WS-CAF call June 20, 2005
Agenda review, roll call.

Main purpose of today’s call is to prepare WS-Context and WS-CF for review and approval at F2F.

Next item is to approve minutes from June 6.

Greg motions to approve, Mark seconds.

Approved.

Only action item is to reword status issue.
Vote on issue 262 was unanimous for Option 2.

WS-Context now. Were no open issues in Bugzilla. But One issue on the mailing list, and Kevin created issue 267 for it. Please use the issue number on subsequent email list discussions.

Kevin to lead off the discussion. The issue is that the changes recently into the spec to rename the context element makes it no longer possible to identify a context header as a context header without some knowledge of the type. With regards to implementation we should not be restricting that at this level. Scenarios on the email list to illustrate requirement for this feature.

Alistair – something in addition to context information is the addressing information. What can you usefully do if you know something’s a context? You can build a routing table, maybe add some parameters to a routing application. Can’t be more than that, since then you get into processing where you need to know types and content etc. Not sure just knowing it’s a context is very useful. The additional info about addressing does provide some additional intelligence but just a little.

Tony – if we can technically see how to do it and then I tend to agree that we should not disallow it, standards should not put unnecessary restrictions in the way. Kevin has argued that there are reasonable uses and therefore we should not restrict it.

Points out the new WSDL for the WS-Ctx spec isn’t valid. Discusses the use of abstract for the type.

Greg – could it be XSI:type?

Kevin – no because of must understand. That’s where we got into all of this before.

In the SOAP spec MustUnderstand is defined against the expanded name of the outmost element, no mention of the type of the element. If we use abstract type then every context has the same name, thus the problem, and why we changed it to an abstract element with derived type.

The original issue was to tie in the type of the context to MustUnderstand, so we defined a different Qname for each type.

Solution proposal is to add an attribute to context type.

Peter – reverse what we had long ago, which was a context that was always the same and you found find out its type. Now we would have an attribute telling that it’s a context?

Greg – I don’t know why we want mustunderstand to apply to the superclass. The semantic is that we expect the application to understand the derived type. Enabling intermediaries etc. not sure now on the purpose of this.

Kevin – the element name was changed but in the change we’ve lost the mechanism for generically identifying a header element as a context.

The suggestion is that the attribute would be mandatory. A way to identify generically that a context is a context, which we no longer have.

Peter – that sounds interesting, but having an attribute that says if you don’t understand the details about this, then you may choose to treat it how you want to. Not clear that it’s generally useful to have only one thing you can do that for. You may want disjoint sets.
Martin – I don’t like decisions without good reasons. I’m not sure why we want to reopen it. It’s all part of the same debate we had with must understand.

Kevin – I don’t think this was covered in the must understand discussion, not considered, that’s why I brought it up again.

Tony – the change we made for abstract types also breaks the WSDL so we need to do something about this.

With the context element being abstract, the WSDL is broken. We need to fix one or the other, the schema or the WSDL.

Alistair – routing the only application I can see here but also it should be optional. I propose that there be an attribute with its value a URI and you don’t have to use it.

Motion – to have an optional context attribute that can be applied to headers that are being used as context, which has a value of URI.

Second – Peter

Doug – I’m not sure why we keep coming back to forwarding applications. I think we are sort of reinventing SOAP intermediaries and I’m not entirely sure that many of the proposed use cases for SOAP intermediaries have proven useful in real life. On the other hand, identifying something as a context that always needs to go back with all messages to wherever you received the original message from might be useful.

Kevin – the intent of this was never routing, the discussion has gone this way because it was the only example I could come up with. I do not believe we are in a position to dictate how people should use this.

Greg – I’m uncertain we have any firm use cases to do anything beyond what’s already been done. Sounds like some open questions to satisfy use cases that seem further a field. General skepticism that we need to be going down this path. Sounds like an issue for WS-Context 1.1 or 2.0.

Peter – not connected to intermediaries since the headers survive and the body gets processed in certain ways according to what’s in the header. Not competing with intermediaries. Relevant to ultimate endpoints.
Doug – not competing with soap intermediaries but reinventing them

Peter – not tied to routing but that is there a context of any kind, some systems will perform similar processing for any context, simply because they don’t understand, but others will pick up context and apply some rules to processing the body. We are saying that all contexts will be treated the same if we don’t know what they are, which seems too broad to me. Just to be able to say it belongs to a certain class may be of some use.

Alistair – my proposal permits the construction of systems in which the unimagined uses might be imagined. I can’t do anything other than move the header around if I’m unaware of it’s type. I can’t open the box unless I know the type and then once I do I’m in a specialized world. I think it is about forwarding and routing, but about the headers. Directly related to the problem of context, not SOAP intermediaries. Having context attached to a message that I pass along seems useful. But making it optional seems like a good thing. We build systems by contract and here is a tool that you can use.

Martin reminds of the time and need to spend some time on F2F.

Kevin – reason for the proposal is what I’ve encountered in financial industry, not enough known to rule something out here. Even if it’s optional you don’t know whether or not it’s a context unless the sender specifically tells you. Tying additional attributes would help.
Greg – a few technical points, we do have attribute accessibility in the context type, so it’s not far off from our ability to add this kind of thing. Targeting context for specific systems is a reinvention to SOAP Actor or SOAP Role, so in some sense the work we’ve done previously seems to support the SOAP processing model and that use case adequately within it.

Alistair – motions to table pending further research, discussion on email list. Investigate whether it’s a redundant proposal (i.e. can already be solved) before bringing it up for vote.
It appears from Kevin and Greg that there’s a dispute over existing solution. Therefore stop discussion until this can be resolved, on agenda for next meeting to restart discussion.

No concall on July 4 since right after F2F. Next call will be July 18.
Martin and Eric to create agenda during this week. F2F June 30 and July 1.

Sun unable to host, Oracle will step in.

Please send agenda items.

Martin to send additional logistics including dial in.

