
	[image: image1.emf]
	UDDI Spec TC

	
	

Technical Note
Importance of a Secure Channel for Server-Side Validation
Document identifier:

uddi-spec-tc-tn-securechannelfortrustworthiness

This Version:

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-securechannelfortrustworthiness-20050227.htm
Latest Version:

http://www.oasis-open.org/committees/uddi-spec/doc/tn/ uddi-spec-tc-tn-securechannelfortrustworthiness.htm

Authors:

Rob Kochman, Microsoft, robko@microsoft.com
Tony Rogers, Computer Associates, tony.rogers@ca.com
Editors:

Matthew Dovey, Oxford University, matthew.dovey@oucs.ox.ac.uk
Andrew Hately, IBM, hately@us.ibm.com

Abstract:

This document discusses the need for a secure channel related to the UDDI trustworthiness requirements.
Status:

This document is updated periodically on no particular schedule. Send comments to the editor.
Committee members should send comments on this technical note to the uddi-spec@lists.oasis-open.org list. Others should submit comments via http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=uddi-spec.

For information on whether any intellectual property claims have been disclosed that may be essential to implementing this technical note, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the UDDI Spec TC web page (http://www.oasis-open.org/committees/uddi-spec/ipr.php).

Table of Contents

31
Introduction

31.1 Problem statement

42
Technical Note Solution

42.1 Technical note behavior and discussion

42.2 Example

52.2.1 Client-side validation with clear channel

62.2.2 Server-side validation

83
Conclusion

9Appendix A. Acknowledgments

10Appendix B. Revision History

11Appendix C. Notices

1 Introduction

As more and more organizations rely on Web services for critical or high-value applications, the need to validate the results of a UDDI query becomes more apparent. Without such ability, clients can never be certain that the particular Web service returned by a UDDI registry is what was originally saved in the registry.
The most obvious solution is to have the client validate the entry. If the entry is digitally signed, then validating the signature will guarantee the integrity of the data, and authenticate the origin. The problem with this is that the client may well be running on a comparatively light-weight platform (such as a PDA or cell phone), lacking the resources to perform such a validation. A proper validation of a digital signature could involve obtaining and evaluating the PKI certificate, following and validating the certificate chain, obtaining and validating a CRL or making an OCSP call, all in addition to computing and comparing the digital signature. Not a trivial exercise.
One possible solution is to validate the services on the server. Although this approach offers many advantages, it is also introduces risk, in that the data may be altered between the point of validation (on the server), and the point of use (in the client). This technical note discusses how to address this risk by using a secure channel between the server and client.
1.1 Problem statement

When validation of registry data is done on the server, there is no further validation after the data is sent to the client. In this case, data could be altered sometime between validation on the server and use by the client. As such, it is vital to secure the data being transferred between the server and client. Here we are not talking about the confidentiality of the data, but rather the data integrity.
2 Technical Note Solution

2.1

2.2 Technical note behavior and discussion
The high-level goal here is to ensure that the data the client receives from the registry is identical to the data that was published. Although the specific mechanism used to detect whether an entity has been changed is beyond the scope of this document, one can imagine some sort of signature-based scheme where the validator can determine the integrity and authenticity of an entity using only the entity itself and one additional piece of metadata (such as a digital signature).
In designing such a system, the rather significant issue arises of where to put the validator. One possibility is to put the validator on the client. The benefit here is that the client can determine itself whether its data is valid. Validating the data once it is in the client’s control ensures that the client will use valid data. Assuming secrecy is not required, this approach also allows data to be sent in cleartext. Although client-side validation has its benefits, there are drawbacks as well. Validation is often a nontrivial task (though it varies by implementation), and as such, may not be suitable for lightweight clients. Because of this fact, it may be desirable to do this validation on the server.

Doing the validation on the server has the advantage of freeing the client from a potentially significant amount of work; it may even be that the server has the advantage of specialized hardware to facilitate such validation. However, in this case, the data must still be sent from the server to the client without being modified. If the validated data is sent to the client in the clear, how can the client be sure the data wasn’t modified along the way? Unless the client has physical control of the communications between the client and the server (a direct cable connection, for example), the client can’t. This necessitates the use of a secure channel between the server and the client.
There are several methods of setting up a secure channel between two points, and any can be used as long as they guarantee integrity and authenticity. Privacy is not important for the purposes of validating data, but most secure channels have this property (e.g. SSL).
Using an encrypted channel, such as SSL or TLS, may seem like “overkill”, but this technology is well-understood, easily implemented, and provides the data integrity / security required. It may well be easier and faster to put an SSL link into place than to implement a channel with “just enough” security. It is not uncommon for SSL or TLS to be available as standard components on the HTTP or SOAP platform on which the UDDI node is running.
2.3 Example

This discussion may be clarified if we look in more detail at communications between an application and a UDDI server, and at two possible third parties who might have some interest in intercepting or interfering in the traffic between them.
·
·
·
Let’s consider a scenario, where we have a party (let’s call them A, for Application) querying a UDDI node (let’s call it U), with two hostile parties, one called E (who eavesdrops on communications between A and U), and one called M (who can act as a “man in the middle”, intercepting communications between A and U, and possibly changing the content).

[image: image4.emf]

A U

M

E

We will consider an inquiry call from A to U, and U’s response.
Client-side validation with clear channel

It can be argued that client-side validation is the only true validation – and we’ll see why in the later examples. For now, let’s look at what client-side validation involves.

Let’s assume that we have made one or more inquiry calls on a UDDI node, and we have received a result that appeals – we would like use this result, or rather the web service to which pertains. How can we validate this entry to get some level of confidence in its contents?

If the entry is signed, then we can validate the signature. The digital signature will provide two kinds of confidence, if it is valid.
Firstly, the signature will not validate if any part of the entry has been altered between the moment when it was signed and the moment that it is validated – this is a feature of the cryptographic hash function used in the signature – any alteration will invalidate the signature. So we can have confident that the entry has not been altered. Additionally, the signature will not validate if the wrong key is used. So we can have confidence that the signed content originated from the entity named in the certificate used to sign the entry, and that the signed content has not been altered since it was signed.
Secondly, we can examine the certificate provided with the signature, or pointed to from it. This certificate contains two important pieces of information: the public key, and an identity. The certificate, which must be signed by a recognized authority, ties that public key to that identity. The signature proves that the signatory possesses the private key that corresponds to that public key. Thus the signature provides us with confidence that the content of the UDDI entry came from the identity attested to by this certificate.
Thus client-side validation provides us with confidence in the integrity of the data (the UDDI entry) and in the identity of the provider of the data (the signer of the entry). Provided that we check that the identity of the provider is the one appropriate to the entry.
Should E happen to eavesdrop on the communications between A and U, then E may learn which UDDI entry is of interest to A; for example, A may have found a number of businesses with find_business, but only called get_businessDetail on one of them. Although there’s some minor exposure here, it is not something that E can readily use to advantage.

Should M happen to intercept communications between A and U, it would be possible for M to alter the content of the response, changing, for example, the access point for any web service listed. If A were to use the altered access point, M might well be able to take advantage. However, because A is validating signatures, any such alteration (of a signed entity) will be detected, and A will be warned not to trust the content. Note that A cannot tell what part of an entry has been changed (unless the author was excessive, and used a number of signatures), but A can tell that something has been tampered with (or corrupted in transmission), and can take appropriate action.
The problems with client-side validation

So client-side validation is good. But it comes at a cost.
Firstly, it costs quite a few CPU cycles to validate a signature, because it involves some serious computation – raising very large numbers to large powers, or computing elliptical curves. That’s less of a problem if the validation is being done by a modern client PC, for example, that can afford to perform such calculations, but it becomes a much bigger issue if the client is running on a smaller CPU, such as in a mobile phone, a PDA, or some other “smart” device. In such a situation it is attractive to ask the server (which we will assume is running on a more powerful CPU, and may well have extra hardware to assist) to perform the calculations on behalf of the client.

Secondly, it is necessary to ensure that the certificate that was used to sign the entry is still current. As well as checking the expiry date of the certificate it is necessary to check that the certificate has not been revoked; this may be by requesting a Certificate Revocation List (CRL) from the signing Certificate Authority, or by calling a status server using Online Certificate Status Protocol (OCSP). Either way, this involves additional communications overhead, and even more computation in checking signatures. The server, on the other hand, may well have cached results from similar checks (it may have a current CRL for that Certificate Authority, for example), and so be able to avoid the costs of the communications. Moreover, the server may well be in a better position to communicate with the Certificate Authorities.

Server-side validation

Server-side validation can be introduced to address the problems with client-side validation.
Over a clear channel
Now let us consider A and U communicating over a clear channel again.

Again, E can eavesdrop on communications between A and U, and may learn which web service A will be using. This is unlikely to provide E with a large advantage, but it is worth keeping in mind.

M, on the other hand, is now in a much more powerful position. Now M can intercept the response from the server and modify it in any desired way. For example, M can replace the access point for a sensitive web service with another URL, one under M’s control. A will not detect the alteration (because A is not checking the signature), and may well attempt to access the web service via that imposter access point. Or M could alter other content, perhaps with a view to making A choose a different web service.
Clearly there are significant risks to using a clear channel with server-side validation. About the only time it might be acceptable is when the parties involved are confident that there can be no interception – perhaps A and U are running on the same machine, and that machine is running a trusted operating system.
2.3.1.1 Over a secure channel
Let’s consider A and U communicating over a secure channel this time. A standard means of securing the channel is to use a protocol such as SSL or TLS. It suffices to have the UDDI node operating as an SSL server with simple server-only SSL – it is not necessary to have client-authentication (although that can be useful sometimes). Note that the client should still be validating one certificate: the certificate provided by the server to initiate an SSL session; this cost can, however, be amortized over a series of queries.
Now E cannot eavesdrop on communications between A and U. E will not learn anything about the content of the queries A is making. There is some very minor theoretical exposure in that E can see the volume of traffic between A and U, but this is rarely going to be of concern.

M is in the same situation – nothing of the content of the communications between A and U can be read, let alone altered. M has the ability to disrupt (unselectively) communications between A and U, but this is not going to result in the exposure that a replacement access point could produce.
Once we secure the channel between the client and the server, server-side validation can be trusted. Without a secure channel between the client and the server, server-side validation cannot be trusted, because the data can be altered while in transit and the client will not detect such alteration.
Conclusion

Although we have said that client-side validation provides us with the strongest validation, there are other benefits of a secure channel (particularly when we may be concerned with eavesdroppers, or when we are publishing). These additional benefits are sufficient to warrant use of the secure channel even when using client-side validation. However, once we are committed to the use of a secure channel, we have the option of also employing server-side validation.
In short: a secure channel is a wise choice.
Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this technical note:

Appendix B. Revision History
	Rev
	Date
	By Whom
	What

	0.1
	2004-03-15
	Rob Kochman
	Initial draft

	0.2
	2004-09-21
	Tony Rogers
	Revised draft and added examples

	0.3
	2005-02-27
	Tony Rogers
	Minor revisions based on comments

	0.4
	2005-02-27
	Luc Clément
	Minor formatting revisions

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2005. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 2003 OASIS. All rights reserved.

Page 1 of 1
2
uddi-spec-tc-tn-securechannelfortrustworthiness-20050227

Copyright © OASIS Open 2005. All Rights Reserved.

Page 1 of 11

_1157315133.doc

[image: image1]

A

U

M

E

