

 1

Web Services Coordination 2

Framework Specification (WS-CF) 3

Committee Draft 0.2 4
 5

Version created 28 June 2005 6
 7

Editors 8
Mark Little (mark.little@arjuna.com) 9
Eric Newcomer (eric.newcomer@iona.com) 10
Greg Pavlik (greg.pavlik@oracle.com) 11

 12

 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
Copyright © 2005 The Organization for the Advancement of Structured Information 36

Standards [Appendix A] 37

Style Definition: Title

Formatted: Left

Deleted: 24 May 2005

mailto:mark.little@arjuna.com
mailto:eric.newcomer@iona.com
mailto:greg.pavlik@oracle.com

Abstract 38

WS-CAF provides a set of modular and composable service definitions to facilitate the 39
construction of applications that combine multiple services together in composite applications. 40
The fundamental capability offered by the WS-Coordination Framework specification is the ability 41
to register a web service as a participant in some kind of domain specific function. An example 42
scenario may be to register with a publication-subscription topic to receive a stream of messages 43
asynchronously. While it is expected that the vast majority of protocols will involve some form of 44
signaling to registered services via SOAP messages, this signaling is not a part of the model 45
itself. Monitoring protocols, for example, may express interest in participation is some interaction 46
semantic without any subsequent signaling to registered services; messaging protocols may use 47
an optimized channel based on a native MOM protocol for message distribution. 48
WS-Context provides a late binding session model for the web services environment. SOAP 49
messages that are to be processed within the scope of an activity contain Context headers, 50
uniquely identifying a single activity. WS-Coordination Framework extends the session model for 51
protocols that require group membership paradigms by defining a Registration Context Type. The 52
Registration Context Type extends the basic context type and provides a Web service reference 53
to a Registration Service. Registration in the context of an activity adds the registered service to 54
an activity group. Membership in the group may be used to drive some group specific protocol 55
(e.g. data replication) over the lifetime of the activity group or may be used to coordinate signals 56
associated with a termination protocol (e.g., two phase commit). The purpose and semantics of 57
activity group membership are protocol specific. 58
Coordination is a requirement present in a variety of different aspects of distributed applications. 59
For instance, workflow, atomic transactions, caching and replication, security, auctioning, and 60
business-to-business activities all require some level of what may be collectively referred to as 61
“coordination.” For example, coordination of multiple Web services in choreography may be 62
required to ensure the correct result of a series of operations comprising a single business 63
transaction. Coordination protocols may be layered on WS-Coordination Framework. 64

 65

 66

Deleted: Web Services
Coordination Framework
Specification (WS-CF)¶
Editors draft version 0.4¶
3 May 2005¶

Deleted: ¶
¶

Table of contents 67

1 Note on terminology..4 68
1.1 Namespace...4 69

1.1.1 Prefix Namespace..4 70
1.2 Referencing Specifications ..4 71
1.3 Precedence of schema and WSDL ..4 72

2 Introduction...5 73
3 WS-CF architecture ..6 74

3.1 Overview...6 75
3.2 Invocation of Service Operations ...6 76
3.3 Relationship to WSDL ...7 77
3.4 Referencing and addressing conventions ..8 78

4 WS-CF components..9 79
4.1 Interposition ..9 80
4.2 Participant Service ..9 81
4.3 Registration Service ..10 82

4.3.1 Service-to-Registration interactions ..10 83
addParticipant...10 84
removeParticipant ...11 85
replaceParticipant ...11 86
replaceRegistration ...12 87
getParticipants ..12 88
getStatus ..13 89
4.3.2 Registration Context Type ..15 90
4.3.3 WS-CF faults..16 91
Invalid Protocol ...17 92
Duplicate Participant ...17 93
Participant Not Found ...17 94
Transient Fault ..17 95
Unknown Service ..17 96
4.3.4 Message exchanges ..17 97

5 Conformance considerations...19 98
6 References ...20 99
Appendix A. Acknowledgements..21 100
Appendix B. Notices ..22 101

 102

 103

Deleted: 1 Note on
terminology 4¶
1.1 Namespace 4¶
1.1.1 Prefix Namespace 4¶
1.2 Referencing
Specifications 4¶
2 Introduction 5¶
3 WS-CF architecture 6¶
3.1 Overview 6¶
3.2 Invocation of Service
Operations 6¶
3.3 Relationship to WSDL 7¶
3.4 Referencing and
addressing conventions 8¶
4 WS-CF components 10¶
4.1 Participant Service 10¶
4.2 Registration Service 11¶
4.2.1 Service-to-Registration
interactions 11¶
addParticipant 11¶
removeParticipant 12¶
recoverParticipant 12¶
recoverRegistration 13¶
getStatus 13¶
4.2.2 Registration Context 15¶
4.3 Interposition 16¶
5 References 17¶

4

1 Note on terminology 104

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 105
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 106
interpreted as described in RFC2119 [2]. 107
Namespace URIs of the general form http://example.org and http://example.com represents some 108
application-dependent or context-dependent URI as defined in RFC 2396 [3]. 109

1.1 Namespace 110

The XML namespace URI that MUST be used by implementations of this specification is: 111

http://docs.oasis-open.org/wscaf/2005/02/wscf 112

1.1.1 Prefix Namespace 113

Prefix Namespace

wscf http://docs.oasis-open.org/wscaf/2005/02/wscf

wsctx http://docs.oasis-open.org/wscaf/2004/09/wsctx

ref http://docs.oasisopen.org/wsrm/2004/06/reference-1.1

wsdl http://schemas.xmlsoap.org/wsdl/

xsd http://www.w3.org/2001/XMLSchema

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

tns targetNamespace

1.2 Referencing Specifications 114

One or more other specifications, such as (but not limited to) WS-ACID may reference the WS-115
CF specification. The usage of optional items in WS-CF is typically determined by the 116
requirements of such as referencing specification. 117
A referencing specification generally defines the protocol types based on WS-CF. Any application 118
that uses WS-CF must also decide what optional features are required. For the purpose of this 119
document, the term referencing specification covers both formal specifications and more general 120
applications that use WS-CF. 121

1.3 Precedence of schema and WSDL 122

Throughout this specification, WSDL and schema elements may be used for illustrative or 123
convenience purposes. However, in a situation where those elements within this document differ 124
from the actual WS-Context WSDL or schema files, it is those files that have precedence and not 125
this specification. 126
 127
 128

Formatted: Heading 2,H2

Deleted: Namespace URIs of
the general form "some-URI"
represents some application-
dependent or context-
dependent URI as defined in
RFC 2396 [3].¶

Deleted: TXM

http://example.org/
http://example.com/

 5

2 Introduction 129

Many protocols in distributed systems require software agents to perform a registration function to 130
participate in the protocol. Examples of protocols that require explicit registration functions include 131
notifications, transactions, virtually synchronous replica models based on group membership 132
paradigms, and security. WS-Coordination Framework provides a WSDL interface for registering 133
Web services as participants in arbitrary protocols. This is supported through the Registration 134
Service. 135
Context information can flow implicitly (transparently to the application) within normal messages 136
sent to the participants, or it may be an explicit action on behalf of the client/service. This 137
information is specific to the type of activity being performed and may identify registration 138
endpoints, the other participants in an Activity, recovery information in the event of a failure, etc. 139
Furthermore, it may be required that additional application specific context information flow to 140
these participants or the services which use them. WS-Coordination Framework introduces a 141
wscf:RegistrationContextType that builds on the context type defined in WS-Context to provide 142
additional information required to enlist as a participant in an activity. Applications may use the 143
registration context type by extension to define collections of services called “activity groups”. 144
WS-Coordination Framework provides support for protocols that depend on group membership 145
paradigms, such as coordination and security. 146
Coordination is an integral part of any distributed system, but there is no single type of 147
coordination protocol that can suffice for all composite applications. This specification defines a 148
common Web Services Coordination Framework (WS-CF) that allows users and services to tie 149
into it and customize it for each service or application. A suitably designed coordination 150
framework should provide enough flexibility and extensibility to its users that allow it to be 151
tailored, statically or dynamically, to fit any requirement. 152
This framework builds upon WS-Context and supports WS-ACID, WS-LRA and WS-BP, as well 153
as other Web Service standards in the area of choreography, workflow and transactions. In the 154
case of transactions, for example, unlike other attempts that are solutions to one specific problem 155
area and are therefore not applicable to others, different extended transaction models can be 156
relatively easily developed to suit specific domains, and interoperability across transaction 157
protocols supported. 158

Deleted: TXM

6

3 WS-CF architecture 159

The following sections outline the architecture of WS-CF, describing the components that 160
implementations provide and those that are required from users. 161

3.1 Overview 162

WS-CF builds upon the activity concept defined in the WS-Context specification [ref] by narrowing 163
the notion of an activity to that of an activity group: such a group contains members (participants) 164
that will be driven through the same protocol. WS-CF says nothing about specifics of such 165
coordination protocols and when or where participants may join and leave: this is left up to 166
referencing specifications to define. 167
The group membership facilities are used to build and manage relationships between services. 168
For example, an activity group can be used as the basic definition of a participant set in a 169
coordination protocol. The group paradigm is central to coordination, whether it is coordinating 170
the outcome of distributed transactions, security domains, replica consistency, cache coherency 171
etc. Because WS-CF is meant to support a range of coordination protocols, each possessing 172
different protocol messages and potentially different coordinator interfaces, WS-CF does not 173
define how or when coordination occurs. This is left to referencing specifications. 174
The activity group is tied to an underlying WS-Context activity such that their lifetimes coincide. 175
Web Services that wish to join or leave the group make use of the Registration Service; the 176
membership of the group may also be obtained from the Registration Service. 177
• Specific implementations of the Registration Service MAY impose restrictions on how and 178

when group membership changes may occur; these are outside the scope of the WS-CF 179
specification. In addition, some uses of group membership MAY place constraints on 180
consistent views of group membership, particularly in the presence of member failures. 181
Ensuring this kind of view membership consistency is left to referencing specifications. 182

The main components involved in using and defining the WS-CF are: 183
• A Registration service, which provides an interface for the registration of participants within a 184

specific protocol. 185
• A Participant service, which defines the operation or operations that are performed as part of 186

the protocol. It is possible to register participants that have no protocol specific callback 187
operations. 188

• A Registration Context Type, which allows participants to join an activity group. 189
This specification allows group membership to be managed with reference to a specific context; 190
the relationship between different contexts is defined by the WS-Context specification; specific 191
protocols based on activity groups may support subgroups and interposed activities. Activity 192
groups are particularly useful for structuring relationships in the kinds of coordination protocols 193
found in transaction systems and data replication/consistency protocols for clustered services. 194

3.2 Invocation of Service Operations 195

How application services are invoked is outside the scope of this specification: they MAY use 196
synchronous or asynchronous message passing. 197
Irrespective of how remote invocations occur, context information related to the sender’s activity 198
needs to be referenced or propagated. This specification determines the format of the context, 199
how it is referenced, and how a context may be created. 200
In order to support both synchronous and asynchronous interactions, the components are 201
described in terms of the behavior and the interactions that occur between them. All interactions 202

Deleted: may

Deleted: may

 7

are described in terms of correlated messages, which a referencing specification MAY abstract at 203
a higher level into request/response pairs. 204
Faults and errors that may occur when a service is invoked are communicated back to other Web 205
services in the activity via SOAP messages that are part of the standard protocol. To achieve this, 206
the fault mechanism of the underlying SOAP-based transport is used. For example, if an 207
operation fails because no activity is present when one is required, then the callback interface will 208
receive a SOAP fault including type of the fault and additional implementation specific information 209
items supported the SOAP fault definition. WS-Context specific fault types are described for each 210
operation. A fault type is communicated as an XML QName; the prefix consists of the WS-211
Context namespace and the local part is the fault name listed in the operation description. 212

Note, a transientFault message is produced when the implementation finds it 213
cannot successfully execute the requested operation at that time from some 214
temporary reason. This reason may be implementation or referencing 215
specification specific. A receiver of a transientFault is free to retry the operation 216
which originally generated it on the assumption that eventually a different 217
response will be produced. Sub-types of transientFault MAY be further defined 218
using the fault model described which can allow for the communication of more 219
specific information on the type of fault. 220

As long as implementations ensure that the on-the-wire message formats are compliant with 221
those defined in this specification, how the end-points are implemented and how they expose the 222
various operations (e.g., via WSDL [1]) is not mandated by this specification. However, a 223
normative WSDL binding is provided by default in this specification. 224

Note, this specification does not assume that a reliable message delivery 225
mechanism has to be used for message interactions. As such, it MAY be 226
implementation dependant as to what action is taken if a message is not 227
delivered or no response is received. 228

3.3 Relationship to WSDL 229

Where WSDL is used in this specification it uses one-way messages with callbacks. This is the 230
normative style. Other binding styles are possible (perhaps defined by referencing specifications), 231
although they may have different acknowledgment styles and delivery mechanisms. It is beyond 232
the scope of WS-Coordination Framework to define these styles. 233

Note, conformant implementations MUST support the normative WSDL defined 234
in the specification where those respective interfaces are required. WSDL for 235
optional components in the specification is REQUIRED only in the cases where 236
the respective components are supported. 237

For clarity WSDL is shown in an abbreviated form in the main body of the document: only 238
portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also assumed as per [1]. 239

Deleted: How application
services are invoked is outside
the scope of this specification;
however, context information
related to the sender’s activity
needs to be referenced and/or
propagated. ¶
Irrespective of how remote
invocations occur, context
information related to the
sender’s activity needs to be
referenced or propagated. This
specification determines the
format of the context, how it is
referenced, and how a context
may be created.¶
In order to support both
synchronous and
asynchronous interactions, the
components are described in
terms of the behavior and the
interactions that occur between
them. All interactions are
described in terms of
correlated messages, which a
referencing specification MAY
abstract at a higher level into
request/response pairs. ¶
Faults and errors that may
occur when a service is
invoked are communicated
back to other Web services in
the activity via SOAP
messages that are part of the
standard protocol. The fault
mechanism of the underlying
SOAP-based transport isn’t
used. For example, if an
operation fails because no
activity is present when one is
required, then it will be valid for
the InvalidContextFault
message to be received by the
response service. To
accommodate other errors or
faults, all response service
signatures have a generalFault
operation as well as a
transientFault operation.¶

8

3.4 Referencing and addressing conventions 240

There are multiple mechanisms for addressing messages and referencing Web services currently 241
proposed by the Web services community. This specification defers the rules for addressing 242
SOAP messages to existing specifications; the addressing information is assumed to be placed in 243
SOAP headers and respect the normative rules required by existing specifications. 244
 245
However, the Coordination Framework message set requires an interoperable mechanism for 246
referencing Web Services. For example, context structures may reference the service that is used 247
to manage the content of the context. To support this requirement, WS-CAF has adopted an open 248
content model for service references as defined by the Web Services Reliable Messaging 249
Technical Committee [5]. The schema is defined in [6][7] and is shown in Figure 1. 250

 <xsd:complexType name="ServiceRefType"> 251
 <xsd:sequence> 252
 <xsd:any namespace="##other" processContents="lax"/> 253
 </xsd:sequence> 254
 <xsd:attribute name="reference-scheme" type="xsd:anyURI" 255
 use="optional"/> 256
 </xsd:complexType> 257

Figure 1, service-ref Element 258
The ServiceRefType is extended by elements of the context structure as shown in Figure 2. 259

<xsd:element name=”context-manager” type=”ref:ServiceRefType”/> 260

Figure 2, ServiceRefType example. 261
Within the ServiceRefType, the reference-scheme is the namespace URI for the referenced 262
addressing specification. For example, the value for WSRef defined in the WS-MessageDelivery 263
specification [4] would be http://www.w3.org/2004/04/ws-messagedelivery. The value for WSRef 264
defined in the WS-Addressing specification [8] would be 265
http://schemas.xmlsoap.org/ws/2004/08/addressing. The reference scheme is optional and need 266
only be used if the namespace URI of the QName of the Web service reference cannot be used 267
to unambiguously identify the addressing specification in which it is defined. 268
Messages sent to referenced services MUST use the addressing scheme defined by the 269
specification indicated by the value of the reference-scheme element if present. Otherwise, the 270
namespace URI associated with the Web service reference element MUST be used to determine 271
the required addressing scheme. 272

Note, it is assumed that the addressing mechanism used by a given 273
implementation supports a reply-to or sender field on each received message so 274
that any required responses can be sent to a suitable response endpoint. This 275
specification requires such support and does not define how responses are 276
handled. 277

To preserve interoperability in deployments that contain multiple addressing schemes, there are 278
no restrictions on a system, beyond those of the composite services themselves. However, it is 279
RECOMMENDED where possible that composite applications confine themselves to the use of 280
single addressing and reference model. 281
Because the prescriptive interaction pattern used by WS-Coordination Framework is based on 282
one-way messages with callbacks, it is possible that an endpoint may receive an unsolicited or 283
unexpected message. The recipient is free to do whatever it wants with such messages. 284

Deleted: Figure 1

Inserted: Figure 1

Deleted: Figure 1

Deleted: <xsd:schema
targetNamespace="http:/
/docs.oasis-
open.org/wsrm/2004/06/r
eference-1.1.xsd"
xmlns:xsd="http://www.w
3.org/2001/XMLSchema"
elementFormDefault="qua
lified"
attributeFormDefault="u
nqualified"
version="1.1">¶

 <xsd:complexType
name="ServiceRefType">¶

 <xsd:sequence>¶

 <xsd:any
namespace="##other"
processContents="lax"
/> ¶

 </xsd:sequence>¶

 <xsd:attribute
name="reference-scheme"
type="xsd:anyURI"
use="optional" /> ¶

 </xsd:complexType¶

Deleted: Figure 2

Inserted: Figure 2

Deleted: Figure 2

Deleted: 2

Inserted: 2

Deleted: 2

Deleted: A service that
requires a service reference
element MUST use the
mustUnderstand attribute for
the SOAP header element
within which it is enclosed and
MUST return a
mustUnderstand SOAP fault if
the reference element isn’t
present and understood.

http://schemas.xmlsoap.org/ws/2004/08/addressing

 9

4 WS-CF components 285

WS-CF provides three components that may be used to build collaborative protocols and 286
complex composite applications: the Participant service, the Registration service, and the 287
Registration Context Type. The components are described in terms of their behavior and the 288
interactions that occur between them. All interactions are described in terms of message 289
exchanges, which an implementation may abstract at a higher level into request/response pairs 290
or RPCs, for example. Like WS-Context, the components are organized in a hierarchical 291
relationship, where individual components may be used without reference to higher-level 292
constructs that build on them. For example, the Registration and Participant services can be used 293
without reference to an activity group. 294

4.1 Interposition 295

WS-CF supports the notion of interposition: where a Participant Service that is enlisted with a 296
Registration Service also behaves as a Registration Service to other Participant Services. In this 297
way, WS-CF supports the building of graphs and trees by the addition of participants to an activity 298
structure that are themselves registration endpoints. 299
The technique of interposition uses proxies (or subordinates). Each domain that imports a WS-CF 300
context MAY create a subordinate registration service that enrolls with the imported registration 301
service as though it were a participant. This specification does not prescribe how and when this 302
may occur. Interposition then requires the importing domain to use a different context when 303
communicating with services and participants that are required to register with the subordinate 304
registration service, as shown in Figure 3. 305

Participant/
proxy-registration
service

Registration Service

Participant

 306
Figure 3, Participant coordinator. 307

This specification does not define what are allowable forms of graphs that may be created using 308
interposition. Such definitions are the responsibility of referencing specifications. 309

4.2 Participant Service 310

Many distributed protocols require software agents to enlist as participants within a protocol to 311
achieve an application visible semantic. For example, participants may enlist in a transaction 312
protocol in order to receive messages at coordination points defined by the protocol. 313
A Participant will use coordination messages in a manner specific to the protocol and (optionally) 314
return a result of it having done so. For example, upon receipt of a specific message, a 315
Participant could commit any modifications to a database when it receives one type of message, 316
or undo them if it receives another type. In some cases (e.g., monitoring protocols) Participants 317

Deleted: c

Deleted: Figure 3

Deleted: Figure 3

Inserted: Figure 3

Deleted: 3

Inserted: 3

Deleted: 3

10

may register for protocols that do not include any subsequent signaling. In other cases, such as 318
publish-and-subscribe scenarios, Participants may register for a stream of messages that have 319
no fixed semantic content with respect to the protocol itself. In general, rules governing the 320
subsequent interaction between Participants and Registration endpoints are defined by 321
specifications that make use of WS-CF. As such, there is no WSDL interface defined for the 322
Participant Service; it is an abstract entity that is given concrete representation by referencing 323
specifications and is only discussed within the scope of this specification for clarity of the overall 324
model concept. 325

4.3 Registration Service 326

In order to become a Participant in a protocol, a service must first enlist with a Registration 327
service. The protocol that the Registration implementation uses will depend upon the type of 328
activity, application or service using the Registration service. For example, if Saga model is in use 329
then a compensation message may be required to be sent to Participants if a failure has 330
happened, whereas a coordinator for a strict transactional model may be required to send a 331
message informing participants to rollback. 332
How a Registration service for a specific protocol(s) is located or associated with the Context 333
Service is out of scope of this specification. A Registration service MAY identify the type of 334
protocol it supports using deployment specific mechanisms. 335
A Registration Service implementation provides support for the Registering Services to enlist 336
Participant services with a specific protocol semantic. Operations on the Registration service 337
MAY be implicitly associated with a Registration Context Type, i.e., it is propagated to the 338
Registration service in order to identify which activity group the Participant is interested in joining. 339
Services requiring protocols that rely explicitly on group membership like transactions or data 340
replication will require that the Registration service MUST be invoked with a subtype of the 341
Registration context. 342
In the following sections we shall discuss the different Registration service interactions and their 343
associated message exchanges. 344

4.3.1 Service-to-Registration interactions 345

These interactions define how a service (the Registering Service) may enlist or delist a 346
Participant (Service) with the Registration Service. The message exchanges are illustrated in 347
Figure 4. They are factored into two different roles: 348
• Registration Service: this accepts the addParticipant, removeParticipant, replaceParticipant, 349

registrationReplaced, getParticipants and getStatus messages. All messages contain the 350
Registering Service endpoint for callback messages, although it is OPTIONAL as to whether 351
the Registration Service remembers these beyond a specific interaction. 352

• Registering Service: this accepts the participantAdded, participantRemoved, 353
participantReplaced, participantList, status, replaceRegistration messages. 354

addParticipant 355

This message is sent to the coordinator in order to register the specified Participant with the 356
protocol supported by the Registration service. A valid wscf:RegistrationContext MUST 357
accompany this message and the participant will be added to the activity group identified in the 358
context. This context MAY be passed by reference or by value. It is implementation dependant as 359
to whether any context information other than the basic reference values is required. If an invalid 360
wscf:RegistrationContext is used then an appropriate WS-Context error message MUST be 361
returned. 362
The protocol based on the RegistrationContextType may support multiple sub-protocols (e.g., 363
synchronizations that are executed prior to and after a two-phase commit protocol); in order to 364
define with which protocols to enlist the participant, the list of wscf:protocolType URIs may be 365

Deleted: A Registration
Service implementation
provides support for the
Registering Services to enlist
Participant services with a
specific protocol semantic.
Operations on the Registration
service MAY be implicitly
associated with a Registration
context, i.e., it is propagated to
the Registration service in
order to identify which activity
group the Participant is
interested in joining. Services
requiring protocols that rely
explicitly on group membership
like transactions or data
replication will require that the
Registration service MUST be
invoked with a Registration
context.¶

Deleted: Figure 4

Deleted: Figure 4

Inserted: Figure 4

Deleted: recoverParticipant

Deleted: registrationRecovere
d

Deleted: covered

Deleted: recoverRegistration

Deleted: ,

Deleted: generalFault,
wrongState,
duplicateParticipant,
invalidProtocol,
invalidParticipant, and
participantNotFound

 11

propagated in the message. The Registration Service MUST ensure that all protocols specified 366
are supported before any registration happened. If some of the protocols are not supported by the 367
Registration service then no registration occurs and the wscf:InvalidProtocol error message 368
MUST be sent to the Registering Service indicating which protocols were at fault. 369
Upon success, the Registration service calls back to the Registering Service with the 370
participantAdded message, including in this message the unique OPTIONAL endpoint reference 371
for the Participant to use for further interactions. How and when this endpoint reference should be 372
used is outside the scope of this specification and is left to referencing specifications to 373
determine. For example, it may be used by the Participant to send protocol specific coordination 374
signals. 375
A referencing specification MAY decide to send the wsctx:InvalidState error message if the 376
Activity has begun completion, or has already completed when this operation is attempted. 377
The termination of the activity group is triggered by the completion of the WS-Context service 378
activity. The relationship between activity groups and participant services is undefined following 379
the termination of an activity group. 380
If the same participant has been enrolled with the Registration service more than once and the 381
referencing specification does not allow this, then the wscf:DuplicateParticipant error message 382
is sent to the ServiceRespondant. How the registration of the same participant multiple times is 383
dealt with at the protocol level is outside the scope of this specification and is left to referencing 384
specifications to define, as the rules governing the protocol are defined by a referencing 385
specification 386

removeParticipant 387

This message causes the Registration service to delist the specified Participant. A valid 388
wscf:RegistrationContext MUST accompany this message to identify the activity group from 389
which the participant should be removed. This context MAY be passed by reference or by value. 390
It is implementation dependant as to whether any context information other than the basic 391
reference values is required. If successful, the ParticipantRemoved message is sent to the 392
invoker. 393
If the Participant has not previously been registered with the Registration service for the specified 394
activity group, then it will send the wscf:ParticipantNotFound error message to the Registering 395
Service. 396
Removal of a participant need not be supported by the specific protocol and may also be 397
dependant upon where in the protocol the system is as to whether a referencing specification will 398
allow the participant to be removed. The rules governing removal of participants from participation 399
in a protocol or activity group are governed by referencing specifications. A referencing 400
specification MAY decide to send the wsctx:InvalidState error message if removal is disallowed; 401
for example, the Activity has begun completion, or has already completed when this operation is 402
attempted. 403
In addition, some protocols may allow for Registration service to autonomously delist Participant 404
services. In this case, the Registration Service will send an unsolicited ParticipantRemoved 405
message to the service that was responsible for enlisting the Participant. 406

replaceParticipant 407

This operation is used by a participant that has previously successfully enlisted with a 408
Registration service: when the Participant fails and subsequently recovers it may not be able to 409
recover at the same address that it used to enlist with the Registration service. The 410
replaceParticipant operation allows the participant to inform the Registration service that it has 411
moved from the original address to a new address. It may also be used to start recovery 412
operations by the protocol engine. 413

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Deleted: i

Deleted: wrong

Deleted: d

Deleted: RegistrationContext

Deleted: p

Comment: Do we want to
have a CF error state that just
means the same as CTX?

Deleted: wrong

Deleted: recoverParticipant

Deleted: recoverParticipant

12

A valid wscf:RegistrationContext MUST accompany this message in order to identify the group 414
in which the failed participant previously existed. This context MAY be passed by reference or by 415
value. It is implementation dependant as to whether any context information other than the basic 416
reference values is required. 417
If successful, the participantReplaced message is sent to the invoker. If the recovery handshake 418
occurs in the context of an activity, the message also contains the current status of the activity. 419
This status may be used by the recovering participant to perform local recovery operations, 420
although this will depend upon the protocol in use. For example, if the participant was enrolled in 421
a presumed-abort transaction protocol and recovery indicated that the transaction no longer 422
exists, then the participant can cancel any work it may be controlling. 423
If the coordinator cannot be located, then the wsctx:UnknownContext error message is sent 424
back. 425
If the status of the coordinator is such that recovery is not allowed at this time, the 426
wsctx:InvalidState error message is sent to the Registering Service by the coordinator. 427
If the Registration Service cannot deal with recovery of the participant for a temporary reason, the 428
wscf:TransientFault message is sent and the receiver MAY try again. 429

replaceRegistration 430

This operation on the Registering Service MAY be used by a recovered Registration Service to 431
indicate that it has recovered on a new endpoint address. When a Registration Service fails and 432
subsequently recovers it may not be able to recover at the same address that prior Registering 433
Services used to enlist with the Registration service. This OPTIONAL operation allows the 434
Registration Service to inform Registering Services that it has moved from the original address to 435
a new address. It may also be used to start recovery operations by the protocol engine. 436
The use of replaceRegistration SHOULD only be attempted when the Registration Service has 437
failed and recovered on another endpoint because to do otherwise MAY result in continued use of 438
stale wscf:RegistrationContext information elsewhere in the application; the context refers to 439
the old endpoint address for the Registration Service. 440
A valid wscf:RegistrationContext MUST accompany this message. This context MAY be 441
passed by reference or by value. It is implementation dependant as to whether any context 442
information other than the basic reference values is required. 443
If successful, the registrationReplaced message is sent to the Registration Service. If the 444
recovery handshake occurs in the context of an activity, the message also contains the current 445
status of the activity. This status may be used by recipients to perform local recovery operations, 446
although this will depend upon the protocol in use 447
If the Registering Service cannot be located, then the wscf:UnknownService error message is 448
sent back. 449
If the Registering Service cannot deal with recovery of the Registration Service for a temporary 450
reason, the wscf:TransientFault error message is sent and the receiver MAY try again. 451

getParticipants 452

This operation returns the list of participants that have been enrolled with the activity group. A 453
valid wscf:RegistrationContext MUST accompany this message. This context MAY be passed 454
by reference or by value. It is implementation dependant as to whether any context information 455
other than the basic reference values is required. 456
If successful, the participantList message is sent to the Registering Service. 457
A referencing specification MAY decide to send the wsctx:InvalidState error message if the 458
Activity has begun completion, or has already completed when this operation is attempted. 459

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Deleted: RegistrationContext

Deleted:

Deleted: participantRecovere
d

Deleted: invalidActivityFault

Deleted: wrong

Deleted: t

Deleted: recoverRegistratio
n

Deleted: recoverRegistration

Deleted: RegistrationContext

Deleted: RegistrationContext

Deleted: registrationRecovere
d

Deleted: u

Deleted: t

 13

The termination of the activity group is triggered by the completion of the WS-Context service 460
activity. The relationship between activity groups and participant services is undefined following 461
the termination of an activity group. 462

getStatus 463

The status of the activity group may be obtained by sending the getStatus message to the 464
recovery coordinator. A valid wscf:RegistrationContext MUST accompany this message. This 465
context MAY be passed by reference or by value. It is implementation dependant as to whether 466
any context information other than the basic reference values is required. 467
The status, which may be one of the status values specified by the Context Service, or may be 468
specific to the protocol, identified by its QName, is returned to the invoker via the status message. 469
GetStatus will return the same Status value that is returned by the getStatus operation on the 470
Context Service, assuming the queries occur at the same point in the activity lifecycle. 471
 472
 473

14

 474

Figure 4, Service-to-coordinator interactions. 475
The Registration Service and Registering Service roles are elucidated in WSDL form in Figure 5. 476

<wsdl:portType name="RegistrationServicePortType"> 477
 <wsdl:operation name="addParticipant"> 478
 <wsdl:input message="tns:AddParticipantMessage"/> 479
 </wsdl:operation> 480
 <wsdl:operation name="removeParticipant"> 481
 <wsdl:input message="tns:RemoveParticipantMessage"/> 482
 </wsdl:operation> 483
 <wsdl:operation name="replaceParticipant"> 484
 <wsdl:input message="tns:RecoverParticipantMessage"/> 485
 </wsdl:operation> 486
 <wsdl:operation name="registrationReplaced"> 487
 <wsdl:input message="tns:RegistrationRecoveredMessage"/> 488

Deleted:

Deleted: 4

Deleted: 4

Inserted: 4

Comment: All of this needs
changing.

Deleted: Figure 5

Inserted: Figure 5

Deleted: Figure 5

Deleted: recoverParticip
ant

Deleted: registrationRec
overed

 15

 </wsdl:operation> 489
 <wsdl:operation name="getStatus"> 490
 <wsdl:input message="tns:GetStatusMessage"/> 491
 </wsdl:operation> 492
 <wsdl:operation name="getParticipants"> 493
 <wsdl:input message="tns:GetParticipantsMessage"/> 494
 </wsdl:operation> 495
</wsdl:portType> 496
<wsdl:portType name="RegisteringServicePortType"> 497
 <wsdl:operation name="participantAdded"> 498
 <wsdl:input message="tns:ParticipantAddedMessage"/> 499
 </wsdl:operation> 500
 <wsdl:operation name="participantRemoved"> 501
 <wsdl:input message="tns:ParticipantRemovedMessage"/> 502
 </wsdl:operation> 503
 <wsdl:operation name="participantReplaced"> 504
 <wsdl:input message="tns:ParticipantRecoveredMessage"/> 505
 </wsdl:operation> 506
 <wsdl:operation name="replaceRegistration"> 507
 <wsdl:input message="tns:RecoverRegistrationMessage"/> 508
 </wsdl:operation> 509
 <wsdl:operation name="status"> 510
 <wsdl:input message="tns:StatusMessage"/> 511
 </wsdl:operation> 512
 <wsdl:operation name="participantList"> 513
 <wsdl:input message="tns:ParticipantListMessage"/> 514
 </wsdl:operation> 515
 <wsdl:operation name="generalFault"> 516
 <wsdl:input message="tns:GeneralFaultMessage"/> 517
 </wsdl:operation> 518
 <wsdl:operation name="wrongState"> 519
 <wsdl:input message="tns:WrongStateFaultMessage"/> 520
 </wsdl:operation> 521
 <wsdl:operation name="duplicateParticipant"> 522
 <wsdl:input message="tns:DuplicateParticipantFaultMessage"/> 523
 </wsdl:operation> 524
 <wsdl:operation name="invalidProtocol"> 525
 <wsdl:input message="tns:InvalidProtocolFaultMessage"/> 526
 </wsdl:operation> 527
 <wsdl:operation name="invalidParticipant"> 528
 <wsdl:input message="tns:InvalidParticipantMessage"/> 529
 </wsdl:operation> 530
 <wsdl:operation name="participantNotFound"> 531
 <wsdl:input message="tns:ParticipantNotFoundFaultMessage"/> 532
 </wsdl:operation> 533
</wsdl:portType> 534

Figure 5, WSDL portType Declarations for Registration Service and Registering Service Roles. 535

4.3.2 Registration Context Type 536

In order to support registration in activity groups it is necessary for the participants to be made 537
aware of the Registration Service associated with the activity group via some mechanism. In a 538
distributed environment, this requires information about the Registration service (essentially its 539
network endpoint) to be available to remote participants. WS-Context provides mechanisms for 540
propagating basic activity context information between services. The information contained within 541
this basic activity context is the unique activity identity and optional information associated with 542
demarcation of the activity lifecycle and management of the context. WS-Coordination 543
Framework extends the wsctx:ContextType defined in WS-Context to allow services to register 544
as Participants in an activity. The wscf:RegsitrationContextType is shown in Figure 5. 545
 546

Deleted: participantReco
vered

Deleted: recoverRegistra
tion

Deleted: asw

Deleted: 5

Inserted: 5

Deleted: 5

16

<xs:complexType name="RegistrationContextType"> 547
 <xs:complexContent> 548
 <xs:extension base="wsctx:ContextType"> 549
 <xs:sequence> 550
 <xs:element name="registration-service" type="ref:ServiceRefType" 551
 minOccurs="1"/> 552
 <xs:element name="sub-protocol" type="xs:anyURI" 553
 maxOccurs="unbounded"/> 554
 <xs:element name="participant-service" type="ref:ServiceRefType" 555
 maxOccurs="unbounded"/> 556
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/> 557
 </xs:sequence> 558
 </xs:extension> 559
 </xs:complexContent> 560
</xs:complexType> 561

Figure 6, WS-CF RegistrationContextType derives from the WS-Context ContextType. 562

The Registration Context Type contains the following elements in addition to the WS-Context 563
wsctx:ContextType structure: 564
• A service reference to a Registration service. This enables Participant services to be enlisted 565

or delisted in an activity group. 566
• A list of zero or more sub-protocol URIs that are used to specify the sub-protocols in which a 567

service may register as a Participant. For example, a transaction protocol may support 568
synchronization and two phase commit subprotocols. 569

• A list of zero or more service references indicating the list of services registered as 570
Participants in the activity group. 571

Referencing specifications define contexts derived from the RegistrationContextType. As per the 572
WS-Context, the QName of the derived context represents the protocol type for the activity. The 573
XML below shows an example of a subtyped Registration context. 574

<example:cfContext xmlns="http://docs.oasis-575
open.org/wscaf/2005/02/wscf.xsd" 576
 xmlns:example=”http://example.com/cf/” 577
 expiresAt="2005-04-26T22:50:00+01:00"> 578
 <context-identifier> 579
 http://example.org/abcdef:012345 580
 </context-identifier> 581
 <context-service> 582
 http://example.org/wscf/service 583
 </context-service> 584

 <parent-context expiresAt="2005-04-27T22:50:00+01:00"> 585
 <context-identifier> 586
 http://example.org/5e4f2218b 587
 </context-identifier> 588
 <context-service> 589
 http://example.org/wsctx/service 590

 </context-service> 591
 </parent-context> 592
 <registration-service> 593
 http://example.org/wscf/RegistrationService 594
 </registration-service> 595
</example:cfContext> 596

4.3.3 WS-CF faults 597

This section defines well-known error codes to be used in conjunction with an underlying fault 598
handling mechanism. 599

Field Code Changed

Field Code Changed

Formatted: Heading 3,H3

Deleted: any

Deleted: 6

Deleted: 6

Inserted: 6

Deleted: c

Deleted: s

Deleted: ¶

Deleted: The XML below
shows an example of a
Registration context.¶

Deleted: context

Deleted: 4

Deleted: 9

Deleted: tx

Deleted: docs.oasis-
open.org/wscaf/2004/09/
wsctx

Deleted: tx

Deleted: <type>

http://docs.oasis-
open.org/wscaf/2004/09/
wsctx/context/type1¶
 </type>¶

Deleted:
 <type>¶

http://example.org/wsct
x/context/type1¶
 </type>

Deleted: c

http://docs.oasis-open.org/wscaf/2004/09/wsctxexample.org/abcdef:012345
http://example.org/wscftx/service
http://docs.oasis-open.org/wscaf/2004/09/wsctx/context/type1
http://docs.oasis-open.org/wscaf/2004/09//wsctx/5e4f2218b
http://example.org/wsctx/service
http://docs.oasis-� open.org/wscaf/2004/09//wsctx/context/type1

 17

Invalid Protocol 600

This fault is be sent by the Registration Service if an attempt is made to register a participant with 601
a protocol that is not supported. This is an unrecoverable condition. 602
The qualified name of the fault code is: 603

wscf:InvalidProtocol 604

Duplicate Participant 605

This fault is be sent by the Registration Service if an attempt is made to register a participant 606
multiple times and the referencing specification does not allow this. 607
The qualified name of the fault code is: 608

wscf:DuplicateParticipant 609

Participant Not Found 610

This fault is be sent by the Registration Service if an attempt is made to remove a participant that 611
has not been registered. 612
The qualified name of the fault code is: 613

wscf:ParticipantNotFound 614

Transient Fault 615

This fault is sent if an attempt is made to replace an endpoint when recovery is not currently 616
allowed. Retrying the operation SHOULD eventually result in success. 617
The qualified name of the fault code is: 618

wscf:TransientFault 619

Unknown Service 620

This fault is sent if an attempt is made to replace a Registration Service endpoint and the 621
recipient does not recognise the Registration Service to be replaced. 622
The qualified name of the fault code is: 623

wscf:UnknownService 624

4.3.4 Message exchanges 625

The WS-CAF protocol family is defined in WSDL, with associated schemas. All the WSDL has a 626
common pattern of defining paired port-types, such that one port-type is effectively the requestor, 627
the other the responder for some set of request-response operations. 628
portType for an initiator (“client” for the operation pair) will expose the responses of the 629
“request/response” as input operations (and should expose the requests as output messages); 630
the responder (service-side) only exposes the request operations as input operations (and should 631
expose the responses as output messages). 632
Each “response” is shown on the same line as the “request” that invokes it. Where there are a 633
number of responses to a “request”, these are shown on successive lines. The initiator portTypes 634
typically include various fault and error operations. 635

Initiator (as receiver
of response)

Responder “requests” “responses”

Formatted: Heading 3,H3

18

Initiator (as receiver
of response)

Responder “requests” “responses”

addParticipant participantAdded
wsctx:UnknownContext
wsctx:InvalidState
wscf:DuplicateParticipant
wscf:InvalidProtocol
wscf:InvalidParticipant
wscf:ParticipantNotFound

removeParticipant participantRemoved
wsctx:UnknownContext
wsctx:InvalidState
wscf:DuplicateParticipant
wscf:InvalidProtocol
wscf:InvalidParticipant
wscf:ParticipantNotFound

replaceParticipant participantReplaced
wsctx:UnknownContext
wsctx:InvalidState
wscf:TransientFault

getParticipants participantList
wsctx:InvalidState
wsctx:UnknownContext

RegisteringService RegistrationService

getStatus status
wsctx:UnknownContext
wsctx:InvalidState

RegistrationService RegisteringService replaceRegistration registrationReplaced
wsctx:InvalidState
wscf:TransientFault
wscf:UnknownService
wsctx:UnknownContext

 636

 19

5 Conformance considerations 637

The WS-CF specification defines an activity group model where participant services may be 638
enrolled with the group for purposes defined by referencing specifications. WS-CF is itself a 639
referencing specification of WS-Context and extends the basic context structure 640
(wsctx:ContextType) defined by that specification. A conformant implementation of WS-CF 641
MUST be based on a conformant WS-Context implementation. Activity group lifecycle 642
demarcation and control SHOULD be managed by the WS-Context Context Service. 643
Conformant implementations of the Coordination Service MUST follow the rules stated in Section 644
4, including supporting the wscf:RegistrationContext structure, which MAY be passed by 645
reference or by value. 646
All messages based on the normative WSDL provided in this specification MUST be augmented 647
by a Web services addressing specification to support callback-style message exchange. 648
Specifications that build on WS-CF MUST satisfy all requirements for referencing specifications 649
that are identified for contexts, participant-services and registration-services. 650

 651

Formatted: Bullets and
Numbering

Deleted:

20

6 References 652

[1] WSDL 1.1 Specification, see http://www.w3.org/TR/wsdl 653
[2] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner, Harvard 654
University, March 1997. 655
[3] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R. Fielding, 656
L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998. 657
[4] WS-Message Delivery Version 1.0, http://www.w3.org/Submission/2004/SUBM-ws-658
messagedelivery-20040426/ 659
[5] WS-Reliability latest specification, http://www.oasis-660
open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf. See Section 4.2.3.2 661
(and its subsection), 4.3.1 (and its subsections). Please note that WS-R defines BareURI as the 662
default. 663
[6] Addressing wrapper schema, http://www.oasis-664
open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd 665
[7] WS-R schema that uses the serviceRefType, http://www.oasis-666
open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd 667
[8] Web Services Addressing, see http://www.w3.org/Submission/ws-addressing/ 668
[9] OASIS Web Services Context Specification, http://www.oasis-669
open.org/committees/tc_home.php?wg_abbrev=ws-caf 670

Formatted: Bullets and
Numbering

Deleted: [1] OMG, Additional
Structuring Mechanisms for the
OTS Specification, September
2000, document orbos/2000-
04-02.¶
[2] WSDL 1.1 Specification.
See
http://www.w3.org/TR/wsdl¶

Deleted: 3

Deleted:

Deleted: ¶
[4]

http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf
http://www.oasis-open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/wsdl

 21

Appendix A. Acknowledgements 671

The following individuals were members of the committee during the development of this 672
specification: 673

Formatted: Bullets and
Numbering

22

Appendix B. Notices 674

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 675
that might be claimed to pertain to the implementation or use of the technology described in this 676
document or the extent to which any license under such rights might or might not be available; 677
neither does it represent that it has made any effort to identify any such rights. Information on 678
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 679
website. Copies of claims of rights made available for publication and any assurances of licenses 680
to be made available, or the result of an attempt made to obtain a general license or permission 681
for the use of such proprietary rights by implementors or users of this specification, can be 682
obtained from the OASIS Executive Director. 683
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 684
applications, or other proprietary rights which may cover technology that may be required to 685
implement this specification. Please address the information to the OASIS Executive Director. 686

 687
Copyright © OASIS Open 2004. All Rights Reserved. 688
This document and translations of it may be copied and furnished to others, and derivative works 689
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 690
published and distributed, in whole or in part, without restriction of any kind, provided that the 691
above copyright notice and this paragraph are included on all such copies and derivative works. 692
However, this document itself does not be modified in any way, such as by removing the 693
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 694
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 695
Property Rights document must be followed, or as required to translate it into languages other 696
than English. 697
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 698
successors or assigns. 699
This document and the information contained herein is provided on an “AS IS” basis and OASIS 700
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 701
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 702
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 703
PARTICULAR PURPOSE. 704
 705
 706

Formatted: Bullets and
Numbering

	Note on terminology
	Namespace
	Prefix Namespace

	Referencing Specifications
	Precedence of schema and WSDL

	Introduction
	WS-CF architecture
	Overview
	Invocation of Service Operations
	Relationship to WSDL
	Referencing and addressing conventions

	WS-CF components
	Interposition
	Participant Service
	Registration Service
	Service-to-Registration interactions
	addParticipant
	removeParticipant
	replaceParticipant
	replaceRegistration
	getParticipants
	getStatus
	Registration Context Type
	WS-CF faults
	Invalid Protocol
	Duplicate Participant
	Participant Not Found
	Transient Fault
	Unknown Service
	Message exchanges

	Conformance considerations
	References

