

UDDI Spec TC

Technical Note
Understanding Key Partitions

Document identifier:
uddi-spec-tc-tn-understandingkeypartitions-20061128

This Version:
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-
understandingkeypartitions-20061128.htm

Latest Version:
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-
understandingkeypartitions.htm

Author:
Tony Rogers, Computer Associates

Editors:
Luc Clément, Systinet
Andrew Hately, IBM

Abstract:
The key partitions capability is an important UDDI v3.0 feature that provides a
mechanism for publishers to assign meaningful and globally unique registry keys to
entities being published. The purpose of this technical note is to explain in lay
person's terms the use of key partitions for UDDI registry publishers.

Status:
This document is updated periodically on no particular schedule.

Committee members should send comments on this technical note to the uddi-
spec@lists.oasis-open.org list. Others should submit comments via http://www.oasis-
open.org/committees/comments/form.php?wg_abbrev=uddi-spec.

For information on whether any intellectual property claims have been disclosed that
may be essential to implementing this technical note, and any offers of patent
licensing terms, please refer to the Intellectual Property Rights section of the UDDI
Spec TC web page (http://www.oasis-open.org/committees/uddi-spec/ipr.php).

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 1 of 18

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-understandingkeypartitions-20061128.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-understandingkeypartitions-20061128.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-understandingkeypartitions.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-understandingkeypartitions.htm
http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=uddi-spec
http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=uddi-spec
http://www.oasis-open.org/committees/uddi-spec/ipr.php

Table of Contents
1 Introduction ... 3

1.1 Problem statement .. 3
1.1.1 Node assigned keys... 3
1.1.2 Publisher assigned keys .. 4

1.2 Terminology... 5
2 Technical Note Solution .. 6

2.1 Definitions.. 6
2.2 Technical note behavior .. 7

2.2.1 Introduction .. 7
2.2.2 Creating & assigning key partitions ... 8

2.3 Common Questions... 10
2.3.1 What partition is this key in? .. 10
2.3.2 What is the key generator for this partition? .. 10
2.3.3 Who is allowed to publish this key? ... 10
2.3.4 How do we get ownership of the key partition? ... 10
2.3.5 What about existing keys?... 10
2.3.6 An anomaly .. 11

2.4 Discussion ... 12
2.4.1 Assigning key generator keys.. 12
2.4.2 Domain owners vs. publishers... 12

2.5 Example .. 13
3 References.. 15

3.1 Normative .. 15
Appendix A. Acknowledgments ... 16
Appendix B. Revision History .. 17
Appendix C. Notices .. 18

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 2 of 18

1 Introduction
This document is designed to explain the key partitions framework and provide best practice
guidance to any party that wishes to publish data to a UDDI registry using publisher assigned
keys. In particular this technical note answers two questions:

• Why should I assign my own key value to entities that I want to publish?
• If I do assign the key, how do I determine what value to use?

Readers should have a high level understanding of UDDI in order to use this technical note
but need not read any other detailed UDDI technical specifications.

1.1 Problem statement
All registry entities such as Business Entities, Business Services, Binding Templates, and
tModels require a unique key that is used to identify the entity. In the UDDI version 2
specification, these keys were generated by the registry node at the time the entity was
created . In the UDDI version 3 specification publishers can choose whether to let the registry
node assign a key as it is the case in version 2, or whether to assign a key themselves. We
will examine two business problems in this section that the use of publisher assigned keys
addresses. First, a discussion of the portability issues and lack of readability associated with
node assigned keys. Second the key management challenges associated with publisher
assigned keys.

1.1.1 Node assigned keys
Imagine you are an enterprise architect who is deploying a service oriented architecture within
your company, Example1 org. The centerpiece of your architecture is a UDDI registry that
catalogs all your business organizational units and the business services they provide. You
have defined standard classification schemes for your services and have defined associations
to standard interface definitions for each service as shown on the left side of Figure 1.

In order to define the classifications, the Example1 architect published classification tModels
to represent the classification schemes. The Example1 registry node automatically assigned
keys to each tModel. For example, “DEF” (represented at a GUID in version 2) was the key
assigned to the GS1 Global Location Number (GLN) scheme. When the GLN scheme is
used to identify a business entity such as an Example1 plant location, the identifier bag (the
means by which metadata is associated with an entity in UDDI) for the business entity will
contain the GLN value (say “0012345000041”) and the tModel keyedReference “DEF”.
Problem: Node assigned keys have no meaning and make registry data hard to read. The
EAN GLN classification is just two numbers. It is only by looking up the tModel with key
“DEF” that the user can discover that the classification scheme is EAN GLN.
It is reasonable to assume that some of the services listed in the Example1 registry are for
use by external parties (e.g. the RFQ service in our example). In order that the service is
discoverable by the business community, Example1 will need to republish the registry entry to
a public registry node such as the “National service registry node” in figure 1. The registry
operator of the national service registry is likely to have created common classification
schemes for the same reasons as our Example1 architect. If the registry server generated its
own keys for classification schemes, the key for the same EAN GLN classification scheme is
“BBB” – different from the key in the Example1 system. Therefore when the Example1 data is
republished to the national registry, nearly all the classifications and associations that gave
context and meaning to the Example1 data are lost unless there is administrative intervention
or the end user does some manual remapping of the data

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 3 of 18

http://www.gs1.org/

Figure 1 - republication scenario

Problem: Node assigned keys are randomly generated by each UDDI registry so the same
content (such as the GLN identifier scheme) published to two different servers will have
different keys. When data is republished between registry nodes, all classifications and
associations will be lost. In essence, what is lost is the means to semantically understand the
information held by a node. The exception to this is subset of classifications that are defined
in the UDDI specification itself (e.g. UDDI Types Category System) or published by an
administrator using some product specific mechanism because they will have the same key in
all compliant registry nodes. If a user has an entry they need to republish with node assigned
keys, they could search the target registry for all classification systems to see if they could
remap all of the keys to existing classification systems in the target registry. Another option is
that the user could publish the classification systems and then update all node assigned keys
used in references before adding the original data. In general, use of key partitions is
designed to reduce the time required from both users and administrators when republishing
entries.

1.1.2 Publisher assigned keys
The Example1 enterprise architect will be relieved to hear that the version 3 specification
provides a solution to the two problems described in the previous section. The solution lies in
the basic principle that the owner of any specification should assign an identifier (in the form
of a URI) to the specification and that the URI should always be used as the UDDI key
irrespective of where the specification is published. In this case, a specification is the key of
the taxonomy and its value set in the case of the examples described above. This is also
applicable to interfaces as will be described in the next section. In our example, the key might

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 4 of 18

be “uddi:gs1.org:gln” and would be defined and owned by GS1. All registry operators that
wish to provide an GS1 GLN identifier scheme would then publish the GS1 GLN identifier
scheme as a tModel with a key value of “uddi:gs1.org:gln”.
This addresses both problems described in the previous section. The key value may be
meaningful AND is consistent in all registry nodes. However this solution introduces a new
challenge – ensuring uniqueness across several registries or even globally. Version 2 keys
are globally unique because a mathematical algorithm generates keys sufficiently long that
there is a vanishingly small chance of two nodes creating the same key. On the other hand, if
publishers are free to assign keys in version 3 then there is no mechanism to ensure that two
publishers don’t choose the same key for entities in different registries. For example, both
Example1 Org. and Example2 Co. may create a sales order service and generate a WSDL
document to describe their service. If both Example1 Org. and Example2 Co. assign the
same “uddi:salesOrderServiceSpecification” key to the interface tModels they published
respectively, then when each attempt to promote their respective interface tModel to the
national registry by publishing them at this location, only the first publication will be permitted
given that there can only be one use of the “uddi:salesOrderServiceSpecification” key in the
national registry. Attempting to publish both services to the national registry would produce an
error on the publication of the second tModel. If the second publisher persisted, then their
bindingTemplate would be referencing the wrong interface tModel.
Problem: Whilst publisher assigned keys can address the problem of the same specification
having different keys in different registries, it introduces a new problem that two different
specifications may be published with the same key – leading to conflicts and confusion.
To address this problem, UDDI version 3 introduces the concept of key partitions.

1.1.3 Relationship to UDDI Taxonomy
Though not the topic of this technical note, it is important to recognize the importance of
ensuring that the registration of taxonomy and specifically the attribution of a key for a
taxonomy be carefully coordinated between administrators of cooperating UDDI nodes. It is
an imperative that in order to share registry information at multiple nodes, by virtue of the
capabilities offered as the outcome of publisher assigned keys, that administrators carefully
coordinate and harmonize the taxonomy and the value sets used by their respective nodes.
Not doing so would result in failure to validate content originating from a checked value set in
the case that a checked taxonomy is shared but its values are not harmonized; that
keyedReferences are rejected on import because of an unknown key used to convey a
categorization for example; or that a semantically equivalent use of a value set be
represented by a taxonomy identified by a different key. Any of the above may result in a
number of undesirable situations that can simply be avoided by careful administration,
distribution, and versioning of value sets and the corresponding key attributed to the
taxonomy.
Readers are encouraged to review the following technical notes:

• Providing a Taxonomy for Use in UDDI Version 2
• Providing a Value Set For Use in UDDI Version 3
• Versioning Value Sets in a UDDI Registry, Version 1.12

1.2 Terminology
The key words must, must not, required, shall, shall not, should, should not, recommended,
may, and optional in this document are to be interpreted as described in [RFC2119].

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 5 of 18

2 Technical Note Solution
2.1 Definitions
UDDI Node – a physical instance of a registry service that complies with the UDDI
specification. A node may be a standalone registry or it may be part of a federated set of
registries such as the UBR (Universal Business Registry).
Publisher – a person or organization with the rights to publish UDDI entities in a UDDI node.
Although a publisher will be referred to as singular throughout this document, a single
publisher may be multiple people, all with the right to publish under the same account.
Business entity – the UDDI entity for describing a business. The UDDI element name for this
entity is businessEntity.
Business service – the UDDI entity for describing a service provided by a business entity.
One business entity may provide zero or more business services. The UDDI element name
for this entity is businessService.
Binding template – the UDDI entity for describing the technical binding for a business
service (ie how to use the business service). One business service may be described by one
or more binding templates. A binding template provides the access point (eg URL) for
invoking the service and lists a number of tModels that together provide a technical fingerprint
for the service. The UDDI element name for this entity is bindingTemplate.
tModel – the UDDI entity that describes a technical interface, protocol, or classification
system. A tModel is typically published by a standards organization or industry group that
wishes to define a standard protocol, interface, or code list for use by the community. One
tModel may be referenced by multiple business entities via their services and binding
templates.
UDDI key – a globally unique (within the UDDI registry) identifier for a UDDI entity such as a
business entity, a business service, a binding template, or a tModel. If assigned by a
publisher, it must be a Uniform Resource Identifier conforming to RFC 2396. If the publisher
does not assign a key then the UDDI node must create one.
Key partitions – a UDDI mechanism for managing keys in such a way as to minimize the
likelihood of creating duplicate keys. This mechanism works by partitioning the space of
possible keys and assigning different partitions to different publishers. In effect, this
mechanism assigns one or more key prefixes to each publisher.
Key generator key – a key generator key is a UDDI key that ends with the string
“:keygenerator”. Ownership of the key generator key implies ownership of the key partition
with which it is associated. Note that only key generator tModels are permitted to have key
generator keys.
Key generator tModel – a tModel whose key is a key generator key. A publisher owns a key
generator key (and its associated key partition) if the publisher owns the tModel with that key.
Note that such a tModel must have a keyed reference in its category bag which categorizes it
as a key generator.

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 6 of 18

2.2 Technical note behavior

2.2.1 Introduction

2.2.1.1 UDDI keys
UDDI keys come in two forms, which we can describe as “Version 2” (V2 for short), and
“Version 3” (V3 for short).
Every business entity, business service, binding template, and tModel in a UDDI registry must
have a unique key, because that key is how the entity is referenced. Managing this
uniqueness is handled differently for V2 and V3 keys.

2.2.1.1.1 UDDI V2 keys
UDDI V2 keys are the only keys available in UDDI Version 2, and are assigned by the UDDI
registry when a new UDDI entity is saved. They are formatted as UUIDs [RFC4122], which
means they are 128bit numbers, usually written as a string of 32 hex digits (separated in
groups by hyphens).
For example: “12345678-1234-1234-1234-1234567890ab” is a valid format UDDI V2 key.
This TN is not concerned with V2 keys. Note that the uniqueness of V2 keys is a problem for
the UDDI registry to manage – the registry will ensure that it assigns a new key to each new
entity that is saved.

2.2.1.1.2 UDDI V3 keys
UDDI V3 keys were introduced in UDDI Version 3. UDDI V3 keys are URIs (see RFC 2396)
which begin with “uddi:”. Unlike UDDI V2 keys, these keys can be assigned by the publisher.
For example: “uddi:example.org:finance:app123” is a valid format UDDI V3 key.
This TN is concerned with the management of V3 keys. Because a publisher can allocate V3
keys to entities, there is a need for a system to control contention over keys. That system is
called key partitions.

2.2.1.2 UDDI V3 key partitions and key generators
In the example above, the publisher of a new UDDI entity with the key
“uddi:example.org:finance:app123” must control the key partition in which that key lies – i.e.
where it exists. If the publisher does not control the key partition, the request will be rejected.
The example key lies in the key partition with the prefix “uddi:example.org:finance”, so that is
the key partition which the publisher must control. To control that partition, the publisher must
own the key generator tModel for the partition. For this example, that is the tModel with the
key “uddi:example.org:finance:keygenerator”.

2.2.1.3 Using a key partition for keys
The publisher who is the owner of a particular key partition is the only person permitted to
publish new UDDI entities whose keys lie within that key partition. Any attempt by another
publisher to publish a UDDI entity using a new key from within that key partition will be
rejected by the UDDI registry.
Note that a publisher is permitted to modify an existing entity they control, even if they do not
own the key partition in which its key lies. Such a situation may arise if they received control
of the entity by way of custody transfer; or if they created the entity while they owned the key
partition, and then transferred ownership of the key partition. As such, the enforcement of key
partitions occurs when the entity is created.
A publisher creates a new key within a key partition by taking the prefix associated with that
key partition and appending a colon, followed by a sequence of characters (the list of
permitted characters will be listed later). Note that the publisher is responsible for ensuring

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 7 of 18

that this sequence forms a new key, rather than clashing with an existing key, otherwise the
publisher will actually perform an update to an existing entry. It is beyond the scope of this TN
to describe how the publisher may manage keys within the key partition. Suffice to say, that
some planning should be done to ensure that the key identifier scheme will have some
longevity and have significance to the community of users that will need to interpret them.
For example: the publisher who controls the key partition associated with the prefix
“uddi:example.org:finance” can create the key “uddi:example.org:finance:dept3” and publish a
business entity with that key.

2.2.1.4 Making a child key partition
To create a new key partition within an existing key partition the publisher who controls the
parent key partition creates a new key within the partition, then appends the reserved string
“:keygenerator” to that new key, and publishes a key generator tModel with that key. The act
of publishing that tModel creates the new key partition.
For example, the publisher who controls “uddi:example.org:finance” can publish a tModel with
the key “uddi:example.org:finance:services:keygenerator”, and that establishes a new key
partition associated with “uddi:example.org:finance:services”. The publisher can then publish
a business service with the key “uddi:example.org:finance:services:inquiry”. Note that
controlling the key partition “uddi:example.org:finance” is not sufficient to publish the key
“uddi:example.org:finance:services:inquiry” – the intermediate step of creating the new
partition is required.

2.2.1.5 Top level key partitions
There are key partitions which have no apparent parent – these are called top-level key
partitions. Following the examples above, “uddi:example.org” is the prefix associated with
such a top-level key partition.
The UDDI node administrator controls the allocation of top level key partitions with the
exception of domain keys such as uddi:example1.org. The exact mechanism where a registry
will allow publishers to establish any top level partition or domain based key partition may
vary from one implementation to another, and is beyond the scope of this document.

2.2.2 Creating & assigning key partitions
The UDDI key partition behavior may be expressed as a set of rules:

1. A UDDI node administrator is the owner of the root partition – “uddi:”
2. Any sequence of letters, numbers, escaped characters (which are represented by %

hexdigit hexdigit) or characters from the set ; / ? @ & = + $, - _ . ! ~ * ' () may be
appended to a key partition (separated by a colon) to create a UDDI key. These
appended characters are called the key specific string (kss). The string
“keygenerator” is not an allowed kss.

3. A key partition owner may create a child key partition by appending the reserved
string “:keygenerator” to a key within the key partition and publishing a key generator
tModel with that key. For example, a registry node administrator may create a new
partition for Example1 by publishing a tModel with the key
“uddi:example1.org:keygenerator”.

4. Top level key partitions SHOULD be based on the DNS domain of the owning
organization. In general, the name of a partition should be selected in such a way
that it is meaningful to the organization and would be acceptable for a long period of
time in order to avoid republishing entries with new keys should the naming become
unacceptable.

5. The owner of a key generator key can transfer ownership to another registry user. In
this case the new owner of the key generator key becomes the owner of the key
partition it represents. For example, if the registry administrator creates
“uddi:example1.org:keygenerator”, then transfers ownership of it to the Example1
administrator then Example1 is the new owner of the “uddi:example1.org” key

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 8 of 18

partition and can create new keys in the partition as defined in rule 2. The transfer of
ownership is executed by transferring the tModel whose key is the key generator key.

6. Once a key generator ownership is transferred the original owner may no longer
create keys in the partition represented by the key generator. This does not, however,
invalidate previously generated keys.

The examples in the diagram below help to clarify these rules. Each box represents a key
partition with the name of the partition in the top left corner of each box. Sample key values
are provided in the partition to which they belong.

Figure 2 - key partitions example

The table below provides examples of keys that are and are NOT in key partition
uddi:example1.org

key Comments

In partition uddi:example1.org

uddi:example1.org:invoicing A key based on the same key as the key
generator key belongs in the partition

uddi:example1.org:auto:keygenerator A key generator key based on a derived key
does belong in the partition.

uddi:example1.org In the case of the domain being top level, the
root key on which the partition is based does
belong in the partition

Not in partition uddi:example1.org

uddi:example1.org:auto:stockquery Belongs to the partition defined by the key uddi-
example1.org:auto:keygenerator

uddi:example1.org:keygenerator The key generator key does not belong in the
partition it designates

uddi:example1.org:keygenerator:hr Does not belong in any partition – an invalid key.

Table 1 - key partition rules example

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 9 of 18

2.3 Common Questions

2.3.1 What partition is this key in?
If we are looking at a particular UDDI key, such as uddi:Example1.org:finance:expenses, how
do we determine which partition this key is in? The answer is simple enough. The string to the
right of the rightmost colon is the key specific string – in this case expenses. The remainder
(to the left of the colon) is the name of the key partition – in this case
uddi:Example1.org:finance. The pieces of the key are delimited by colons.

2.3.2 What is the key generator for this partition?
Continuing from the example above, if we have a key partition called
uddi:Example1.com:finance, what is its key generator? It is the name of the partition, followed
by “:keygenerator” – in this case: uddi:Example1.com:finance:keygenerator.
So we can see that the key generator for any key can be determined by replacing the
rightmost string (the key specific string, delimited by the colon) with the special word
“keygenerator”.

2.3.3 Who is allowed to publish this key?
Suppose we want to determine who is allowed to publish a UDDI entity (say, a service) with
the key uddi:Example1.com:finance:expenses. The only person allowed to publish that key
(for the first time – the rules are different once the entity exists) is the owner of the key
partition. And who owns the key partition? The owner of the key generator tModel is the
owner of the partition. Summing it all up, the only person allowed to publish a service with the
key uddi:Example1.com:finance:expenses is the owner of the tModel with the key
uddi:Example1.com:finance:keygenerator.

2.3.4 How do we get ownership of the key partition?
Consider two cases, the first case where a user owns the keyGenerator uddi:example1.org
and we want to create a sub partition. Publishing an entry
uddi:example1.org:hr:keygenerator. The user now owns a second key partition
uddi:example1.org:hr.
Lets assume another user wants to create an entry with the key
uddi:Example1.org:finance:expenses. Further, in this example, there is no tModel with the key
uddi:Example1.com:finance:keygenerator.
As in the previous case, the user must acquire ownership of the key generator tModel for the
key partition in which this key lies.
Let us assume that the user can approach the owner of the key generator tModel for key
partition uddi:Example1-org – the person who owns the key generator tModel with the key
uddi:Example1.com:keygenerator. The user asks this person to issue us with the key
generator for the key partition uddi:Example1.com:finance. This is done by publishing the
tModel with the key uddi:Example1.com:finance:keygenerator. They then transfer custody of
this tModel to the user who requested it. Now the user can publish keys in the
uddi:Example1.com:finance key partition.
Note that once the owner of the uddi:Example1.com key partition transfers custody of the
uddi:Example1.com:finance:keygenerator tModel , they no longer own it, and therefore they
cannot publish any more keys in the associated partition.

2.3.5 What about existing keys?
All the rules about ownership of key generator tModels only apply to the publication of new
keys, not to existing keys. For keys that already exist, the rules are even simpler: the owner of
an existing key (technically, the owner of the UDDI entity with an existing key) is the only
person who can modify it.

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 10 of 18

Suppose, for example, that the owner of the uddi:Example1.com key generator tModel
created the uddi:Example1.com:finance key generator tModel (as discussed above), then
immediately created a service with the key uddi:Example1.com:finance:payroll. This is
legitimate; this person is creating a key while owning the key generator tModel for the key
partition the key is in. Then, the owner transfers custody of the
uddi:Example1.com:finance:keygenerator tModel to someone else (us, in the example
above). Does this mean that they lose custody of the service
uddi:Example1.com:finance:payroll? No. Does this mean that the new owner of the key
partition can modify the service uddi:Example1.com:finance:payroll? No. Does this mean that
the new owner of the key partition can do anything with that key? No, nothing at all, because
the key is already in existence, and the entity with that key is owned by someone else. The
owner of the key partition only controls the creation of new keys in the key partition, nothing
more.

2.3.6 An anomaly
Interestingly, in the situation above the owner of the uddi:Example1.com:finance key partition
is entitled to create a new key generator tModel with the key
uddi:Example1.com:finance:payroll:keygenerator. If they do so, they can create UDDI entities
with keys like uddi:Example1.com:finance:payroll:wages. This may seem a little absurd, that
one person may own the UDDI entity with the key uddi:Example1.com:finance:payroll, while
another person owns the key partition uddi:Example1.com:finance:payroll, but it is a
consequence of the fact that the ownership of the uddi:Example1.com:finance:payroll key
partition is not conveyed by owning the entity with that key, but rather through owning the
tModel with the key uddi:Example1.com:finance:payroll:keygenerator.
Users should take care to avoid creating a key partition ownership structure that will produce
maintenance challenges in the future by splitting key partitions across too many
organizational boundaries.

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 11 of 18

2.4 Discussion

2.4.1 Assigning key generator keys
Key generator keys should ensure uniqueness, be understandable, and be consistent. In
certain cases, the best practice differs between a root key partition and a child partition.
Root key partition uniqueness can be achieved by using the domain name of the controlling
organization as the key generator key. In the example above, Example1 uses
“Example1.com” as the root partition, which ensures that if its UDDI registry is later combined
with that of another company (for example, in a merger or acquisition scenario or when
producing a community or partner (extranet) directory), its key partition namespace will not
conflict with that of the other company. Using the domain name also makes it clear that the
partition is the highest-level partition for that organization.
For child partitions, key partitions at the same level should not overlap in meaning. For
example, using Example1.com:finance and Example1.com:payables as two key partitions is
undesirable, because the payables department is logically a part of the finance department.
A better solution would be to use Example1.com:finance and
Example1.com:finance:payables.

2.4.2 Domain owners vs. publishers
Sometimes, the most appropriate key name for an entity is in a key space outside a person’s
organization. For example, if the Example1 enterprise architect wants to have a classification
system based on the ANZSIC industry classification scheme that is owned by the Australian
Bureau of Statistics then he should request the scheme URI from ABS and publish the key
accordingly (i.e. uddi:abs.gov.au:anzsic rather than uddi:Example1.com:anzsic).

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 12 of 18

2.5 Example
The Example1 company decides that they will institute their own UDDI registry to serve as an
integration point for the company’s Web services.
They publish, as one of their first actions, a key generator tModel upon which they will base
every key in their registry. They choose to use a domain key based on their company name:
“uddi:example1.org”, mainly because this seems like a fairly unique key, unlikely to be
confused with any other company’s key. It is sensible to keep domain key generator keys
fairly short, because it is likely that a hierarchy of keys will be created from them.
They publish it by issuing the call:
<save_tModel xmlns=”urn:uddi-org:api_v3”>
 <authInfo registry-specific />
 <tModel tModelKey="uddi:example1.org:keygenerator">
 <name>Example1 Key Generator</name>
 <categoryBag>
 <keyedReference
 tModelKey=”uddi:uddi.org:categorization:types”
 keyValue=”keyGenerator”
 keyName=”keyGenerator”
 />
 </categoryBag>
 </tModel>
</save_tModel>

They further choose to publish key generator tModels for some of their divisions, including
both the Human Resources and Finance divisions. They publish those two tModels in a single
save call:
<save_tModel xmlns=”urn:uddi-org:api_v3”>
 <authInfo registry-specific />
 <tModel tModelKey="uddi:example1.org:hr:keygenerator">
 <name>Example1 Human Resources Division Key Generator</name>
 <categoryBag>
 <keyedReference
 tModelKey=”uddi:uddi.org:categorization:types”
 keyValue=”keyGenerator”
 keyName=”keyGenerator”
 />
 </categoryBag>
 </tModel>
 <tModel tModelKey="uddi:example1.org:finance:keygenerator">
 <name>Example1 Finance Division Key Generator</name>
 <categoryBag>
 <keyedReference
 tModelKey=”uddi:uddi.org:categorization:types”
 keyValue=”keyGenerator”
 keyName=”keyGenerator”
 />
 </categoryBag>
 </tModel>
</save_tModel>

In this company, the Payroll section comes under Finance, but has strong ties to Human
Resources. It is decided that this section will maintain its own web services, and receive key
generator tModels from both Human Resources and Finance key partitions – this will enable
them to generate keys that are appropriate to the entities that they are publishing: using keys
from the HR partition for web services that are more HR related (such as web services

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 13 of 18

supporting an employee’s ability to change banking details), and keys from the Finance
partition for web services that are more Finance related (such as the famous web service that
supports altering an employee’s salary). This is not a requirement – the section only needs a
single key generator to be able to publish, but it is appropriate to do things this way.

The HR division creates a key generator tModel for the Payroll section by saving:
<save_tModel xmlns=”urn:uddi-org:api_v3”>
 <authInfo registry-specific />
 <tModel tModelKey="uddi:example1.org:hr:payroll:keygenerator">
 <name>Example1 HR: Payroll Section Key Generator</name>
 <categoryBag>
 <keyedReference
 tModelKey=”uddi:uddi.org:categorization:types”
 keyValue=”keyGenerator”
 keyName=”keyGenerator”
 />
 </categoryBag>
 </tModel>
</save_tModel>

The Finance Division creates a key generator tModel for the Payroll section by saving:
<save_tModel xmlns=”urn:uddi-org:api_v3”>
 <authInfo registry-specific />
 <tModel tModelKey="uddi:example1.org:finance:payroll:keygenerator">
 <name>Example1 Finance: Payroll Section Key Generator</name>
 <categoryBag>
 <keyedReference
 tModelKey=”uddi:uddi.org:categorization:types”
 keyValue=”keyGenerator”
 keyName=”keyGenerator”
 />
 </categoryBag>
 </tModel>
</save_tModel>

The two divisions must transfer these new key generator tModels to the payroll section before
they can be used by that section to create new keys.
The examples above are functional, but it is likely, in real-life, that the key generator tModels
might have overviewDoc elements containing pointers into an overall document explaining the
keying system adopted by Example1. It is also highly likely that these key generator tModels
will be digitally signed, because those signatures provide an additional evidence of the
identity of the publisher, and of the authenticity of the tModels.

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 14 of 18

3 References
[This section should list any references to publicly available documents that the reader may
find helpful during reading of this Technical noted document. These documents may expand
upon any aspect of the material, for instance they may provide additional insight into the
business situation dealt with or they may document standards or products used in developing
the solution.]

3.1 Normative
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement

Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March
1997.

[RFC4122] P. Leach, et al, A Universally Unique Identifier (UUID) URN
Namespace, http://www.rfc-archive.org/getrfc.php?rfc=4122, IETR
RFC 4122, July 2005

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 15 of 18

http://www.ietf.org/rfc/rfc2119.txt
http://www.rfc-archive.org/getrfc.php?rfc=4122

Appendix A. Acknowledgments
The following individuals were members of the committee during the development of this
technical note:

Luc Clément, Systinet
John Colgrave, IBM
Matthew Dovey
Jason Garbis, Systinet
Andrew Hately, IBM
Rob Kochman, formerly Microsoft
Paul Macias, LMI
Oleg Mikulinsky, WebLayers
Tony Rogers, Computer Associates
Claus von Riegen, SAP AG

Additional contributors include:
Steve Capell, Red Wahoo Pty Ltd
Pat Felsted, Novell Inc
Ed Mooney, Sun Microsystems Inc
Dave Prout, BT plc

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 16 of 18

Appendix B. Revision History

Rev Date By Whom What

 16 October
2005

Tony Rogers Integrated feedback,
Inserted 2.2.1 as an introduction

 20 February
2006

Rob Kochman Filled in Section 2.4, removed header
for security policy section, changed
“WWW” example to “Example1”,
incorporated other feedback from Dave
Prout’s April 2005 email.

 2 May 2006 Luc Clément Edit pass

 23 May 2006 Andrew Hately Edit pass

 22 August 2006 Andrew Hately Additional, hopefully final edit pass
incorporating all feedback

 11 November
2006

Luc Clément Incorporated input from Paul Denning,
Mitre Corp

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 17 of 18

Appendix C. Notices
OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or might
not be available; neither does it represent that it has made any effort to identify any such
rights. Information on OASIS's procedures with respect to rights in OASIS specifications can
be found at the OASIS website. Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by implementors or users
of this specification, can be obtained from the OASIS Executive Director.
OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.
Copyright © OASIS Open 2006. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included on all such copies
and derivative works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to OASIS, except as needed for the purpose
of developing OASIS specifications, in which case the procedures for copyrights defined in
the OASIS Intellectual Property Rights document must be followed, or as required to translate
it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.
This document and the information contained herein is provided on an “AS IS” basis and
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

uddi-spec-tc-tn-understandingkeypartitions-20061128
Copyright © OASIS Open 2006. All Rights Reserved. Page 18 of 18

	Introduction
	Problem statement
	Node assigned keys
	Publisher assigned keys
	Relationship to UDDI Taxonomy

	Terminology

	Technical Note Solution
	Definitions
	Technical note behavior
	Introduction
	UDDI keys
	UDDI V2 keys
	UDDI V3 keys

	UDDI V3 key partitions and key generators
	Using a key partition for keys
	Making a child key partition
	Top level key partitions

	Creating & assigning key partitions

	Common Questions
	What partition is this key in?
	What is the key generator for this partition?
	Who is allowed to publish this key?
	How do we get ownership of the key partition?
	What about existing keys?
	An anomaly

	Discussion
	Assigning key generator keys
	Domain owners vs. publishers

	Example

	References
	Normative

