All XSD constructsin UBL schema and schema modules MUST contain the following namespace de-
claration on the xsd:schema element:

GXS5 The xsd:substitutionGroup feature MUST NOT be used.

GXS6 The xsd:final attribute MUST be used to control extensions where there is a desire to prohibit further
extensions.

GXS7 xsd:notation MUST NOT be used.

GXS8 xsd:all MUST NOT be used.

GXS9 The xsd:choice element SHOULD NOT be used where customization and extensibility are a concern.

GXS10 xsd:include can only be used when the including schema is in the same namespace as the included
schema.

GXS11 The xsd:union technique MUST NOT be used except for code lists.

GXS12 UBL schemas SHOUL D NOT use xsd:appinfo. If used, xsd:appinfo MUST be used only to convey non-
normative information.

GXS15 Each xsd:schemal_ocation attribute declaration MUST contain a system-resolvable URL, which at the
time of release from OASIS shall be arelative URL referencing the location of the schema or schema
module in the release package.

GXS16 The built in xsd:nillable attribute MUST NOT be used for any UBL declared element.

GXS14 xsd:any MUST NOT be used except within the ExtensionContentType type definition, and with
xsd:processContents= "skip"” for non-UBL namespaces.

GXS13 Complex type extension or restriction MAY be used where appropriate.

Modelling constraint rules

MDCO The sequence of the businessinformation entitiesthat is expressed in the UBL model MUST be preserved
in the schema.

MDC1 UBL libraries and schemas MUST only use CCTS Core Component Types, except in the case of exten-
sion, where the UBL Extensions element is used.

MDC2 XML mixed content MUST NOT be used except where contained in an xsd:documentation element.

Naming constraint rules

NMC1 Each Dictionary Entry Name MUST define one and only one fully qualified path (FQP) for an element
or attribute.

Namespace Rules

NMS1 Every UBL-defined or -used schema module, except internal schema modules, MUST declare a
namespace using the xsd:targetNamespace attribute.

NMS2 Every UBL-defined or -used major version schema set MUST have its own unigque namespace.

NMS3 UBL namespaces MUST only contain UBL devel oped schema modules.

NMHA The namespace names for UBL schemas holding committee draft status MUST be of the form

NMS5 The namespace names for UBL schemas holding OASIS Standard status MUST be of the form

41

Universal Business Language (UBL)
2.1 Naming and Design Rules

Namespace Rules

NMS6 UBL published namespaces MUST never be changed.

NMS7 The UBL Common Aggregate Components schema module MUST reside in its own namespace.

NMS8 The UBL Common Aggregate Components schema module namespace MUST be represented by the
namespace prefix "cac" when referenced in other schemas.

NMS9 The UBL Common Basic Components schema module MUST reside in its own namespace.

NMS10 The UBL Common Basic Components schema module namespace MUST be represented by the
namespace prefix “cbc" when referenced in other schemas.

NMS15 The UBL Qualified Datatypes schema module MUST reside in its own namespace.

NMS16 The UBL Qualified Datatypes schema module namespace MUST be represented by the namespace
prefix "qdt" when referenced in other schemas.

NMS18 The CommonExtensionComponents schemamodule namespace MUST be represented by the namespace
prefix "ext" when referenced in other schemas.

NMS19 The CCTS Core Component Type schema module must be represented by the namespace prefix "ccts-
cct".

NMS20 The UBL Unqualified Datatypes schema module namespace MUST be represented by the prefix "udt"
when referenced in other schemas.

Root element declaration rules
RED2 The root element MUST be the only global element declared in the document schema.
Schema structure modularity rules

SSM1 UBL schema expressions MAY be split into multiple schema modules.

SSM2 A schema in one UBL namespace that is dependent upon type definitions or element declarations in
another schema namespace MUST only import that schema.

SSM3 A schemain one UBL namespace that is dependent upon type definitions or element declarations defined
in another schema namespace MUST NOT import the internal schema modules of that schema.

SSM6 All UBL internal schema modules MUST be in the same namespace as their corresponding document
schema

SSM7 Each UBL internal schemamodule MUST be named <ParentSchemalM oduleName><Internal SchemaM od-
uleFunction>

SSM8 UBL schema modules MAY be created for reusable components.

SSM9 A schema module defining all UBL Common Aggregate Components MUST be created.

SSM10 The UBL Common Aggregate Components schemamodule MUST beidentified asCommonAggregate-
Components in the document name within the schema header.

SSM11 A schema module defining all UBL Common Basic Components MUST be created.

SSM12 The UBL Common Basic Components schemamodule MUST beidentified as CommonBasicComponents
in the document name within the schema header.

SSM18 A schema module without any declarations must exist.

SSM19 The UBL Qudlified Datatypes schemamodule MUST beidentified as QualifiedDatatypesin the document
name in the schema header.

SSM21 The UBL extension schema module MUST be identified as CommonExtensionComponents in the

document name within the schema header.

42

Universal Business Language (UBL)
2.1 Naming and Design Rules

Schema structure modularity rules

SSM22 The UBL Qualified Datatypes schema module MUST import the UBL Unqualified Datatypes schema

module.
Versioning rules

VER2 Every UBL schema module major version MUST have an RFC 3121 document-id of the form

VER4 Every minor version release of a UBL schemamodule MUST have a document-id of the form

VERS For UBL minor version changes, the namespace name MUST not change.

VER6 Every UBL schema module major version number MUST be a sequentially assigned integer greater
than zero.

VER7 Every UBL schemamodule minor version number MUST beasequentially assigned, non-negative integer.

VER12 Every major version release of a UBL schema module MUST capture its version number in the
xsd:version attribute of the xsd:schema element in the form

VER14 Every minor version release of a UBL schema module MUST capture its version information in the
xsd:version attribute in the form

VER15 Every UBL document schema MUST declare an optional element named UBLVersionlD immediately

following the optional UBL Extensions element.

43

