WS-CAF Port type pairs

Peter Furniss, Choreology Ltd

This document is derived from a Choreology internal analysis of WS-CAF, using the specifications as they were in August 2003. They haven’t been checked back or compared with the current versions.

The WS-CAF protocol family are defined in WSDL, with associated schemas. All the WSDL has a common pattern of defining paired port-types, such that one port-type is effectively the requestor, the other the responder for some set of request-response operations – except that these are presented as separate one-ways. Separating out the portType pairs makes things easier to follow. The interaction diagrams show the pairings, but there appear to a number of errors (as there are in the WSDL).
portType for an initiator (“client” for the operation pair) will expose the responses of the “request/response” as input operations; the responder (service-side) only exposes the request operations as input operations..

Each “response” is shown on the same line as the “request” that invokes it. Where there are a number of responses to a “request”, these are shown on successive lines. The initiator portTypes typically include various fault and error operations - these are not included here, but should be added if a version of these tables is used in the spec.

WS-CTX
	Initiator (and receiver of response)
	Responder
	“requests”
	Non-error responses

	ContextRespondant
	ContextManager
	setContents

getContents
	contentsSet

contents

	UserCTXService
	CTXService
	begin

complete

completeWithStatus

getContext

set, getTimeout

…
	begun

completed

completedWithStatus

requestedContext

…

	ALSRegistrant
	ALSRegistrar
	enlistALS

delistALS

	enlisted

delisted

	ALSRespondant
	ALS
	begin

complete

completeWithStatus

getIdentity *
	begun

completed

completedWithStatus

identity *

(* these aren’t in the wsdl, but are in the text and the interaction diagram)
WS-CF
	Initiator (as receiver of response)
	Responder
	“requests”
	Non-error responses

	CoordinatorParticipant
	Participant
	[AssertionType*]

getStatus

getIdentity
	[AssertionType*]

status

identity

	ParticipantRespondant
	ParticipantCoordinator
	setResponse
	responseSet

	ServiceRespondant
	ServiceCoordinator
	addParticipant

removeParticipant

getParentCoordinator

getQualifiers
	participantAdded

participantRemoved

parentCoordinator

qualifiers

	ClientRespondant
	ClientCoordinator
	coordinate

getStatus
	coordinated

status

	RecoveryParticipant
	RecoveryCoordinator
	recover

getStatus
	recoverResponse

status

AssertionType is an “abstract class” that gets completed by the particular coordination protocol (eg. WS-TXM ACID 2PC). So they don’t appear in the WS-CF WSDL porttype declarations. So possibly they shouldn’t be in this table.
ACID:

	Initiator (as receiver of response)
	Responder
	“requests”
	Non-error responses

	CoordinatorParticipant
	twoPCParticipant
	prepare

onePhaseCommit

commit

rollback

forgetHeuristic
	vote

committed

rolledback

heuristic*Fault

committed

heuristic*Fault

rolledback

heuristic*Fault

heuristicForgotten

	CoordinatorParticipant
	synchronizaton
	beforeCompletion

afterCompletion
	beforeCompletionRegistered

afterCompletionRegistered

(The message name for the synchronization replies are rather misleading – “registered” just means “acknowledged”. Nothing is getting registered in the sense of enrollment.

LRA:

	Initiator (as receiver of response)
	Responder
	“requests”
	Non-error responses

	Coordinator
	Compensator

(a CF participant)
	complete

compensate

forget
	completed

cannotCompleteFault *

compensated

cannotCompensateFault *

forgot

 (* yes, I know these are faults, but they are distinct in that they appear to be the heuristic reporting signals)

BP:

workStatus - paragraph on getWorkStatus on page 47 contradicts figure 35 on which entity sends which message
completion -
diagram for this one is broken in all versions I can find

(Entities in this table are : CoPar = CoordinatorParticipant; CliRes = ClientRespondent; BTC = BusinessTaskCoordinator, TerPar = TerminatorParticipant, BPP = BusinessProcessParticipant)

	Sub-pcol
	Initiator (as receiver of response)
	Responder
	“requests”
	Non-error responses

	CP
	CliRes
	CoPar
	createCheckpoint
	checkpointingSucceeded

checkpointingFailed

	CP
	CoPar
	BTC
	checkpoint
	checkpointed

checkpointFailed

	Restart
	CliRes
	CoPar
	tryRestart
	restartedSuccessfully

restartFailed

	Restart
	CoPar
	BTC
	restart
	restarted

cannotRestart

	WS
	CliRes
	CoPar
	getWorkStatus
	workStatusCompleted

workStatusCancelled

workStatusProcessing

	WS
	CoPar
	BTC
	workStatus
	workCompleted

workCancelled

workProcessing

	Completion
	CliRes
	CoPar
	confirmProcess

cancelProcess
	processConfirmed

processCancelled

mixedResponse

processConfirmed

processCancelled

mixedResponse

	Completion
	CoPar
	BTC
	confirm

cancel
	confirmed

cancelled

confirming

unknownResult

cancelled

confirming

unknownResult

	TN
	CoPar
	TerPar
	confirmComplete

cancelComplete
	confirmCompleted

cancelCompleted

	BP
	CoPar
	BPP
	failure

failureHazard
	failureAcknowledged

failureHazardAcknowledged

