Web Services Context Service Specification July 28, 2003

Web Services Context (WS-Context) Ver1.0

July 28, 2003

Authors:

Doug Bunting (doug.bunting@sun.com)

Martin Chapman (martin.chapman@oracle.com)
Oisin Hurley (ochurley@iona.com)

Mark Little (mark.little@arjuna.com) (editor)

Jeff Mischkinsky (jeff.mischkinsky@oracle.com)
Eric Newcomer (eric.newcomer@iona.com) (editor)
Jim Webber (jim.webber@arjuna.com)

Keith Swenson (KSwenson@fsw.fujitsu.com)

Copyright Notice

© 2003 Arjuna Technologies Ltd., Fujitsu Limited, IONA Technologies Ltd., Oracle Corporation,
and Sun Microsystems, Inc.

All Rights Reserved.

This WS-Context Specification (the "Specification”) is protected by copyright and the information
described therein and technology required to implement the Specification may be protected by one
or more U.S. patents, foreign patents, or pending applications. The copyright owners named
above ("Owners') hereby grant you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license under their copyrights to: (i) download, view, reproduce, and otherwise use the
Specification for interna purposes; (ii) distribute the Specification to third parties provided that
the Specification is not modified by you or such third parties; (iii) implement the Specification and
distribute such implementations, including the right to authorize others to do the same, provided
however, that you only distribute the Specification subject to a license agreement that protects the
Owners interests by including the proprietary legend and terms set forth in this Copyright Notice.

Disclaimer of Warranties

THIS SPECIFICATION IS PROVIDED "AS IS' AND IS EXPERIMENTAL AND MAY
CONTAIN DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE
CORRECTED BY THE OWNERS). THE OWNERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE
FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY OR COPYRIGHT OWNER
PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS.

This document does not represent any commitment to release or implement any portion of the
Specification in any product.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS, CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW
VERSIONS OF THE SPECIFICATION, IF ANY. THE OWNERS MAY MAKE
IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the
Specification will be governed by the then-current license for the applicable version of the
Specification.

LIMITATION OF LIABILITY

mailto:doug.bunting@sun.com
mailto:martin.chapman@oracle.com
mailto:ohurley@iona.com
mailto:mark.little@arjuna.com
mailto:jeff.mischkinsky@oracle.com
mailto:eric.newcomer@iona.com
mailto:jim.webber@arjuna.com
mailto:KSwenson@fsw.fujitsu.com

Web Services Context Service Specification July 28, 2003

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL THE OWNERS OR
THEIR LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY
FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN
IF THE OWNERS AND/OR LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

You will indemnify, hold harmless, and defend the Owners and their licensors from any claims
based on your use of the Specification for any purposes other than those of internal evaluation, and
from any claims that later versions or releases of any Specifications furnished to you are
incompatible with the Specification provided to you under this license.

Restricted Rights Legend

If this Specification is being acquired by or on behaf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government's rights in the
Specification and accompanying documentation shall be only as set forth in this license; thisisin
accordance with 48 C.FR. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for the non-DoD acquisitions).

Report

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in
connection with your evaluation of the Specification ("Feedback™). To the extent that you provide
the Owners with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis, and (ii) grant the Owners a perpetual, non-exclusive,
worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple levels
of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose
related to the Specification and future versions, implementations, and test suites thereof.

Web Services Context Service Specification July 28, 2003

Abstract

The ability to scope arbitrary units of work is a requirement in a variety of aspects of distributed
applications such as workflow and business-to-business interactions. By scoping work, we mean
that it is possible for business activity participants to be able to determine unambiguously whether
or not they are participating in the same activity.

In order to correlate the work of participants within the same activity, it is necessary to propagate
additional information know as the context to each participant. The context contains information
(such as a unique identifier) that allows a series of operations to share a common outcome. For
example, in a Web services-based application, a SOAP header block might contain contextua
information that is propagated when invoking an operation on a Web Service, or when multiple
participants exchange SOAP messages in order to create a larger interaction such as a process
flow.

A Web Services Context Service maintains a repository of context information and tracks contexts
shared between multiple participants in Web services interactions. An Context Service can also be
a participant within an activity, creating a tree to further propagate the context. A Web Services
Context Service accepts and emits SOAP messages for interoperability with any type of
participant, regardless of operating system, programming language, or platform — and is
independent of underlying transfer or transport protocols.

Context is always propagated in addition to application payload, where context information travels
within the SOAP header blocks while application payload (that is, the content intended for
processing by a SOAP node playing the ultimateReceiver role) is propagated inside the SOAP
body.

The context information is specific to the type of activity being performed, such as to identify a
transaction coordinator, the other participants in an activity, or recovery information in the event
of afailure, etc. Therefore, a single context type is not sufficient for all types of activity that a
Context Service may be required to support. Hence, the capabilities of the Context Service must
be extensible in an application specific manner and services must be able to augment the context
as they require to suit their own particular application domains.

Given the importance of context propagation in many distributed systems, including Web
Services, standardization on a context framework (Context Service) is a logical progression in
increasing the usefulness and robustness of the Web Services architecture. That is, there is a
distinct requirement for a generic context propagation service that allows users and services to
register with it, and customize it on a per-service or per-application basis. This service also
supports newly emerging Web Service standards such as coordination, workflow and
transactions.

Satus of thisdocument

This specification is a draft document and may be updated, extended or replaced by other
documents if necessary. It is for review and evaluation only. The authors of this specification
provide this document as is and provide no warranty about the use of this document in any case.
The authors welcome feedback and contributions to be considered for updates to this document in
the near future.

Web Services Context Service Specification July 28, 2003

Table of contents

R [11 0o LU Tox 1 o o SR 7
P2 oo o =X o 0 g 14 oo S 7
Problem SEAEEMENT..........coeeee e 8

3. WS-CTX @ChITECIUIE ...ttt 9
ReE@tioNShiP tO WSDL ... 10

4. Relationships of Activitiesand CONEXIS..........ccceveevriieeriere e 11
Context Service and the Web Services Stackeoveeieneenenie e 12
The Context Service frameWOorK ... 12
COMPOSITE BCHIVITIES. ..ot es 13
CONEEXTS ..ottt n e e e e n e n e e ne s 13
Context information and SOAP ... s 17

5. Context Service COMPONENTS........ccveiueeeerieeeeseesreeseeseeseesseesseessesseesseessesseessesseens 18
5.1 S = (1TSS 19
5.2 COMPIEONSIALUS.ccueeieeeiesteesieeteseeseesieeeesreesseseesseesseeeesreesseesesseessennses 20
5.3 ACHVILY OULCOMES......cuiiuieiieiesieestee e ee sttt sbe e sneees 20
S N I TSRS 21
5.4.1 CONEEXES ...ttt e e s ae e e ne e neeeneas 22
54.2 Enlisting and delisting an ALS.......cco oo vieiececeee e 22
5.4.3 ALS and Context Service iNteraCtions............ccecvveereeiinseenesieeseeneens 24

The Context SErVICE WSDLc.ooiiiiiiieierie et 27
0771 PRSP 29

(010] 1 010 <. (= S 30
COMPIELEVWITNSLAIUS ...ttt 31
SELCOMPIELIONSLBIUSeeeveeeeecieeie e sieesie e ee et e e sae e s e e sseeeesnee e 31
QEtCOMPIELIONSLALUS.........eeieeeieeie et 32

(01 S = L1 3RS 32
QELACHVITYNGIME ...ttt nes 32
JEICONEEXT ...ttt s s e s b sbe e nbe e nre s 33

S I 1< o | RSP 33

0 1=: 1T 1= | S 33
Context ServiCe SChEMAL........ooi i e 34
Context Service WSDL MESSAJE SELccuvveerieririeesieeeeseesie e steeaesseessesaesseessesneens 42

Web Services Context Service Specification July 28, 2003

7. ACKNOWIEAQEMENLS. ... oot e 59

Web Services Context Service Specification July 28, 2003

1. Introduction

The Web Services Context Service (WS-CTX) is the first of three parts of the Web
Services Composite Application Framework (WS-CAF) specification. These
specifications are intended to be useable in isolation; we group them here only for the
purposes of showing how they can be employed in a particular critical use case. The
other two parts are:

e Web Services Coordination Framework (WS-CF)
* Web Services Transaction Management (WS-TXM)

The WS-CTX specification defines the scope of context sharing for other services and
specifications to use; WS-CAF uses this as the basic unit of WS-CAF processing.
WS-CTX isintended as a lightweight mechanism for allowing multiple Web services
to share a common context. Web services share a common context when they perform
related activities such as performing multiple interactions with a data management
resource, interactive display, or automated business process.

WS-CTX defines the context, the scope of context sharing, and basic rules for context
management. WS-CTX describes how to define an Activity in which multiple Web
services are related through shared context. The responsibility for actions in
relationship to the context resides with the individual Web services within the
Activity.

WS-Context
Web Service

Web Service Context
Web Service Resource
Web Service

Figure 1, Web Services CTX Concepts

Figure 1 illustrates the basic concepts within the Web Services-Context. A group of
Web services is related to each other through their association with a Web Services
Context Service that manages a shared context for the group.

2. Scopeof Sharing

Web services are increasingly being used as an integration platform for distributed
enterprise applications. The resulting applications can be very complex in structure,
with complex relationships between their constituent applications, compounded by the
need to share common data or context across multiple interactions. Furthermore, the
execution of such an application may take along time to complete, and may contain

Web Services Context Service Specification July 28, 2003

long periods of inactivity, often due to the constituent applications requiring user
interactions.

The ability to scope arbitrary units of distributed work is arequirement in avariety of
aspects of distributed applications, e.g., quick updates, workflow, business-to-
business interactions, automated business processes, and others. By scoping work, it is
possible for an activity’s participants to be able to determine unambiguously whether
or not they are in the same activity. This is the fundamental functionality of a Web
services Context Service, which may be implemented using a separate, distinct,
service or by adding semantics to the behaviour of participants.

In order to correlate the work of distributed participants within the same activity, it is
necessary to propagate additional information (the context) to participants. The
context contains information such as a unique 1D that allows a series of operations to
share a common outcome. For example, a SOAP header block might contain context
information that is propagated when interacting with a service, or when multiple
participants exchange SOAP messages in order to create alarger interaction such as a
process flow or other aggregation of Web services.

The activity context information is represented as a Web resource, accessible by
dereferencing its URI. Context operations may flow implicitly (transparently to the
application) with normal messages sent to participants/endpoints during Web service
execution, or may be an explicit action on behalf of a participant. Context information
flows within SOAP header blocks with normal payloads sent to
participants/endpoints. A single context type is not sufficient for all uses of an
Context Service. Hence, it must be extensible in an application specific manner:
services must be able to augment the context as they require. Furthermore, it may be
required that additional application specific context information flow to these
participants or the services which use them.

Context propagation is a fundamental requirement of many distributed systems,
including Web services. However, the type of context information that is used may
vary depending upon the circumstances, e.g., in an atomic transaction system is may
be a URI for the coordinator, whereas for secure data interchange it may we the
sender’s public encryption key. Therefore, what is needed is standardization on a
context framework (Context Service) and a minimum definition of context that allows
services to register with it, and customize it on a per activity basis. The Context
Service is intended to be flexible and extensible to support newly emerging Web
services standards such as workflow and transactions. This specification presents a
suitable Context Service architecture and protocol set.

Problem statement

Define a specification for a generic context propagation service for Web Services, to
be known as the Web Services Context Service (WS-CTX). Outline the necessary
infrastructure and protocol requirements to support such a service.

The WS-CTX as proposed can be used in conjunction with other business protocol
activities, e.g., coordination and choreography. The WS-CTX aso includes a

Web Services Context Service Specification July 28, 2003

description of the protocol, infrastructure and required environmental definitions
needed to control the activities associated with an application.

The WS-CTX is designed to be used together with and to compliment other Web
services technol ogies such as reliable messaging, routing, security, and process flow.

The goals of the specification are to:

» Define the notion of an activity for Web Services and the core infrastructure
necessary to support this (e.g., a context service).

* Provide a basic definition of a core infrastructure service consisting of an
Context Service for the Web Services environment, i.e., the WS-CTX.

» Define the mappings onto the Web Services environment (SOAP message and
header definitions, context definition, endpoint address requirements, etc.).

» Definethe required infrastructure support such as event mechanisms, etc.

* Illustrate common usage patterns (e.g., sharing common resources, activity
coordination, transactions etc.).

3. WS-CTX architecture

The section outlines the architecture of WS-CTX, describing the components that
implementations provide and those that are required from applications. The WS-CTX
represents a Web services interaction of a number of activities related to an overall
application. In particular it:

* Defines demarcation points which specify the start and end points of an
activity.

* Registers Web services so that they that can become participants in the
lifecycle of an activity and manage and augment the context associated with
that activity. The participants are notified of the lifecycle of an activity (e.g.,
when it starts or ends) and contacted when context information is to be
propagated, and when the overall results of the activity require further action
by the individual participants.

» Propagates context information (essentially information about the activity
structure at the sender) across the network, either by reference (its URI) or by
value (the “contents’ of the URI).

WS-CTX is not aimed specifically at a single service type or application domain: it is
a more low-level and fundamental service concerned purely with the management of
abstract activity entities through shared context. The main components of the WS-
CTX are:

1) A Context Service: defines the scope of an activity and how information about it
(the context) can be referenced and propagated in a distributed environment.
Activities can be hierarchicaly structured, such that nesting and concurrent
activities are possible. The Context Service may be a Web Service that is
physically remote from, or collocated with its users.

Web Services Context Service Specification July 28, 2003

2) A context: defines basic information about the activity structure that is identified
using a URI, propagated on application messages. The context contains
information necessary for multiple Web services to be associated with the same
activity. This information may be dynamically augmented by applications and
services. Activities are managed by the Context Service, which maintains a
repository of shared contexts associated with execution environments, whenever
messages are exchanged within the scope of an activity, the Context Service can
supply the associated context which may then be propagated with those messages.

3) The Activity Lifecycle service: these Web services are registered with the core
Context Service and are informed of the lifetime of an activity and may further
enhance it by suitable higher-level interfaces. For example, a security service
implementation may define an activity to represent the scope of a secure
interaction between business participants and may then provide explicit
authentication interfaces on top of the Context Service. Whenever a context is
required for the activity associated with the current execution environment, the
Context Service calls each registered ALS and obtains from it an addition to the
basic context; from this it eventually assembles the entire context data that can be
propagated.

The core Context Service is concerned with managing the lifecycle of context
propagation.

How application services are invoked is outside the scope of this specification: they
may use synchronous RPC-style approaches or asynchronous message passing.

Irrespective of how remote invocations occur, context information related to the
sender’s activity hierarchy will need to be referenced or propagated and this
specification determines how the format of the context, how it is referenced, and how
that context is created.

Services and applications can customize and add to this framework in whatever
manner they require and can enroll with it to enable them to control various aspects of
the lifecycle of an activity. By default, when an activity begins and ends all that the
core framework does is ensure that the context is initialized and the activity execution
sequence is managed appropriatel y with respect to the context.

An activity isinitiated by an initial Web service request. The initiating Web serviceis
informed when an activity begins and terminates and has access to the shared context.
For example, if a coordination service initiates an activity, it will be informed when
an activity terminates and can control that termination in a domain specific manner,
e.g., using atwo-phase or other completion protocol.

Relationship to WSDL

Where WSDL is used in this specification we shall use a synchronous invocation style
for sending requests. In order to provide for loose-coupling of entities all responses
are sent using synchronous call-backs. However, this is not prescriptive and other
binding styles are possible.

10

Web Services Context Service Specification July 28, 2003

For clarity WSDL is shown in an abbreviated form in the main body of the document:
only portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is aso
assumed as per [1]. Complete WSDL is available at the end of the specification.

4. Relationshipsof Activities and contexts

An increasing number of distributed applications are constructed through the
composition of existing applications and services. The resulting applications can be
very complex in structure, with complex relationships between their constituent
applications. Furthermore, the execution of such an application may take a long time
to complete, and may contain long periods of inactivity, often due to the constituent
applications requiring user interactions, i.e., these applications require control to flow
from process to process, and for this flow to be orchestrated.

An activity is a unit of (distributed) work, involving one or more parties (services,
components, objects). An activity is created, runs, and then completes. An outcome is
the result of a completed activity, which may be used to determine subsequent flow of
control to other activities, and may result in failure notification messages to the
participants of an activity. Activities may execute over long periods of time (minutes,
hours, days, ...). Aswe shall see, during its lifetime an activity may require periods of
coordination between its constituent parties (participants) or may need to interact with
other services such as transaction management and security.

An activity is essentially away of scoping application specific work. The definition of
precisely what an activity is and what services it will require in order to perform that
work, will depend upon the environment and application in which it is used. We split
the services that are involved within an activity into the following classifications:

» Activity Lifecycle Service (ALS) — these services participate in the life-cycle
of the activity (are informed when it starts, ends etc.) and may augment it for
their own purposes. For example, a security ALS may define the scope of an
activity to be the scope of a security domain. Multiple ALS-es may be enrolled
with the activity.

* Application Services (AS) — these are the services that the application uses to
obtain the functional aspects of the task. For example, a stock-purchase
application may determine that it has several activities which involve
determining current stock quantities, placing orders for new stock, and finaly
delivery of that new stock. Alternatively, an on-line book provider may divide
its activities into users placing books into a shopping basket, the user then
confirming the books that are to be purchased and providing credit card
details, etc.

In both cases the definition of the activity is directly related to the need for a group of
Web services to share common information, such as a stock price or abook inventory
guantity. An activity is itself implemented as a Web Service, and a Web Service may
be enrolled with an activity in order to defineit.

The relationship between ALS and Context Service, Application Services and
Applicationsis shown in Figure 2.

11

Web Services Context Service Specification July 28, 2003

Application
Service

C“ent App| ication kK Application Messages + Context

Activity
Lifecycle
Service

diysuoiie|sy |o3uod
diysuoie|ed |[01uoD

Context Service CTH Protocol Messages

Figure 2, Context Service Component Relationships

Context Service and the Web Services stack

The relationship between the Context Service and the current Web Services stack is
shown in Figure 3. It is expected that the services above the Context Service will be
ableto fully utilize the facilities it provides.

Process
Choreography Description
WSDL Ser\uce/Pr‘ot.ocoI
Description
Specific [T
Transaction Coordinatio
n
Generic [
Coordination Framework Coordinatio
n
CTX Service Contexts
SOAP Message
Routing
Reliable
Transport |
HTTP, HTTPR, SMTP, MQ Transport
Internet, Intranet Network

Figure 3, Context Service and the Web Services stack.

The Context Service framework

The first component of the WS-CTX is an activity framework (the Context Service),
that supports the abstract notion of an activity and allows applications and services to
scope work within these activities by sharing context. The basic infrastructure simply

12

Web Services Context Service Specification July 28, 2003

supports the lifecycle of activities and ensures that each is uniquely identified. In
addition, information about activities can be propagated between execution
environments.

For example, an event management system may wish to be informed when an activity
starts and ends so that it can disseminate this information to interested parties.
Likewise, a transaction service may need to be informed if the activities represent
transactions, so that it can ensure any transaction context information is updated
appropriately. The basic Context Service ssmply manages activity lifecycles and their
associated contexts; for example, the start of a new activity may implicitly cause the
service to add an entry to a context hierarchy and the termination of the activity may
result in an entry being removed from the hierarchy.

Composite activities

Activities can be nested to arbitrary degree. An activity, which contains component
activities, may impose a requirement on an ALS implementation for managing these
component activities. However, the core Context Service framework does not specify
how (or even if) activities should be coordinated: that is the domain of a coordination
service ALS which may be enrolled with the framework.

Contexts

In order for an activity to span a number of Web services, certain information has to
flow between the sites’domains involved in the application. This information is
commonly referred to as the context and includes information related to the services
associated with the framework (e.g., security). It is referenced or propagated in a
distributed environment to provide continuity of context information between remote
execution environments, and may be transported for example inside SOAP header
blocks. This may occur transparently to the client and application services or may be
part of an explicit exchange.

As we have described, the Context Service framework is simply a means to scope
distributed work by associating it with a unique identifier and share related context.
The core context propagation framework must provide a generic context structure that
enables an activity to be uniquely identifiable such that work can be correlated.
Furthermore, it must provide support for applications and services to extend the
context structure in an implementation specific manner, e.g., for coordination,
transactions, security or replication. This context is shown in Figure 4.

<xs:conpl exType name="Cont ext Type" >
<xs:sequence>
<xs: el ement name="context-identifier" type="xs:anyURl"/>
<xs:el ement name="activity-service" type="xs:anyUR" m nCccurs="0"/>
<xs:el ement name="type" type="xs:anyURl " m nQccurs="0"/>
<xs:el ement name="activity-list" m nCccurs="0">
<xs:conpl exType>
<Xs: sequence>
<xs: el ement name="service" type="xs:anyUR " m nCccurs="0"
maxCccur s="unbounded"/ >

13

Web Services Context Service Specification July 28, 2003

</ xs: sequence>
<xs:attribute name="nust Understand" type="xs: bool ean" use="optional"
defaul t="fal se"/>
<xs:attribute name="nust Propagate" type="xs:bool ean" use="optional"
defaul t="fal se"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="chil d-contexts" m nQccurs="0">
<xs:conpl exType>
<Xs: sequence>
<xs:el ement name="chil d-context" type="tns: Context Type"
maxCccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs:any nanespace="##ot her" processContents="|ax" m nCccurs="0"
maxCccur s="unbounded"/ >
</ xs: sequence>
<xs:attribute name="tinmeout" type="xs:int" use="optional"/>
</ xs: conpl exType>

Figure 4, Context Service Context

The context consists of athe following items:

A mandatory URI identifier called context-identifier. This guarantees global
uniqueness for an individual activity (such an identifier can also be thought of
asa“correlation” identifier or avalue that is used to indicate that atask is part
of the same work activity.

* An optional element, activity-service, which identifies the Context Service
responsible for generating the context;

* Anoptiona identifier that indicates the type of the activity;

* An optiona list of the services currently participating in the activity, called
participating-services,

* Anoptiona list of child activities, in the child-contexts element;

* A timeout value, which indicates how long the context information is valid
for; after this period has elapses, the activity structure it refers to may no
longer exist (e.g., the activity may be terminated and the structure garbage
collected). Thisisto allow an Context Service implementation, in the event of
no external stimulus, to terminate activities automaticaly rather than have
them potentially run forever.

Context propagation may also occur using different protocols than those used by the
application. The Context Service does not assume a specific means by which contexts
are propagated, leaving this up to the implementation.

14

Web Services Context Service Specification July 28, 2003

Compose Decompose
np comp N

o Message Message Message
Application + Server
Context \ J
Context Context
Service Service

Inteceptor Inteceptor

Figure5, Services and context flow.

The Context Service maintains context information on behalf of every activity. This
information may be propagated in-line with application invocations or may simply be
referenced by its URI. The context may be built up in two ways:

* Service invocations: as each service is invoked it may augment or otherwise
manipul ate the context that it receives and propagates.

* ALS: because each ALS participatesin the lifecycle of an activity, the Context
Service may build up an initial context based on these service invocations.

As we have aready described, WS-CTX considers the context to be a first-class
entity. As such, an application may choose to propagate either the entire contents of
the context with messages or simply the URI of the context, which represents the
service (component of the Context Service) that maintains the context information. It
is important to note that in those situations where only the context-identifier element
IS present in a context, that the URI which it contains can be de-referenced to obtain
the full context (to use or update its information), which includes the full set of
activity contexts.

The choice of whether to transmit a full or abbreviated context is |eft to the user. It
Is however expected that when dealing with large context elements (those which
subsume a large number of activities) that the URI-only form will be used for
efficiency.

Figure 6, shows the message interactions for the context using the call-back style
mentioned earlier: solid lines represent the initial request invocations and dashed lines
represent the response invocations.

15

Web Services Context Service Specification July 28, 2003

-
- S

- -
»™ generalf ault e

'
- -

.f; ,,.-"'“.--."----""-u- *

- .
f I unknownCantextF ault - *
| v -, '

getContents

Context e Context generated
Manager

¥ > Service generated

» zetContents #

- -
bl
L THTSR Ly

contentsSet

Figure 6, Context interactions.
The ContextManager has the following operations, all of which contain the call-back
address for the ContextRespondant:

» getContents: this message is used to request the entire contents of a specific
context.

* setContents. the contents of the context are replaced with the context
information provided.

The ContextRespondant has the following operations:
» contents: this message returns the entire contents of a specific context.

e contentsSet: this message is sent to indicate that contents of the context have
been updated.

» unknownContextFault: this message is sent to indicate that the specified
context cannot be located.

» generalFault: this message is sent to indicate that some other error has
occurred during the enlistment.

The WSDL interfaces that elucidate these roles are shown in Figure 7.

<wsdl : port Type nane="Cont ext Manager Port Type" >
<wsdl : operati on nanme="get Cont ents">
<wsdl : i nput nmessage="t ns: Get Cont ent sMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="set Cont ents">
<wsdl : i nput nmessage="t ns: Set Cont ent sMessage"/ >
</ wsdl : operati on>
</wsdl : port Type>
<wsdl : port Type nanme="Cont ext Respondant Port Type" >
<wsdl : operati on nanme="contents">
<wsdl : i nput nmessage="t ns: Cont ent sMessage"/ >

16

Web Services Context Service Specification July 28, 2003

</ wsdl : operati on>
<wsdl : operati on nane="contentsSet">
<wsdl : i nput nmessage="t ns: Cont ent sSet Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="unknownCont ext Faul t ">
<wsdl : i nput nmessage="t ns: UnknownCont ext Faul t Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="general Faul t">
<wsdl : i nput message="t ns: Gener al Faul t Message"/ >
</ wsdl : operati on>

</ wsdl : port Type>

Figure7, WSDL Interfacesfor ContextM anager and ContextRespondant Roles

Context information and SOAP

Where messages (either business-level application messages, or WS-CTX protocol
messages themselves) require contextualization, the context is transported in a SOAP
header block. While it isimplicit that WS-CTX actors understand contexts that arrive
in SOAP header blocks, the context propagated with application messages must also
be understood by their recipients. Hence in this case each SOAP header block
carrying an activity context has the “mustUnderstand” attribute set to “true’ and the
recipient must understand the header block encoding according to its identifying URI.
Thisis shown in Figure 8.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<soap: Envel ope xm ns: soap="http://ww. w3. or g/ 2002/ 06/ soap- envel ope" >
<soap: Header
encodi ngStyl e="htt p: // ww. webser vi cest ransacti ons. or g/ schemas/ wsct x/ 2003/ 03"
nust Under st and="t r ue" >
<context xm ns="http://ww. webservi cestransactions. org/ schemas/ wsct x/ 2003/ 03"
ti meout =" 100" >
<context-identifier>

http://ww. webservi cestransacti ons. or g/ wsct x/ abcdef : 012345

</context-identifier>
<activity-service>

http://ww. webservi cestransacti ons. or g/ wsct x/ servi ce

</activity-service>
<type>
http://ww. webservi cestransacti ons. or g/ wsct x/ cont ext/typel

</type>
<activity-list>
<servi ce>http://ww. webservi cest ransacti ons. or g/ servi cel</service>
<servi ce>http://ww. webservi cest ransacti ons. or g/ servi ce2</ servi ce>
</activity-list>
<chi | d- cont ext s>
<chi | d-cont ext timeout="200">
<context-identifier>

http://ww. webservi cestransacti ons. or g/ wsct x/ 5e4f 2218b

</context-identifier>

17

http://www.webservicestransactions.org/wsas/abcdef:012345
http://www.webservicestransactions.org/wsas/service
http://www.webservicestransactions.org/wsas/context/type1
http://www.webservicestransactions.org/wsas/5e4f2218b

Web Services Context Service Specification July 28, 2003

<activity-service>

http://ww. webservi cestransacti ons. or g/ wsct x/ servi ce

</activity-service>
<type>http://ww. webservi cestransacti ons. or g/ wsct x/ cont ext/typel</type>
<activity-list nustUnderstand="true" nustPropagate="true">
<servi ce>http://ww. webservi cestransacti ons. or g/ servi ce3</ servi ce>
<servi ce>http://ww. webservi cestransacti ons. or g/ servi ce4</servi ce>
</activity-list>
</ chi |l d- cont ext >
</ chi |l d- cont ext s>
</ cont ext >
</ soap: Header >
<soap: Body>
<l-- Application Payload -->
</ soap: Body>
</ soap: Envel ope>

Figure 8, CTX Context Transported in a SOAP Header Block

5. Context Service components

In this section we shall consider the individual components within the Context Service
architecture. In order to support both synchronous request/response and message
interactions, we shall describe the components in terms of their behaviour and the
interactions that occur between them. All interactions are described in terms of
correlated messages, which an implementation may abstract at a higher level into
request/response pairs or RPCs, for example. As such, al communicated messages are
required to contain response endpoint addresses solely for the purposes of each
interaction, and a correlation identifier such that incoming and outgoing invocations
can be associated.

Note that both addressing and message correlation are stop-gap measures which
will be harmonized with the prevalent Web Services standards for addressing and
reliable messaging once the community has reached consensus on appropriate
standards.

One consequence of these interactions is that faults and errors which may occur when
an service isinvoked are communicated back to interested parties via messages which
are themselves part of the standard protocol — and does not use the fault mechanisms
of the underlying SOAP-based transport. For example, if an operation might fall
because no activity is present when one is required, then it will be valid for the
noActivityFault message to be received by the response service. To accommodate
other errors or faults, al response service signatures have a general Fault operation.

Note, in the rest of this section we will use the term “invokes operation X on service
Y” when referring to invoking services. This term does not imply a specific
implementation for performing such service invocations and is used merely as a short-
hand for “sends message X to service Y.” Aslong as implementations ensure that the
on-the-wire message formats are compliant with those defined in this specification,

18

http://www.webservicestransactions.org/wsas/service

Web Services Context Service Specification July 28, 2003

how the end-points are implemented and how they expose the various operations (e.g.,
viaWSDL [1]) is not mandated by this specification.

5.1 Status

During the existence of the activity its status will either be running, completing, or
completed. An activity should report its current status when asked; there is no notion
of automatically informing services when a specific state is entered:

<xs: si npl eType nanme="St at usType" >

<xs:restriction base="xs:string">
<xs:enuneration val ue="activity.status. ACTI VE'/ >
<xs:enuneration val ue="activity. status. COWPLETI NG'/ >
<xs:enuneration val ue="activity.status. COWPLETED"/ >
<xs:enuneration value="activity.status. NO ACTIVITY"/>
<xs:enuneration val ue="activity.status. UNKNOMN'/ >

</xs:restriction>

</ xs:sinmpl eType>

The meaning of each of the above valuesis given below:

* activity.status ACTIVE: An Activity is associated with the target service and
the Activity is in the active state. An implementation returns this status after
an Activity has been started and prior to its beginning completion.

* activity.status COMPLETING: An Activity is associated with the target
service and it is in the process of completing. An implementation returns this
status if it has started to complete, but has not yet finished the process. This
value indicates that the activity may be performing activity specific work
required to determine its final completion status, such as notifying participants
of afailure. An activity must enter this state prior to completion.

* activity.status COMPLETED: An Activity is associated with the target service
and it has compl eted.

* activity.statusNO_ACTIVITY: No Activity is currently associated with the
target service. This will occur after an Activity has completed, or before the
first Activity is created.

o activity.status UNKNOWN: An Activity is associated with the target service,
but the Context Service cannot determine its current status. Thisis a transient
condition, and a subsequent invocation should ultimately return a different
status. An implementation may attempt to retry the appropriate invocation
transparently if such avalueisreturned initialy.

The diagram below indicates the transitions that an Activity can undergo.

Completing Completed (@)

Figure9, Activity UML state diagram.

19

Web Services Context Service Specification July 28, 2003

5.2 CompletionStatus

<xs:si npl eType name="Conpl eti onSt at usType" >
<xs:restriction base="xs:string">
<xs:enuneration val ue="activity.conpl et e. SUCCESS"/ >
<xs:enuneration value="activity.conplete. FAIL"/>
<xs:enuneration value="activity.conplete. FAIL_ONLY"/>
<xs:enuneration val ue="activity.conpl et e. UNKNOWN'/ >
</xs:restriction>
</ xs: si npl eType>

When an Activity completes, it does so in one of two states, either success or failure
(the meaning of which can only be defined by the application or services that use the
activity). During its lifetime, the completion state of the Activity (i.e., the state it
would have if it completed at that point) may change from success to failure, and back
again many times. This is represented by the CompletionStatusType type, whose
values are:

» activity.complete. SUCCESS: the Activity has successfully performed its work
and can complete accordingly. When in this state, the Activity completion
status can be changed.

» activity.complete.FAIL: some (application specific) error has occurred which
has meant that the Activity has not performed all of its work, and should be
driven during completion accordingly. When in this state, the Activity
completion status can be changed.

» activity.complete.FAIL_ONLY : some (application specific) error has occurred
which has meant that the Activity has not performed al of its work, and
should be driven during completion accordingly. Once in this state, the
completion status of the Activity cannot be changed, i.e., the only possible
outcome for the Activity isfor it to fail.

» activity.complete UNKNOWN: The Context Service cannot determine its
current completion status. This is a transient condition, and a subsequent
invocation should ultimately return a different completion status. An
implementation may attempt to retry the appropriate invocation transparently
if such avalueisreturned initialy.

5.3 Activity outcomes

When an Activity completes, an outcome may be returned to the initial Web service
application in order for it to determine the fina status of the Activity. Both success
and failure states may be encoded within an outcome.

Services exchange messages based on the AssertionType defined in WS-CTX.

20

Web Services Context Service Specification July 28, 2003

<xs: conpl exType nanme="Asserti onType">

<Xs: sequence>
<xs:el ement name="sender - address" type="tns: AddressType" m nCccurs="0"/>
<xs: el ement nanme="reci pi ent-address" type="tns: AddressType" m nCccurs="0"

maxQccur s="0"/ >

<xs:el ement name="correl ation-id" type="xs:string" mnCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax" m nQccurs="0"/>

</ xs: sequence>

</ xs: conpl exType>

The type is designed to be extensible, returning a message containing arbitrary valid
XML whose form and content is understood by the recipient.

54 ALS

The intention of the Context Service isto support the general notion of an activity and
an associated context (including an activity identifier), with the capability for lifecycle
services (ALS) to enroll with that Context Service and participate in the lifecycle of
an activity, possibly enhancing the context if necessary. For example, as shown in
Figure 10, a coordination service may be associated with the Context Service and
customize the context to include information on the coordinator end-point(s) and
participant(s). Note, the Context Service does not support coordination capabilities at
all but simply maintains the execution environment-to-context repository.

Application

Coordination Service, e.g.,
Transaction

D

|
Activity

Basic context+tx

J
]

Figure 10, Context Service and coordination service relationship.

A specific combination of ALS-es maps to a specific type of context. For example,
coordinator and transactions or just security. An Context Service may be responsible

21

Web Services Context Service Specification July 28, 2003

for managing many different combinations of ALS-es and as such there is a
requirement to be able to identify which ALS configuration is required. All ALS
configurations are identified by an ALS-configuration identifier, whichisaURI.

5.4.1 Contexts

All ALS contexts must be extensions of the basic Context Service context. Where
messages require contextualization, the context is transported in a SOAP header
block. There may be one context representing a number of different ALS-es or one
context per ALS: this mapping is determined by the relationships between the ALS-es
registered with a specific Context Service and is beyond the scope of this
specification.

5.4.2 Enlisting and delistingan ALS

In order to enroll an ALS with the Context Service, the Context Service exposes the
ALSRegistrar interface and the entity performing the enroll defines the
ALSRegistrant interface to receive the call-back results of the enrolment attempt.

The ALSRegistrar has the following operation:

* enlistALS the endpoint address for the ALS is specified in the message, along
with the call-back address for the ALSRegistrant, which will be used by the
ALSRegistrar to later send a messaging indicating success or failure. The
ALS-configuration identifier is also present. Upon success, the ALS will be
enrolled with all activities subsequently created by the Context Service
instance that this ALSRegistrar represents.

The ALSRegistrant has the following operations, all of which contain the endpoint
addressfor the ALS:

* enlisted: this message is sent by the ALSRegistrar to indicate that the ALS has
been successfully enlisted.

* invalidALSFault: this message is sent to indicate that the specified ALS is
invalid in the current Context Service.

» generalFault: this message is sent to indicate that some other error has
occurred during the enlistment.

The message exchanges between the ALSRegistrar and the service that enlists the
ALS is shown in Figure 11. As mentioned, this service receives protocol interactions
via an ALSRegistrant service, but we have considered the two roles (enlister and
receiver of enlistment messages from the ALSRegistrar) separately. Thisis purely for
illustrative purposes and implementations are free to combine these roles if they see
fit.

The service enrolling the ALS calls the ALSRegistrar enlistALS operation supplying
the endpoint for the relevant ALS. The ALSRegistrar will eventually respond by
calling either the enlisted, invalidALSFault or general Fault operations on the supplied
ALSRegistrant service.

22

Web Services Context Service Specification July 28, 2003

enlistALS

ALSRegis »| ALSRegi
trar inv alidALSFault strant

generalFault

enlisted

---------------- » ALS enlister generated

—————— » Activity Managergenerated

Figure 11, ALSRegistrar and AL SRegistrant interaction.

In order to de-list an ALS with the Context Service, the entity performing the de-list
defines the AL SRegistrant interface to receive the results of the delistment attempt.

The ALSRegistrar has the following additional operation:

* deistALS the endpoint address for the ALS is specified, along with the call-
back address for the ALSRegistrant, which will be used by the ALSRegistrar
to later cal-back to indicate success or failure. The ALS-configuration
identifier is aso present. Upon success, the ALS will be un-enrolled from the
Context Service instance that this ALSRegistrar represents.

The ALSRegistrant has the following operations, all of which contain the endpoint
addressfor an ALS:

» delisted: this operation is called by the ALSRegistrar to indicate that the ALS
has been successfully delisted.

* invalidALSFault: this operation is called to indicate that the specified ALS is
invalid in the current Context Service —it was not enlisted.

* generalFault: this operation indicates that some other error has occurred
during the enlistment.

The interactions between the ALSRegistrar and the service that delists the ALS is
shown in Figure 12, highlighting the various message exchanges. As mentioned, this
service recelves protocol interactions via an ALSRegistrant service, but we have
considered the two roles (delister and receiver of delistment messages from the
ALSRegistrar) as separate. This is purely for illustrative purposes and
implementations are free to combine these roles if they seefit.

The service delisting the ALS calls the ALSRegistrar delistALS operation supplying
the endpoint for the relevant ALS.

The ALSRegistrar will eventually respond by caling either the delisted,
invalidALSFault or general Fault operations on the supplied AL SRegistrant service.

23

Web Services Context Service Specification July 28, 2003

delistALS

-

ALSRegis ALSRegi
trar inv alidALSFault strant

generalFault

delisted
--------------- # ALS delister generated
———— > Activity Managergenerated

Figure 12, ALSRegistrar and AL SRegistrant interaction.

The WSDL describing the Registrar and Registrant roles is shown in Figure 13

<wsdl : port Type nanme="ALSRegi strar Port Type">
<wsdl : operati on name="enl i st ALS">
<wsdl : i nput nmessage="tns: Enl i st ALSMessage"/ >
</ wsdl : operati on>
<wsdl : operati on name="del i st ALS">
<wsdl : i nput nmessage="tns: Del i st ALSMessage"/ >
</ wsdl : operati on>
</ wsdl : port Type>
<wsdl : port Type nanme="ALSRegi strant Port Type" >
<wsdl : operati on nanme="enl i stedALS">
<wsdl : i nput nmessage="tns: ALSEnl i st edMessage"/ >
</ wsdl : operati on>
<wsdl : operati on nane="del i st edALS" >
<wsdl : i nput nmessage="tns: ALSDel i st edMessage"/ >
</ wsdl : operati on>
<wsdl : operati on name="inval i dALSFaul t " >
<wsdl : i nput nmessage="tns: | nval i dALSFaul t Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="general Faul t ">
<wsdl : i nput nessage="t ns: Gener al Faul t Message"/ >
</ wsdl : operati on>
</ wsdl : port Type>

Figure 13, AL SRegistrar and AL SRegistrant WSDL

5.4.3 ALSand Context Serviceinteractions

As we discussed previously, any ALS that is registered with an Context Service is
invoked during the lifecycle of each activity. The activity context is propagated to the
ALS and the ALS may augment or manipulate the context as is appropriate for its

24

Web Services Context Service Specification July 28, 2003

implementation. The ALS is aso able to perform other implementation specific
operations, e.g., coordination when the activity terminates.

In order to execute protocol interactions between Context Service and ALS, the
following service interfaces are used:

* ALS: thisrepresentsthe ALS endpoint in the protocol interaction.

» ALSRespondant: this represents the Context Service endpoint in the protocol
interaction; thisis where the ALS calls back with response messages.

The ALS has the following operations which the Context Service invokes. All of
these operations are contextualised with the current context (if any) and the
AL SRespondant endpoint is exchanged for call-backs:

* begin: This operation isinvoked when a new activity has started.

» completeWithSatus: This operation is invoked when the activity is completing
with the status provided. The service can perform whatever lifecycle
management it requires (e.g., coordination) that is appropriate for the specified
status.

» complete: The complete operation is called by the Context Service as part of
the completion process of an activity to give the service the opportunity to
perform any necessary clean-up work.

o getldentity: this message is used to obtain the unique identification of a
specific ALS.

The ALSRespondant has the following operations which the ALS invokes to indicate
the result of a previous ALS invocation by the Context Service. All of these
operations are contextualised with an augmented context (if any):

* begun: the ALS acknowledges that the activity has begun and may have
performed implementation specific work.

» completedWithSatus: the ALS acknowledges that the activity is completing
with the specified status. It may have performed implementation specific
work.

» completed: the ALS acknowledges that the activity has completed. It may have
performed implementation specific work.

* identity: this message is used to return the unique identification of a specific
ALS.

* invalidALSFault: this operation is called to indicate that the specified ALS is
invalid in the current Context Service.

» validContextExpectedFault: this operation is called to indicate that the ALS
expected a valid context to be associated with the invoked operation but did
not find one.

* generalFault: this operation indicates that some other error has occurred
during the enlistment.

25

Web Services Context Service Specification July 28, 2003

The interactions between the Context Service (through the AL SRespondant endpoint)
and the AL S servicesis shown in Figure 14.

generalFault

e

Sy

getldentity

complete

ALSResp

————————ge ALZS generated
ondant ALS

completed

PotivitySernvice generated
completediliithStatus

L identity
-y

=

imealid® LSF ault

Figure 14, AL SRespondant and AL Sinteractions.

The Context Service invokes the ALS begin and the ALS will respond by calling back
with either begun, invalidALSFault or generalFault on the ALSACctivtyService.

If no faults are returned, the Context Service invokes the ALS complete or
completeWithSatus and the ALS will eventually respond by calling back with either

completed, completedWithSatus, invalidALSFault or generalFault on the
AL SRespondant endpoint.

The Context Service invokes the ALS complete operation and the ALS will eventualy

respond by calling back with either completed, invalidALSFault or generalFault on
the AL SRespondant endpoint.
<wsdl : port Type nanme="ALSPort Type" >

<wsdl : operati on nanme="begi n">

<wsdl : i nput nmessage="t ns: ALSBegi nMessage"/ >
</ wsdl : oper ati on>

<wsdl : operati on nanme="conpl et eWthSt at us" >

<wsdl : i nput nmessage="t ns: Conpl et eWt hSt at ust Message"/ >
</ wsdl : oper ati on>

<wsdl : operati on nanme="conpl ete">

<wsdl : i nput nmessage="t ns: Conpl et eMessage"/ >
</ wsdl : operati on>

<wsdl : operati on nanme="val i dCont ext Expect edFaul t ">

<wsdl : i nput nmessage="t ns: Val i dCont ext Expect edFaul t Message"/ >

26

Web Services Context Service Specification July 28, 2003

</ wsdl : operati on>
</wsdl : port Type>
<wsdl : port Type nanme="ALSRespondant Port Type" >
<wsdl : operati on nanme="begun">
<wsdl : i nput nmessage="t ns: BegunMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl et edWt hSt at us" >
<wsdl : i nput nmessage="t ns: Conpl et edWt hSt at usMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl et ed" >
<wsdl : i nput nmessage="t ns: Conpl et edMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="inval i dALSFaul t ">
<wsdl : i nput nmessage="tns: | nval i dALSFaul t Message"/ >
</ wsdl : operati on>
<wsdl : operati on nanme="val i dCont ext Expect edFaul t ">
<wsdl : i nput nmessage="t ns: Val i dCont ext Expect edFaul t Message"/ >
</ wsdl : operati on>
<wsdl : operati on nane="general Faul t">
<wsdl : i nput message="t ns: Gener al Faul t Message"/ >
</ wsdl : operati on>
</ wsdl : port Type>

The Context Service WSDL

In order to be able to scope work within activities it is necessary for a component of
the Context Service to provide an interface for activity demarcation. The
implementation of this service may be collocated with users. Since the Context
Service maintains information on multiple activities, an activity context may be
present on al operation invocations to determine the appropriate activity on which to
operate.

Interactions with the Context Service occur between users (services) and the Context
Service viathe UserCTXService and CTX Service interfaces respectively. The WSDL
for these services is shown below and we shall describe the interactions in the
following section.

<wsdl : port Type nanme="CTXServi cePort Type" >
<wsdl : operati on nanme="begi n">
<wsdl : i nput nmessage="t ns: Begi nMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl ete">
<wsdl : i nput nmessage="t ns: Conpl et eMessage"/ >
</ wsdl : operati on>
<wsdl : operati on name="conpl eteWthSt at us">
<wsdl : i nput nmessage="t ns: Conpl et eWt hSt at usMessage"/ >
</ wsdl : operati on>
<wsdl : operati on nanme="set Conpl eti onSt at us" >
<wsdl : i nput nmessage="t ns: Set Conpl eti onSt at usMessage"/ >
</ wsdl : operati on>

<wsdl : operati on nanme="get Conpl eti onSt at us" >

27

Web Services Context Service Specification

July 28, 2003

<wsdl : i nput nmessage="t ns: Get Conpl eti onSt at usMessage"/ >
</ wsdl : operati on>
<wsdl : operati on name="get St at us" >
<wsdl : i nput nmessage="tns: Get St at usMessage"/ >
</ wsdl : operati on>
<wsdl : operati on name="get Acti vityNane">
<wsdl : i nput nmessage="tns: Get Acti vi t yNaneMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on name="get Cont ext ">
<wsdl : i nput nessage="t ns: Get Cont ext Message"/ >
</ wsdl : oper ati on>
<wsdl : operati on name="set Ti meout ">
<wsdl : i nput nmessage="t ns: Set Ti nreout Message"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="get Ti neout ">
<wsdl : i nput nessage="t ns: Get Ti nreout Message"/ >
</ wsdl : oper ati on>
</wsdl : port Type>
<wsdl : port Type nanme="User CTXServi cePort Type" >
<wsdl : operati on name="begun">
<wsdl : i nput nmessage="t ns: BegunMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on name="conpl et ed" >
<wsdl : i nput nmessage="t ns: Conpl et edMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on name="conpl et edWt hSt at us" >
<wsdl : i nput nmessage="t ns: Conpl et edWt hSt at usMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl eti onSt at usSet " >
<wsdl : i nput nessage="t ns: Conpl eti onSt at usSet Message"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl eti onSt at us" >
<wsdl : i nput nmessage="tns: Conpl et edWt hSt at usMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl eti onSt at us" >
<wsdl : i nput nmessage="t ns: Conpl et edWt hSt at usMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="stat us">
<wsdl : i nput nmessage="tns: St at usMessage"/ >
</ wsdl : operati on>
<wsdl : operati on nanme="activityNanme">
<wsdl : i nput message="tns: Acti vityNaneMessage"/ >
</ wsdl : operati on>
<wsdl : operati on name="r equest edCont ext ">
<wsdl : i nput nmessage="t ns: Request edCont ext Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="ti neout Set ">
<wsdl : i nput message="t ns: Ti meout Set Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="ti meout">

<wsdl : i nput nmessage="t ns: Ti meout Message"/ >

28

Web Services Context Service Specification July 28, 2003

</ wsdl : operati on>
<wsdl : operati on nanme="inval i dSt at eFaul t">
<wsdl : i nput nmessage="tns: | nvalidSt at eFaul t Message"/ >
</ wsdl : operati on>
<wsdl : operation name="inval i dActivityFault">
<wsdl : i nput nmessage="tns: | nvalidActivityFaul t Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="ti meout Qut Of Range" >
<wsdl : i nput nmessage="t ns: Ti meout Qut &f RangeFaul t Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="chil dActi vi t yPendi ngFaul t ">
<wsdl : i nput nmessage="tns: Chi | dActi vityPendi ngFaul t Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="noActivityFault">
<wsdl : i nput nmessage="tns: NoActi vi tyFaul t Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="noPer m ssi onFaul t ">
<wsdl : i nput nmessage="t ns: NoPer m ssi onFaul t Message"/ >
</ wsdl : operati on>
</ wsdl : port Type>

In order to drive the Context Service, the following two roles (and associated
services) are defined for the interactions:

e CTXService: this has operations begin, complete, completeWithStatus,
setCompletionStatus, getCompletionStatus, getStatus, getActivityName,
getContext, setTimeout and getTimeout;

* UserCTXService: this is the user/service callback endpoint address for the
various CTXService operations. As such, it has operations begun, completed,
completionStatusSet, completionStatus, status, activityName, context,
timeoutSet, timeout, invalidStateFault, invalidActivityFault,
timeoutOutOf RangeFaullt, childActivityPendingFaullt, noActivityFault,
noPermissionFault, validContextExpectedFault.

The CTXService has the following operations, all of which are contextualised with
the current context (if any) and contain the ALS-configuration identifier. The
UserCTXService endpoint address is exchanged during each operation in order to
allow the Context Service to return the result of the invocation.

begin

The begin operation creates a new activity and initializes the context. Any enrolled
ALS Web services have their begin methods called in the scope of the newly
initialized context and can augment it accordingly. A begin can be modelled as the
first Web service in the Activity to register itself, in the case where there is no formal
Context Service executing as a separate Web service; an unique activity identifier is
created for the activity such that any context information that is subsequently obtained
will reference thisidentifier. If an activity context is present on the begin request then
the newly created Activity will be nested within it. Otherwise, the Activity exists at
the top levd. If the paent Activity has been maked as

29

Web Services Context Service Specification July 28, 2003

activity.complete.FAIL_ONLY then the invalidStateFault operation will be invoked
on the received UserCTXService endpoint. If the activity is completing, or has
completed, the invalidActivityFault operation will be invoked on the received
UserCT X Service endpoint.

The timeout parameter is used to control the lifetime of the Activity. If the Activity
has not completed by the time timeout seconds elapses then it is subject to being
completed automatically by the Context Service with the activity.complete.FAIL
status. The timeout can have the following possible values:

* any positive value: the Activity must complete within this number of seconds.

» -1: the Activity will never be completed automatically by the Context Service
implementation, i.e., it will never be considered to have timed out.

* 0: thelast value specified using the set_timeout method is used. If no prior call
to the setTimeout operation has occurred for this thread, or the value returned
is O, then it is implementation dependant as to the timeout value associated
with this Activity.

Any other value results in the Context Service caling the timeoutOutOfRangeFault
operation on the UserCT X Service endpoint.

Upon success, the new activity will be placed in the activity.status. ACTIVE state and
the Context Service will invoke the begun operation of the UserCTX Service.

If an invalid context is propagated on the begin request then the
validContextExpectedFault operation is invoked on the UserCTX Service.

The generalFault operation is invoked on the UserCTX Service if an unexpected error
or fault occurs.

complete

A valid activity context is associated with this invocation. The complete operation
causes the associated Activity to complete with its current CompletionStatus, or
activity.complete.FAIL if none has been specified using setCompletionSatus. If there
are any encompassed active Activities and the completion status is
activity.complete. SUCCESS, then the childActivityPendingFault operation is invoked
on the associated UserCTXService; the application must then either complete the
outstanding nested contexts or force the Activity to end by setting the
CompletionStatus to either activity.complete.FAIL or activity.complete. FAIL_ONLY
and then call complete again. Prior to completing, any registered ALS isinformed via
the completeWithSatus method and is able to undertake its specific work. Subsequent
to completion, their complete methods are invoked.

If the completion status is activity.complete.FAIL, or activity.complete. FAIL_ONLY,
any encompassed active Activities will they have their completion status set to
activity.complete.FAIL_ONLY. If there is no Activity associated with the sent
context, the noActivityFault operation is invoked on the UserCTXService and no
other action is taken. An Context Service implementation may impose restrictions on

30

Web Services Context Service Specification July 28, 2003

which users can terminate an activity, and in which case the noPermissionFault
operation may be invoked on the UserCTXService.

Once complete, the Context Service invokes the completed method on the
UserCTXService, passing it the resultant AssertionType (which may be an empty
message) and the state in which it completed; the AssertionType may be used to
further interpret the final outcome of the Activity. If the Activity is not allowed to
complete in the status required (eg., it has been maked as
activity.complete. FAIL_ ONLY and is being asked to complete in
activity.complete. SUCCESS state) then the Context Service will invoke the associated
UserCT X Services activityCompleted operation. If the Activity has begun completion,
or has completed, then the invalidActivityFault UserCT X Service operation iscalled.

If an invalid context is propagated on the request then the validContextExpectedFault
operation is invoked on the UserCTX Service.

The generalFault operation is invoked on the UserCTX Service if an unexpected error
or fault occurs.

Additional fault or success messages are expected to be encoded within the resultant
AssertionType.

completeWithStatus

A valid activity context should be associated with this invocation. The
completeWithSatus operation causes the Activity associated with the context to
complete and use the CompletionStatus provided if this does not conflict with any that
has previousy been set using the setCompletionSatus operation; this is logically
equivalent to calling the setCompletionSatus operation followed by the complete
operation. The UserCTX Service completed operation is called upon success.

If an invalid context is propagated on the request then the validContextExpectedFault
operation isinvoked on the UserCTXService.

The generalFault operation is invoked on the UserCTX Service if an unexpected error
or fault occurs,

Additional fault or success messages are expected to be encoded within the resultant
AssertionType.

setCompletionStatus

A valid activity context is associated with this invocation. This operation can be used
to set the CompletionStatus that will be used when the Activity completes. This
operation may be called many times during the lifetime of an Activity in order to
reflect changes in its completion status as it executes. If this operation is not called
during the Activity’s lifetime, the default status is activity.complete.FAIL. When the
Activity completes, the CompletionStatus is given to all enlisted ALS-es. It may aso
appear in the activity context. If the CompletionStatus is
activity.complete. FAIL_ONLY and an attempt is made to change the status to
anything other than activity.complete.FAIL_ONLY, the invalidStateFault operation

31

Web Services Context Service Specification July 28, 2003

will be invoked on the UserCTX Service. If the Activity has begun completion, or has
completed, then the UserCTXService invalidActivityFault operation will be called.
Otherwise, the completionStatusSet operation is invoked.

If an invalid context is propagated on the request then the validContextExpectedFault
operation is invoked on the UserCTX Service.

The generalFault operation is invoked on the UserCTX Service if an unexpected error
or fault occurs.

getCompletionStatus

This operation is used to obtain the current CompletionStatus associated with the
activity referenced in the propagated context (if any). The Context Service will invoke
the completionStatus on the UserCT X Service associated with this invocation, passing
the CompletionStatus currently associated with the Activity, or
activity.complete.FAIL if setCompletionSatus has not previously been called. If there
IS no activity associated with the propagated context then the noActivityFault
operation will be called.

If an invalid context is propagated on the request then the validContextExpectedFault
operation is invoked on the UserCTX Service.

The generalFault operation is invoked on the UserCTX Service if an unexpected error
or fault occurs.

getStatus

This operation is used to obtain the current Status of the activity referenced in the
propagated context. The Context Service will invoke the status operation on the
associated UserCTX Service to return the current status of the Activity. If there is no
Activity associated with the context, the noActivityFault operation is invoked on the
UserCTX Service.

If an invalid context is propagated on the request then the validContextExpectedFault
operation is invoked on the UserCTX Service.

The generalFault operation is invoked on the UserCTX Service if an unexpected error
or fault occurs.

getActivityName

This operation is used to retrieve the name of the activity referenced in the propagated
context. The Context Service invokes the activityName operation on the
UserCTXService passing back a printable string describing the activity, or an empty
string if there is no activity associated with the invocation.

If an invalid context is propagated on the request then the validContextExpectedFault
operation isinvoked on the UserCTXService.

The generalFault operation is invoked on the UserCTX Service if an unexpected error
or fault occurs,

32

Web Services Context Service Specification July 28, 2003

getContext

Given the unique activity identification, this operation causes the Context Service to
invoke the context operation on the associated UserCTX Service to returns the context
URI for the Activity. If there is no activity associated with the identifier then the
noActivityFault operation is used.

If an invalid context is propagated on the request then the validContextExpectedFault
operation is invoked on the UserCTX Service.

The generalFault operation is invoked on the UserCTX Service if an unexpected error
or fault occurs.

setTimeout

This operation modifies a state variable associated with the Context Service that
affects the time-out period associated with the activities created by subsequent
invocations of the begin operation. If the parameter has a non-zero value n, then
activities created by subsequent invocations of begin will be subject to being
completed if they do not complete before n seconds after their creation. The timeout
can have the following possible values:

* any positive value: the Activity must complete within this number of seconds.

» -1: the Activity will never be completed automatically by the Context Service
implementation, i.e., it will never be considered to have timed out.

» 0 it isimplementation dependant as to the meaning of passing O as the value.

A valid timeout value results in the Context Service calling the UserCTXService's
timeoutSet operation. Any other vaue results in the timeoutOutOfRangeFault
operation being invoked on the associated UserCTX Service.

If an invalid context is propagated on the request then the validContextExpectedFault
operation is invoked on the UserCTX Service.

The generalFault operation is invoked on the UserCTX Service if an unexpected error
or fault occurs.

getTimeout

Upon successful execution, this operation causes the Context Service to invoke the
timeout operation on the associated UserCT X Service and return the value of the time-
out period associated with activities created by calls to begin. This need not be the
value associated with the current Activity, however.

If an invalid context is propagated on the request then the validContextExpectedFault
operation isinvoked on the UserCTXService.

The generalFault operation is invoked on the UserCTX Service if an unexpected error
or fault occurs.

Figure 15 shows the state transitions for an activity and how they relate to the various
messages exchanges between the client/user of the Context Service and the Context

33

Web Services Context Service Specification July 28, 2003

Service. As mentioned above, in order to participate in these message interactions the
client/user supplies a UserCT X Service endpoint.

UserCTXService |d-._

1
/!
1
!
/!
1
1
1
1
1
/
|
|
| \
begun |
1
1
1
]
1
1
1
i
H
\
\
\
\
\

\
\,

» C4CServicegenerated

—_—

. Client/servicegenerated
completeWithStatus

complete

Complet
ing

Complet
ed

Figure 15, Activity state transitions and messages.

Context Service schema

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs: schema

t ar get Namespace="ht t p: / / ww. webser vi cestransacti ons. or g/ schemas/ wsct x/ 2003/ 03"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schenma"

xm ns: tns="http://www. webser vi cestransacti ons. or g/ schemas/ wsct x/ 2003/ 03"
el ement For nDef aul t =" qual i fi ed" attributeFornDefaul t="unqualified">
<I'-- Fundanental WSCAC types -->
<xs: conpl exType nane="Cont ext Type" >
<Xs: sequence>
<xs:el ement name="context-identifier" type="xs:anyURl"/>

<xs: el ement nanme="activity-service" type="xs:anyURl" m nCQccurs="0"/>

nane="type" type="xs:anyURl"
<xs:element name="activity-list"
<xs: conpl exType>

<XS:sequence>

<xs: el enent m nCccur s="0"/ >

m nCccur s="0">

<xs:el ement name="service" type="xs:anyUR "

m nCccur s="0"
maxQccur s="unbounded"/ >

</ xs: sequence>

<xs:attribute name="nust Understand" type="xs: bool ean" use="optional"
defaul t="fal se"/>

<xs:attribute nanme="nust Propagate" type="xs:bool ean" use="optional"
defaul t="fal se"/>

</ xs: conpl exType>
</ xs: el enent >

<xs: el ement nanme="chil d-contexts" m nCccurs="0">

34

Web Services Context Service Specification July 28, 2003

<xs: conpl exType>
<Xxs: sequence>
<xs:el ement name="chil d-context" type="tns: Context Type"
maxQccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs:any nanespace="##ot her" processContents="1ax" m nCccurs="0"
maxCccur s="unbounded"/ >
</ xs: sequence>
<xs:attribute nane="tineout" type="xs:int" use="optional"/>
</ xs: conpl exType>
<xs: el ement name="context" type="tns: Context Type"/>
<xs:si nmpl eType nanme="Stat usType">
<xs:restriction base="xs:string">
<xs:enuneration val ue="activity.status. ACTI VE'/ >
<xs:enuneration val ue="activity. status. COWPLETI NG'/ >
<xs:enuneration val ue="activity.status. COWPLETED"/ >
<xs:enuneration value="activity.status. NO ACTIVITY"/>
<xs:enuneration val ue="activity.status. UNKNOMN'/ >
</xs:restriction>
</ xs: si nmpl eType>
<xs:el ement name="status" type="tns: StatusType"/>
<xs: si npl eType nane="Conpl eti onSt at usType" >
<xs:restriction base="xs:string">
<xs:enuneration val ue="activity.conpl et e. SUCCESS"/ >
<xs:enuneration value="activity.conplete. FAIL"/>
<xs:enuneration value="activity.conplete. FAIL_ONLY"/>
<xs:enuneration val ue="activity.conpl et e. UNKNOWN'/ >
</xs:restriction>
</ xs: si npl eType>
<l-- Message oriented el enments -->
<xs: conpl exType nane="AddressType">
<xs:sequence>
<xs: el ement nanme="address" type="xs:anyURl"/>
<l-- <xs:el ement name="portType" type="xs: QName"/> -->
</ xs: sequence>
</ xs: conpl exType>
<xs:conpl exType name="AssertionType">
<Xs: sequence>
<xs: el ement nanme="sender - address" type="tns: AddressType" m nCccurs="0"/>
<xs:el ement name="reci pi ent - address" type="tns: AddressType" m nCccurs="0"
maxQccur s="0"/ >
<xs: el ement nanme="correlation-id" type="xs:string" m nQccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
<xs:el ement name="assertion" type="tns: AssertionType"/>
<xs: conpl exType nanme="Asserti onWt hProt ocol URI Type" >
<xs: conpl exCont ent >

<xs:extension base="tns:AssertionType">

35

Web Services Context Service Specification July 28, 2003

<Xs:sequence>
<xs: el ement name="protocol -uri" type="xs:anyURl"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
<xs: el ement nanme="begi n" substituti onG oup="tns:assertion">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="tns: Asserti onWt hProt ocol URI Type">
<Xs:sequence>
<xs:element name="tinmeout" type="xs:int"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="begun" type="tns: AssertionType"
substituti onG oup="tns:assertion"/>
<xs:el ement name="conpl ete" substitutionG oup="tns:assertion">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs:extension base="tns: Asserti onWthProtocol URl Type">
<XS:sequence>
<xs:el ement name="conpl eti on-status" type="tns: Conpl eti onSt at usType"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="conpl eted" type="tns: AssertionType"
substituti onG oup="tns:assertion"/>
<xs: el ement nanme="conpl ete-w th-status" substituti onG oup="tns:assertion">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs:extension base="tns: Asserti onWthProtocol URl Type">
<Xs:sequence>
<xs:el ement ref="tns:status"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="conpl eted-w th-status" substituti onG oup="tns:assertion">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs:extension base="tns:AssertionType">
<Xs:sequence>
<xs: el ement nanme="conpl eti on-status" type="tns: Conpl eti onSt at usType"/ >
</ xs: sequence>

</ xs: ext ensi on>

36

Web Services Context Service Specification July 28, 2003

</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="set-conpl eti on-status" substituti onG oup="tns:assertion">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="tns: Asserti onWt hProt ocol URI Type">
<Xs:sequence>
<xs:el ement name="conpl eti on-status" type="tns: Conpl eti onSt at usType"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="get-conpl etion-status" type="tns: Asserti onWt hProtocol URl Type"
substituti onG oup="tns:assertion"/>
<xs:el ement name="conpl etion-status" substituti onG oup="tns: assertion">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs:extension base="tns: AssertionType">
<XS:sequence>
<xs:el ement name="conpl eti on-status" type="tns: Conpl eti onSt at usType"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="get-status" type="tns: Asserti onWt hProt ocol URl Type"
substituti onG oup="tns:assertion"/>
<xs: el ement nanme="got-status" substituti onG oup="tns:assertion">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="tns: AssertionType">
<Xs:sequence>
<xs:el ement ref="tns:status"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="get-activity-name" type="tns: Asserti onWt hProtocol URl Type"
substitutionG oup="tns:assertion"/>
<xs: el ement nanme="activity-name" substitutionG oup="tns:assertion">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="tns: Asserti onType">
<Xs:sequence>
<xs:el ement name="activity-nane" type="xs:string"/>
</ xs: sequence>
</ xs: ext ensi on>

</ xs: conpl exCont ent >

37

Web Services Context Service Specification

July 28, 2003

</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="get-timeout" type="tns:AssertionWthProtocol URl Type"
substituti onG oup="tns:assertion"/>
<xs: el ement name="tinmeout" substitutionG oup="tns:assertion">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs:extension base="tns:AssertionType">
<Xs:sequence>
<xs:el ement name="tineout" type="xs:int"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conmpl exType>
</ xs: el enent >
<xs: el ement name="set-tinmeout" substitutionG oup="tns:assertion">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="tns: Asserti onWthProt ocol URI Type">
<Xs:sequence>
<xs:el ement name="tineout" type="xs:int"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement name="tinmeout-set" substitutionG oup="tns:assertion">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="tns: AssertionType">
<Xs:sequence>
<xs:el ement name="tineout" type="xs:int"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="al s-begi n" type="tns: AssertionType"
substitutionG oup="tns:assertion"/>
<xs: el ement name="get-context" type="tns: Asserti onWt hProtocol URl Type"
substituti onG oup="tns:assertion"/>
<xs:el ement name="request ed-cont ext">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs:extension base="tns:AssertionType">
<XS:sequence>
<xs:element ref="tns:context"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >

</ xs: conpl exType>

38

Web Services Context Service Specification July 28, 2003

</ xs: el ement >
<xs: el ement nanme="enlist-als" substituti onG oup="tns:assertion">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="tns: Asserti onWthProt ocol URI Type">
<Xs:sequence>
<xs: el ement nane="al s" type="xs:anyURl"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="al s-enlisted" substituti onG oup="tns:assertion">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="tns: AssertionType">
<Xs:sequence>
<xs: el ement nanme="al s" type="xs:anyURl"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="delist-als" substitutionG oup="tns:assertion">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="tns: Asserti onWthProt ocol URI Type">
<Xs:sequence>
<xs: el ement nanme="al s" type="xs:anyURl"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="al s-delisted" substitutionG oup="tns:assertion">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs: extensi on base="tns: AssertionType">
<Xs:sequence>
<xs: el ement nanme="al s" type="xs:anyURl"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="get-contents" type="tns: AssertionType"
substitutionG oup="tns:assertion"/>
<xs:el ement name="contents" substitutionG oup="tns:assertion">
<xs: conpl exType>
<xs: conpl exCont ent >

<xs:extension base="tns: AssertionType">

39

Web Services Context Service Specification July 28, 2003

<XS:sequence>
<xs:el ement ref="tns:context"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="set-contents" substitutionG oup="tns:assertion">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs:extension base="tns:AssertionType">
<Xs:sequence>
<xs:el ement ref="tns:context"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="contents-set" type="tns: AssertionType"
substitutionG oup="tns:assertion"/>
<!-- Faults -->
<xs:conpl exType name="Faul t Type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: Asserti onType">
<Xs:sequence>
<xs:el ement name="originator" type="xs:anyURl "/>
<xs: el ement nanme="error-code" type="xs:anyURl"/>
<xs:el ement name="description" type="xs:string" m nQccurs="0"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
<xs:el ement name="fault" type="tns: Faul t Type" abstract="true"/>
<xs:el ement name="general -fault" type="tns: Faul t Type"
substituti onG oup="tns:fault"/>
<xs: el ement name="invalid-als-fault">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs:ext ension base="tns: Faul t Type">
<XS:sequence>
<xs: el ement nanme="invalid-al s-address" type="tns: AddressType"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs:element name="invalid-state-fault" type="tns: Faul t Type"
substitutionG oup="tns:fault"/>
<xs: el ement name="invalid-activity-fault" type="tns: Fault Type"
substitutionG oup="tns:fault"/>

<xs:el ement name="timeout-out-of-range-fault" substitutionG oup="tns:fault">

40

Web Services Context Service Specification July 28, 2003

<xs: conpl exType>
<xs: conpl exCont ent >
<xs:ext ension base="tns: Faul t Type">
<Xs: sequence>
<xs: el ement nanme="specified-tinmeout" type="xs:int"/>
<xs:el ement name="maxi numtineout" type="xs:int"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="child-activity-pending-fault" type="tns: FaultType"
substituti onG oup="tns:fault"/>
<xs:el ement name="no-activity-fault" type="tns: Faul t Type"
substituti onG oup="tns:fault"/>
<xs: el ement name="no-permnission-fault" type="tns: Faul t Type"
substitutionG oup="tns:fault"/>
<xs: el ement nanme="val i d-cont ext-expected-fault" type="tns: Faul t Type"
substituti onG oup="tns:fault"/>
<xs:el ement name="unknown-context-fault" substitutionG oup="tns:fault">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs:ext ension base="tns: Faul t Type">
<Xs: sequence>
<xs:el ement name="context-identifier" type="xs:anyURl"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >

</ xs: schema>

41

Web Services Context Service Specification July 28, 2003

Context Service WSDL M essage Set

<?xm version="1.0" encodi ng="UTF- 8" ?>
<wsdl : definitions
t ar get Namespace="htt p: / / ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03"
xm ns:tns="http://ww. webservi cestransactions. or g/ wsdl / wsct x/ 2003/ 03"
xm ns: wsc4c="htt p:// ww. webservi cest ransacti ons. or g/ schemas/ wsct x/ 2003/ 03"
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schenma" >
<wsdl :inport |ocation="http://ww. webservi cestransactions. org/ schemas/wsct x/ 2003/ 03"
nanespace="wsc4c. xsd"/ >
<wsdl : mressage nane="Cont ext Message" >
<wsdl : part nanme="content" el ement="wsc4c: context"/>
</ wsdl : ressage>
<wsdl : mressage nane="Begi nMessage" >
<wsdl : part nanme="content" el ement="wsc4c: begi n"/>
</ wsdl : message>
<wsdl : mressage nane="BegunMessage" >
<wsdl : part nanme="content" el ement ="wsc4c: begun"/>
</ wsdl : message>
<wsdl : mressage nane="Conpl et eMessage" >
<wsdl : part nanme="content" el ement="wsc4c: conpl ete"/>
</ wsdl : message>
<wsdl : ressage nane="Conpl et edMessage" >
<wsdl : part nanme="content" el ement="wsc4c: conpl eted"/ >
</ wsdl : message>
<wsdl : ressage nane="Conpl et eWt hSt at usMessage" >
<wsdl : part nanme="content" el ement="wsc4c: conpl ete-w th-status"/>
</ wsdl : message>
<wsdl : ressage nane="Conpl et edW t hSt at usMessage" >
<wsdl : part name="content" el enent="wsc4c: conpl et ed-w t h-status"/>
</ wsdl : message>
<wsdl : ressage nane="Set Conpl eti onSt at usMessage" >
<wsdl : part name="content" el enent="wsc4c: set-conpl eti on-status"/>
</ wsdl : message>
<wsdl : mressage nane="Get Conpl eti onSt at usMessage" >
<wsdl : part name="content" el enent ="wsc4c: get-conpl eti on-status"/>
</ wsdl : mressage>
<wsdl : ressage nane="Conpl eti onSt at usMessage" >
<wsdl : part name="content" el enent="wsc4c: conpl eti on-status"/>
</ wsdl : mressage>
<wsdl : message nane="Get St at usMessage" >
<wsdl : part name="content" el enent="wsc4c: get-status"/>
</ wsdl : mressage>
<wsdl : mressage nane="St at usMessage" >
<wsdl : part name="content" el enent="wsc4c: got-status"/>
</ wsdl : mressage>
<wsdl : message nane="Get Acti vit yNameMessage" >
<wsdl : part nanme="content" el ement ="wsc4c: get-activity-nanme"/>
</ wsdl : mressage>

<wsdl : mressage nane="Acti vityNameMessage" >

42

Web Services Context Service Specification July 28, 2003

<wsdl : part nanme="content" el ement="wsc4c: activity-nanme"/>
</ wsdl : mressage>
<wsdl : mressage nane="Cet Ti meout Message" >

<wsdl : part nanme="content" el ement="wsc4c: get-tinmeout"/>
</ wsdl : mressage>
<wsdl : mressage nane="Ti neout Message" >

<wsdl : part name="content" el ement="wsc4c:tinmeout"/>
</ wsdl : message>
<wsdl : message nane="Set Ti meout Message" >

<wsdl : part name="content" el ement="wsc4c:set-tinmeout"/>
</ wsdl : message>
<wsdl : mressage nane="Ti neout Set Message" >

<wsdl : part nanme="content" el ement="wsc4c:tinmeout"/>
</ wsdl : message>
<wsdl : nressage nane="ALSBegi nMessage" >

<wsdl : part nanme="content" el ement="wsc4c: al s-begi n"/>
</ wsdl : message>
<wsdl : nressage nane=" Cet Cont ext Message" >

<wsdl : part name="content" el ement="wsc4c: get-context"/>
</ wsdl : message>
<wsdl : ressage nanme="Request edCont ext Message" >

<wsdl : part name="content" el enent="wsc4c: request ed-context"/>
</ wsdl : message>
<wsdl : ressage nanme="Enli st ALSMessage" >

<wsdl : part name="content" el enent="wsc4c:enlist-als"/>
</ wsdl : message>
<wsdl : nressage nanme="ALSEnl i st edMessage" >

<wsdl : part nanme="content" el enent="wsc4c: al s-enlisted"/>
</ wsdl : mressage>
<wsdl : nressage nanme="Del i st ALSMessage" >

<wsdl : part name="content" el enent="wsc4c: delist-als"/>
</ wsdl : mressage>
<wsdl : ressage nanme="ALSDel i st edMessage" >

<wsdl : part name="content" el enent="wsc4c: al s-delisted"/>
</ wsdl : mressage>
<wsdl : message nane="Get Cont ent sMessage" >

<wsdl : part name="content" el enent ="wsc4c: get-contents"/>
</ wsdl : mressage>
<wsdl : mressage nane="Cont ent sMessage" >

<wsdl : part name="content" el ement="wsc4c: contents"/>
</ wsdl : ressage>
<wsdl : mressage nane="Set Cont ent sMessage" >

<wsdl : part name="content" el ement="wsc4c: set-contents"/>
</ wsdl : ressage>
<wsdl : mressage nane="Cont ent sSet Message" >

<wsdl : part name="content" el ement="wsc4c: contents-set"/>
</ wsdl : message>
<wsdl : mressage nane="Cener al Faul t Message" >

<wsdl : part name="content" el ement="wsc4c: general -fault"/>
</ wsdl : message>

<wsdl : mressage nane="I nval i dALSFaul t Message" >

43

Web Services Context Service Specification July 28, 2003

<wsdl : part name="content" el ement="wsc4c:invalid-als-fault"/>
</ wsdl : mressage>
<wsdl : message nane="Inval i dSt at eFaul t Message" >
<wsdl : part nanme="content" el ement="wsc4c:invalid-state-fault"/>
</ wsdl : mressage>
<wsdl : message nane="Inval i dActi vi t yFaul t Message" >
<wsdl : part nanme="content" el ement="wsc4c:invalid-activity-fault"/>
</ wsdl : message>
<wsdl : mressage nane="Ti nout Qut Of RangeMessage" >
<wsdl : part nanme="content" el ement ="wsc4c:tineout-out-of-range-fault"/>
</ wsdl : message>
<wsdl : message nane="Chil dActi vi t yPendi ngFaul t Message" >
<wsdl : part nanme="content" el ement="wsc4c: child-activity-pending-fault"/>
</ wsdl : message>
<wsdl : nressage nanme="NoActi vi tyFaul t Message" >
<wsdl : part nanme="content" el ement="wsc4c: no-activity-fault"/>
</ wsdl : message>
<wsdl : ressage nanme="NoPer m ssi onFaul t Message" >
<wsdl : part nanme="content" el ement="wsc4c: no-permi ssion-fault"/>
</ wsdl : message>
<wsdl : ressage nane="Val i dCont ext Expect edFaul t Message" >
<wsdl : part nanme="content" el enent="wsc4c: val i d- cont ext - expected-fault"/>
</ wsdl : message>
<wsdl : nressage nanme="UnknownCont ext Faul t Message" >
<wsdl : part name="content" el enent ="wsc4c: unknown-context-fault"/>
</ wsdl : message>
<wsdl : port Type nane="Cont ext Manager Port Type" >
<wsdl : operati on name="get Contents">
<wsdl : i nput nmessage="t ns: Get Cont ent sMessage"/ >
</wsdl : operati on>
<wsdl : operati on name="set Contents">
<wsdl : i nput nessage="t ns: Set Cont ent sMessage"/ >
</ wsdl : operati on>
</ wsdl : port Type>
<wsdl : port Type nane="Cont ext Respondant Port Type" >
<wsdl : operati on name="contents">
<wsdl : i nput nmessage="t ns: Cont ent sMessage"/ >
</ wsdl : operati on>
<wsdl : operati on name="cont ent sSet ">
<wsdl : i nput nessage="t ns: Cont ent sSet Message"/ >
</wsdl : operati on>
<wsdl : operati on name="unknownCont ext Faul t">
<wsdl : i nput nmessage="t ns: UnknownCont ext Faul t Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="general Faul t ">
<wsdl : i nput nessage="t ns: Gener al Faul t Message"/ >
</ wsdl : oper ati on>
</ wsdl : port Type>
<wsdl : port Type nanme="CTXServi cePort Type" >
<wsdl : operati on name="begi n">

<wsdl : i nput nmessage="t ns: Begi nMessage"/ >

44

Web Services Context Service Specification

July 28, 2003

</wsdl : operati on>
<wsdl : operati on nanme="conpl ete">
<wsdl : i nput nmessage="t ns: Conpl et eMessage"/ >
</wsdl : operati on>
<wsdl : operati on name="conpl eteWthSt at us">
<wsdl : i nput nmessage="t ns: Conpl et eWt hSt at usMessage"/ >
</wsdl : operati on>
<wsdl : operati on nanme="set Conpl eti onSt at us" >
<wsdl : i nput nmessage="t ns: Set Conpl eti onSt at usMessage"/ >
</wsdl : operati on>
<wsdl : operati on nanme="get Conpl eti onSt at us" >
<wsdl : i nput nmessage="t ns: Get Conpl eti onSt at usMessage"/ >
</ wsdl : operati on>
<wsdl : operati on name="get St at us" >
<wsdl : i nput nmessage="tns: Get St at usMessage"/ >
</wsdl : operati on>
<wsdl : operati on name="get Acti vityNane">
<wsdl : i nput nmessage="tns: Get Acti vi t yNaneMessage"/ >
</wsdl : operati on>
<wsdl : operati on name="get Cont ext ">
<wsdl : i nput nmessage="t ns: Get Cont ext Message"/ >
</ wsdl : oper ati on>
<wsdl : operati on name="set Ti meout " >
<wsdl : i nput nmessage="t ns: Set Ti nreout Message"/ >
</ wsdl : oper ati on>
<wsdl : operati on name="get Ti meout ">
<wsdl : i nput nessage="tns: Get Ti reout Message"/ >
</ wsdl : oper ati on>
</wsdl : port Type>
<wsdl : port Type nanme="User CTXServi cePort Type" >
<wsdl : operati on name="begun">
<wsdl : i nput nessage="t ns: BegunMessage"/ >
</ wsdl : operati on>
<wsdl : operati on name="conpl et ed" >
<wsdl : i nput nmessage="t ns: Conpl et edMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on name="conpl et edWt hSt at us" >
<wsdl : i nput nmessage="t ns: Conpl et edW t hSt at usMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl eti onSt at usSet " >
<wsdl : i nput nmessage="t ns: Conpl eti onSt at usSet Message"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl eti onSt at us" >
<wsdl : i nput nmessage="tns: Conpl et edW t hSt at usMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl eti onSt at us" >
<wsdl : i nput nmessage="t ns: Conpl et edWt hSt at usMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="st at us">
<wsdl : i nput nmessage="tns: St at usMessage"/ >

</ wsdl : oper ati on>

45

Web Services Context Service Specification July 28, 2003

<wsdl : operati on nanme="activityNanme">
<wsdl : i nput nmessage="tns: ActivityNanmeMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on name="r equest edCont ext ">
<wsdl : i nput nmessage="t ns: Request edCont ext Message"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="ti neout Set " >
<wsdl : i nput message="t ns: Ti meout Set Message"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="ti neout">
<wsdl : i nput nmessage="t ns: Ti meout Message"/ >
</ wsdl : oper ati on>
<wsdl : operati on nanme="inval i dSt at eFaul t">
<wsdl : i nput nmessage="tns: | nval i dSt at eFaul t Message"/ >
</ wsdl : operati on>
<wsdl : operation name="inval i dActivityFault">
<wsdl : i nput nmessage="tns: | nvalidActivityFaul t Message"/ >
</wsdl : operati on>
<wsdl : operati on name="ti nmeout Qut O Range" >
<wsdl : i nput nmessage="t ns: Ti meout Qut &f RangeFaul t Message"/ >
</wsdl : operati on>
<wsdl : operati on name="chil dActi vi t yPendi ngFaul t ">
<wsdl : i nput message="tns: Chi | dActi vit yPendi ngFaul t Message"/ >
</wsdl : operati on>
<wsdl : operati on name="noActivityFault">
<wsdl : i nput nmessage="tns: NoActi vityFaul t Message"/ >
</wsdl : operati on>
<wsdl : operati on name="noPer m ssi onFaul t ">
<wsdl : i nput nmessage="t ns: NoPer m ssi onFaul t Message"/ >
</wsdl : operati on>
</ wsdl : port Type>
<wsdl : port Type nanme="ALSPort Type">
<wsdl : operati on nanme="begi n">
<wsdl : i nput nmessage="t ns: ALSBegi nMessage"/ >
</wsdl : operati on>
<wsdl : operati on name="conpl eteWthSt at us">
<wsdl : i nput nmessage="t ns: Conpl et eWt hSt at ust Message"/ >
</ wsdl : operati on>
<wsdl : operati on name="conpl ete">
<wsdl : i nput nmessage="t ns: Conpl et eMessage"/ >
</wsdl : operati on>
<wsdl : operati on name="val i dCont ext Expect edFaul t " >
<wsdl : i nput nessage="t ns: Val i dCont ext Expect edFaul t Message"/ >
</ wsdl : operati on>
</ wsdl : port Type>
<wsdl : port Type nanme="ALSRespondant Port Type" >
<wsdl : operati on name="begun">
<wsdl : i nput nmessage="t ns: BegunMessage"/ >
</ wsdl : operati on>
<wsdl : operati on name="conpl et edWt hSt at us" >

<wsdl : i nput nmessage="t ns: Conpl et edWt hSt at usMessage"/ >

46

Web Services Context Service Specification July 28, 2003

</wsdl : operati on>
<wsdl : operati on nanme="conpl et ed" >
<wsdl : i nput nmessage="t ns: Conpl et edMessage"/ >
</wsdl : operati on>
<wsdl : operati on nanme="inval i dALSFaul t " >
<wsdl : i nput nmessage="tns: | nval i dALSFaul t Message"/ >
</wsdl : operati on>
<wsdl : operati on name="val i dCont ext Expect edFaul t " >
<wsdl : i nput message="t ns: Val i dCont ext Expect edFaul t Message"/ >
</wsdl : operati on>
<wsdl : operati on name="general Faul t ">
<wsdl : i nput message="t ns: Gener al Faul t Message"/ >
</ wsdl : operati on>
</ wsdl : port Type>
<wsdl : port Type nanme="ALSRegi strar Port Type">
<wsdl : operati on nanme="enlistALS">
<wsdl : i nput nmessage="tns: Enl i st ALSMessage"/ >
</wsdl : operati on>
<wsdl : operati on nane="del i st ALS">
<wsdl : i nput nmessage="tns: Del i st ALSMessage"/ >
</wsdl : operati on>
</ wsdl : port Type>
<wsdl : port Type nanme="ALSRegi strant Port Type">
<wsdl : operati on nanme="enli st edALS">
<wsdl : i nput nmessage="tns: ALSEnl i st edMessage"/ >
</ wsdl : oper ati on>
<wsdl : operati on nane="del i st edALS" >
<wsdl : i nput nmessage="tns: ALSDel i st edMessage"/ >
</wsdl : operati on>
<wsdl : operati on nanme="inval i dALSFaul t ">
<wsdl : i nput nmessage="tns: | nval i dALSFaul t Message"/ >
</wsdl : operati on>
<wsdl : operati on nanme="general Faul t">
<wsdl : i nput message="t ns: Gener al Faul t Message"/ >
</wsdl : operati on>
</ wsdl : port Type>
<l-- SOAP 1.1 over HITP bindings -->
<wsdl : bi ndi ng nanme="Cont ext Manager Por t TypeSOAPBi ndi ng"
type="t ns: Cont ext Manager Port Type" >
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http" styl e="docunent"/>
<wsdl : operati on nanme="get Cont ents">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ get Cont ent s"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="set Cont ents">

47

Web Services Context Service Specification July 28, 2003

<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ set Cont ent s"
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
</wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : bi ndi ng nane=" Cont ext Respondandt Por t TypeSOAPBI ndi ng"
t ype="t ns: Cont ext Respondandt Por t Type" >
<soap: bi ndi ng transport="http://schenmas. xnl soap. or g/ soap/ http" styl e="docunent"/>
<wsdl : operati on name="contents">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ cont ent s"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
</wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="cont ent sSet ">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ cont ent sSet "
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="unknownCont ext Faul t">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ unknownCont ext Fa
ult" styl e="docunment"/>
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="unknownCont ext Faul t">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ unknownCont ext Fa
ult" styl e="docunment"/>
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
</wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : bi ndi ng nane=" CTXSer vi cePort TypeSOAPBI ndi ng" type="tns: CTXSer vi cePort Type" >
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http" styl e="docunent"/>
<wsdl : operati on name="begi n">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ begi n"
styl e="docunent"/ >

<wsdl : i nput >

48

Web Services Context Service Specification July 28, 2003

<soap: body use="literal"/>
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl ete">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et e"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl eteWthSt at us" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et eW t hSt at
us" styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on nanme="set Conpl eti onSt at us" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ set Conpl eti onSt a
tus" style="document"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on nanme="get Conpl eti onSt at us" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ get Conpl eti onSt a
tus" style="document"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="get St at us" >
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ get St at us"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="get ActivityNanme">

49

Web Services Context Service Specification July 28, 2003

<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ get Acti vi t yName"
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on name="get Cont ext ">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ get Cont ext "
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
</wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="set Ti meout " >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ set Ti meout "
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on name="get Ti meout ">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ get Ti neout "
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="begun">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ begun"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on nanme="conpl et edWt hSt at us" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et edWt hSt a
tus" style="document"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >

</ wsdl : i nput >

50

Web Services Context Service Specification July 28, 2003

</wsdl : operati on>
<wsdl : operati on nanme="conpl et ed" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et ed"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="general Faul t ">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ gener al Faul t"
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="inval i dALSFaul t " >
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ i nval i dALSFaul t "
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>
<wsdl : bi ndi ng name="User CTXSer vi cePort TypeSOAPBi ndi ng"
type="t ns: User CTXSer vi cePor t Type" >
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http" styl e="docunent"/>
<wsdl : operati on nanme="begun">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ begun"
styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="conpl et ed" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et ed"
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>

<wsdl : operati on name="conpl et edWt hSt at us" >

51

Web Services Context Service Specification July 28, 2003

<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et edWt hSt a
tus" style="document"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl eti onSt at usSet " >
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ conpl et edW t hSt a
tus" style="document"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl eti onSt at us" >
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et i onSt at us
" styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="conpl eti onSt at us" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl eti onSt at us
" styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on nanme="stat us">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ st at us"
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : operati on>
<wsdl : operati on name="activityNanme">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ acti vi t yNane"
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>

<soap: header use="literal" message="tns: Cont ext Message"/ >

52

Web Services Context Service Specification July 28, 2003

</wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="request edCont ext ">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ r equest edCont ext
" styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on name="ti neout Set ">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ t i meout Set "
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="ti neout">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/t i meout "
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on nanme="inval i dSt at eFaul t">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ i nval i dSt at eFau
t" style="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</ wsdl : i nput >
</ wsdl : operati on>
<wsdl : operati on name="invali dActivityFaul t">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ i nval i dActivityF
ault" style="docunment"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on name="ti meout Qut Of Range" >
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ t i meout Qut Of Rang

e" styl e="docunment"/>

53

Web Services Context Service Specification July 28, 2003

<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="chil dActi vi t yPendi ngFaul t ">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ chi | dActi vi t yPen
di ngFaul t" styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="noActivityFault">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ noActi vi t yFaul t"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="noPerm ssi onFaul t">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ noPer m ssi onFau
t" style="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : bi ndi ng nane="ALSRegi st rar Port TypeSOAPBi ndi ng"
type="t ns: ALSRegi strar Port Type" >
<soap: bi ndi ng transport="http://schenmas. xnl soap. or g/ soap/ http" styl e="docunent"/>
<wsdl : operati on name="enl i st ALS">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ enl i st ALS"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nanme="del i stALS">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ del i st ALS"
styl e="docunent "/ >
<wsdl : i nput >

<soap: body use="literal"/>

54

Web Services Context Service Specification July 28, 2003

<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>
<wsdl : bi ndi ng nanme="ALSRegi st r ant Port TypeSOAPBi ndi ng"
type="t ns: ALSRegi strant Port Type" >
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http" styl e="docunent"/>
<wsdl : operati on name="enl i st edALS" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ enl i st edALS"
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="del i st edALS" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ del i st edALS"
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on name="inval i dALSFaul t " >
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ i nval i dALSFaul t "
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nane="general Faul t">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ gener al Faul t "
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : bi ndi ng nane="ALSPort TypeSOAPBI ndi ng" type="tns: ALSPort Type" >
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http" styl e="docunent"/>
<wsdl : operati on name="begi n">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ begi n"
styl e="docunent"/ >

<wsdl : i nput >

55

Web Services Context Service Specification July 28, 2003

<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="conpl eteWthSt at us">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et eW t hSt at
us" styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</ wsdl : i nput >
</ wsdl : operati on>
<wsdl : operati on name="val i dCont ext Expect edFaul t " >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ val i dCont ext Expe
ctedFaul t" styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="conpl ete">
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et e"
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : bi ndi ng name="ALSRespondant Port TypeSOAPBi ndi ng"
type="t ns: ALSRespondant Por t Type" >
<soap: bi ndi ng transport="http://schenmas. xnl soap. or g/ soap/ http" styl e="docunent"/>
<wsdl : operati on nanme="begun">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ begun"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on nanme="conpl et edWt hSt at us" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et edWt hSt a
tus" style="document"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >

</ wsdl : i nput >

56

Web Services Context Service Specification July 28, 2003

</wsdl : operati on>
<wsdl : operati on nanme="conpl et ed" >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ conpl et ed"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</ wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="inval i dALSFaul t " >
<soap: operati on
soapAction="http://ww. webservi cestransacti ons. org/ wsdl / wsct x/ 2003/ 03/ i nval i dALSFaul t"
styl e="docunent"/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</wsdl : operati on>
<wsdl : operati on name="val i dCont ext Expect edFaul t " >
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ val i dCont ext Expe
ctedFaul t" styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" message="tns: Cont ext Message"/ >
</wsdl : i nput >
</ wsdl : oper ati on>
<wsdl : operati on nane="general Faul t">
<soap: operati on
soapAction="http://ww. webser vi cestransacti ons. or g/ wsdl / wsct x/ 2003/ 03/ gener al Faul t "
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
<soap: header use="literal" nessage="tns: Cont ext Message"/ >
</ wsdl : i nput >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>
</wsdl : definitions>

57

Web Services Context Service Specification July 28, 2003

6. References

[1] WSDL 1.1 Specification, see http://www.w3.org/TR/wsdl

58

Web Services Context Service Specification July 28, 2003

7. Acknowledgements

The authors would like to thank the following people for their contributions to this
specification:

Dave Ingham, Arjuna Technologies Ltd.

Barry Hodgson, Arjuna Technologies Ltd.

Goran Olsson, Oracle Corporation.

Nickolas Kavantzas, Oracle Corporation.

Aniruddha Thankur, Oracle Corporation.

59

	I
	Introduction
	Scope of Sharing
	WS-CTX architecture
	Relationship to WSDL
	Relationships of Activities and contexts
	
	Composite activities

	Context Service components
	
	Contexts
	Enlisting and delisting an ALS
	ALS and Context Service interactions
	begin
	complete
	completeWithStatus
	setCompletionStatus
	getCompletionStatus
	getStatus
	getActivityName
	getContext
	setTimeout
	getTimeout

	Context Service WSDL Message Set
	References
	Acknowledgements

