

An OASIS WS-Calendar White Paper

Conceptual Overview of WS-Calendar WD01

Understanding inheritance using the semantic elements of web
services

By Toby Considine

On behalf of the OASIS WS-Calendar Technical Committee

Date: 6 September 2010

Last revision 6 September 2010
2

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

WS-Calendar defines calls and semantics to perform temporal alignment in web services 11

interactions. Short running services traditionally have been handled as if they were instantaneous, 12

and have used just-in-time requests for scheduling. Longer running processes, including physical 13

processes, may require significant lead times. When multiple long-running services participate in the 14

same business process, it may be more important to negotiate a common completion time than a 15

common start time. WS-Calendar extends the well-known semantics and interactions built around 16

iCalendar and applies them to service coordination. This white paper explains some of the issues in 17

generic service coordination as an aid to understanding how and when to use WS-Calendar 18

This white paper was produced and approved by the OASIS WS-Calendar Technical Committee as 19

a Committee Draft. It has not been reviewed and/or approved by the OASIS membership at-large. 20

Copyright © 2009 OASIS. All rights reserved. 21

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property 22

Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. This document and 23

translations of it may be copied and furnished to others, and derivative works that comment on or otherwise 24

explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, 25

without restriction of any kind, provided that the above copyright notice and this section are included on all such 26

copies and derivative works. However, this document itself may not be modified in any way, including by 27

removing the copyright notice or references to OASIS, except as needed for the purpose of developing any 28

document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to 29

copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages 30

other than English. The limited permissions granted above are perpetual and will not be revoked by OASIS or its 31

successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and 32

OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 33

WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP 34

RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR 35

PURPOSE. 36

 37

 38

Conceptual Overview of WS-Calendar WD01

Table of Contents 39

 40

Why WS-Calendar, why now?.. 4 41

WS-Calendar builds on iCalendar .. 5 42

Building on iCalendar’s Components ... 5 43

Semantic Components of WS-Calendar ... 6 44

The Core Components ... 6 45

Summary .. 8 46

Assembling Business Objects using WS-Calendar .. 9 47

Inheritance .. 9 48

Stacking Inheritance ... 10 49

Advanced Scheduling .. 12 50

Multiple Relationships ... 12 51

Classroom Scheduling Revisited .. 13 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

Last revision 6 September 2010
4

Why WS-Calendar, why now? 68

As physical resources become scarcer, it is imperative to manage the systems that 69

manage our physical world just as we manage business and personal services. The 70

controlling paradigm of our resources shifts from static efficiency to just-in-time provision 71

of services. At the same time, technology and policy are moving toward reliance on 72

resources that are intermittently available, creating another constantly changing schedule. 73

The challenge of the internet of things is to manage the collision of these schedules. 74

Service oriented architecture has seen growing use in IT as a paradigm for organizing and 75

utilizing distributed capabilities that may be under the control of different ownership 76

domains. It is natural to think of one computer agent’s requirements being met by a 77

computer agent belonging to a different owner. The granularity of needs and capabilities 78

vary from fundamental to complex, and any given need may require the combining of 79

numerous capabilities while any single capability may address more than one need. SOA 80

is seen to provide a powerful framework for matching needs and capabilities and for 81

combining capabilities to address those needs. The purpose of using a capability is to 82

realize one or more real world effects. When we expose these capabilities for remote 83

interaction, we refer to it as a service. 84

Physical processes are already being coordinated by web services. Building systems and 85

industrial processes are operated using oBIX, BACnet/WS, LON-WS, OPC XML, and a 86

number of proprietary specifications including TAC-WS, Gridlogix EnNet, and 87

MODBUS.NET. In particular, if building systems coordinate with the schedules of the 88

building’s occupants, they can reduce energy use while improving performance. 89

Service interactions have typically lacked a notion of schedule or of temporal coordination. 90

Short running services have been handled as if they were instantaneous, and schedules 91

have been managed through just-in-time requests. Longer running processes, including 92

physical processes, may require significant lead times. Long-running processes have 93

different dynamics than do short ones. For example, it may it may be more important in 94

some scenarios to negotiate a common completion time than a common start time. 95

Physical services rely on a diverse mix of technologies that may be in place for decades. 96

Direct control of diverse technologies requires in-depth knowledge of each technology. 97

Approaches that rely on direct control of services by a central system increase integration 98

costs and reduce interoperability. Interaction patterns that increase schedule autonomy 99

free up such systems for technical innovations by reducing the need for a central agent to 100

know and manage multiple lead times. 101

An increasing number of efforts are underway that require synchronization of processes 102

on an “internet scale”. Efforts to build an intelligent power grid (or smart grid) rely on 103

coordinating processes in homes, offices, and industry with projected and actual power 104

availability; these efforts envision communicating different price schedules at different 105

times. Emergency management coordinators wish to inform geographic regions of future 106

events, such as a projected tornado touchdown. The open Building Information Exchange 107

specification (OBIX) lacks a common schedule communications for interaction with 108

enterprise activities. These and other efforts benefit from a common cross-domain, cross 109

specification standard for communicating schedule and interval. 110

Conceptual Overview of WS-Calendar WD01

WS-Calendar builds on iCalendar 111

For human interactions and human scheduling, the well-known iCalendar format is used 112

to address these problems. Prior to WS-Calendar, there has been no comparable 113

standard for web services. As an increasing number of physical processes become 114

managed by web services, the lack of a similar standard for scheduling and coordination 115

of services becomes critical. 116

WS-Calendar is part of a concerted effort to address the issues above. CalConnect, 117

working through the IETF, has updated the RFC for iCalendar to support extensibility 118

[RFC 5545]. They have submitted a standard for XML serialization of iCalendar which the 119

WS-Calendar specification relies on heavily. 120

The intent of the WS-Calendar technical committee was to adapt the existing 121

specifications for calendaring and apply them to develop a standard for how schedule and 122

event information is passed between and within services. The standard adopts the 123

semantics and vocabulary of iCalendar for application to the completion of web service 124

contracts. WS Calendar builds on work done and ongoing in The Calendaring and 125

Scheduling Consortium (CalConnect), which works to increase interoperation between 126

calendaring systems. 127

Building on iCalendar’s Components 128

The iCalendar object includes many elements to support distributed scheduling and 129

authorization for events. Transactions are committed based upon distributed decisions 130

communicated by systems that are frequently off-line. Calendar management is a rich and 131

complex problem whose solutions and techniques are robust and mature. WS-Calendar 132

includes service definitions to invoke these behaviors. 133

At the heart of the iCalendar message is the components collection. WS-Calendar 134

extends the semantics of these components to meet the needs of service integration. 135

 136

Figure 1: iCalendar specifies scheduling components that are well known and well 137
understood 138

WS-Calendar inherits behaviors and attributes form the iCalendar components to define 139

the Interval, the Sequence and the Association. The services scheduling and performance 140

alignment are built upon these three components. 141

Last revision 6 September 2010
6

Semantic Components of WS-Calendar 142

WS-Calendar semantics define a structure for common expression of schedules for 143

events or a series of events. Because physical processes may require other supporting 144

services, scheduling of the services described in these structures may be constrained in 145

performance; you can’t schedule a reception at a hotel without also scheduling a set-up 146

and a clean-up. WS-Calendar enables the expression of such relationships without 147

requiring the calling party to understand the supporting processes. 148

Other processes may involve parameterized negotiations between services. Intervals may 149

be of fixed or variable duration. Purchase prices and quantities may vary over time. The 150

intervals may be consecutive, or intermittent. WS-Calendar provides a common 151

mechanism for elaborating these details using inheritance and local over-rides to enable 152

remote invocation, controlled patterns for service specification, and two-way negotiation 153

while achieving parsimonious serialization. 154

The Core Components 155

 156

Figure 2: Intervals and Associations 157

The core components of WS-Calendar are the Interval and the Association. Each of these 158

inherits definitions and structure from the iCalendar components. 159

Intervals 160

The Interval is a length of time associated with service performance. Each interval has a 161

defined payload of XML information. When an interval has a scheduled start time or end 162

time, then we call it a Scheduled Interval. 163

iCalendar components include Relations, whereby the message publisher can specify 164

relationships between components. The iCalendar relationships are PARENT, CHILD, 165

SIBLING, START, and END. WS-Calendar extends these by adding the temporal 166

relationships STARTFINISH, STARTSTART, FINISHSTART, FINISHFINISH, each with an 167

offset expressed as a duration. Intervals and relationships together define Sequences. 168

Conceptual Overview of WS-Calendar WD01

Sequences 169

A Sequence is a collection of intervals with defined temporal relationships. The simplest 170

sequence is set of consecutive intervals of the same duration. WS-Calendar names such 171

a simple, regular Sequence a Partition. 172

 173

Figure 3: The Partition, the simplest Sequence 174

Figure 3 depicts a simple repeating time interval along with a single external expression of 175

the type of information provided by each interval. In Figure 3, it is labeled Energy 176

Requirements; in WS-Calendar, this is an instance of an Association (see below). 177

The intervals in a sequence have a coherent set of relationships between them. The 178

collection of Intervals in Figure 3 defines a period of time, but not a particular period; there 179

is no start or end time for any of the Intervals. If one of them is scheduled, than the 180

schedule for each of them can be computed. A particular service interaction can schedule 181

the Sequence by defining a Start Date and Time. Another interaction could schedule the 182

same Sequence again with a different Start Date and Time. 183

Associations 184

Associations are all-but intervals used to hold information to define an interval. Any 185

information specified in an Interval can also be specified in the Association. So why have 186

an Association? 187

An Association defines information to be inherited by each Interval in the Sequence. 188

Again, referring to the Industrial Load Profile in Figure 3, the Association specifies that 189

each Interval is defining Energy Requirements. The amount required varies by each 190

interval, but the service of each Interval is the same. Collections of such similar intervals 191

are useful in energy and other markets involving volatile resources. 192

Repeating intervals are interesting in day-to-day interactions because they are the way 193

many services are already delivered. It is useful to be able to vary a Sequence 194

parametrically. Take, for example, classroom scheduling at a College. It is typical for 195

classes to be scheduled at one hour intervals on Monday, Wednesday, and Friday. 196

Last revision 6 September 2010
8

Classes schedule on Tuesdays and Thursdays are of 50% longer duration to establish an 197

equivalent in classroom time for classes taught on the two schedules. 198

 199

Figure 4: Classroom Schedules 200

Classroom Schedule 1 shows a schedule for one hour classes. Classroom Schedule 2 201

illustrates an every hour and a half schedule for classes, with 15 minute breaks built in. 202

The duration of each Interval, and the relationship between each interval and the 203

preceding one, can be expressed within each interval. For a regular sequence such as 204

those in Figure 4, it is much simpler to express the duration and relationship once, in the 205

Association. All Intervals in the Sequence will inherit those elements unless overridden. 206

Summary 207

WS-Calendar uses the Interval, the Sequence, and the Association to define repeating 208

instances of service performance. Inheritance within Sequences allows parsimonious 209

serialization as well as specific use for a variety of purposes. 210

Conceptual Overview of WS-Calendar WD01

Assembling Business Objects using WS-Calendar 211

This section provides an overview of how to build regularly recurring temporal service 212

structures using inheritance. It also discusses how to override that inheritance when you 213

need to. 214

 215

Figure 5: Building a Sequence into a Business Service 216

In Figure 5, we start with a simple Sequence. To each interval, we can add some contract 217

or service information. Finally, we can schedule the Sequence by adding a single start 218

date to the whole Sequence. 219

Inheritance 220

 221

Figure 6: Inheriting Duration from an Association 222

We can reduce the amount of repetition using an Association to create a default duration 223

for the Sequence. In Figure 6, Sequence 1 and Sequence 2 are identical 224

 225

Figure 7: Inheriting Schedule from an Association 226

In a similar way, Figure 7 show two identical Sequences, one inheriting a schedule from 227

an association that indicates that Interval A starts at a particular date and time. Note that 228

Last revision 6 September 2010
10

inheritance of a Scheduling option is unique in that it sets the time only on the Interval 229

mentioned in the Relationship. This is because all Intervals in a Sequence become 230

scheduled when any member of the Sequence is scheduled. 231

Stacking Inheritance 232

Associations can also be related recursively, that is, WS-Calendar supports defining an 233

Association with another Association, and thereby with the entire sequence. 234

 235

Figure 8: Stacked Inheritance introduced 236

In Figure 8, the Sequence is scheduled by adding an association to an existing 237

Association. That existing Association defined the service offering and the default interval 238

(15 minutes) for the Energy Market Sequence. The existing Association also defined that 239

Interval A is the entry point for the sequence, i.e., any schedule established will be applied 240

to Interval A. 241

This type of association enables some interesting service behaviors. A Sequence can be 242

defined as a complete service, with the entry point defined by the Association. This 243

service could be called a market Offering. Another party can contracts that offering by 244

referencing the existing intact Sequence as referred to by the Association. In market 245

service interactions, scheduling a service calling for execution of a contract. Stacked 246

inheritance enables a clean separation of product definition and market call for execution. 247

 248

Figure 9: Second Stacking Inheritance example 249

In Figure 9, stacked inheritance is used again in a different way. A catering system 250

defines a standard contract for the HVAC system to support a reception in a hotel. 251

Standard requirements have been created for those activities that are invariant. The 252

elements that vary for each catering job are left indeterminate. The Series is assigned a 253

name and an entry point using the Association. 254

The catering software invokes this defined offering at a later time, associating the 255

schedule and the capacity requirements to make a contract. Through inheritance, only the 256

Conceptual Overview of WS-Calendar WD01

“Event” interval is changed, receiving a capacity (to influence ventilation) and the duration 257

for the reception. Because the exposed Association indicates that the “Event” is the entry 258

point, the reception schedule for 9:00 schedules the series so that the “Event” begins at 259

9:00. The catering software requires no knowledge of the support services offered in other 260

intervals. 261

Once the contract is created, the room would show up as Busy in calendar inquiries 262

during room set-up and break-down. 263

 264

Figure 10: Stacking Associations three deep 265

In the very similar scenario in Figure 10, an energy generation resource has market 266

offering that requires 50 minutes of pre-notification. On September 4
th
, the generation 267

resource is bid into the next day’s market with a price it is willing to accept. The energy 268

production is scheduled and the resource is notified that its bid has been accepted and 269

that its services will be required for six and a half hours.
1
 270

1
 Note: This is meant to be neither a depiction of today’s markets, nor a recommendation for tomorrow’s. It is

merely an illustration of the capabilities and approach.

Last revision 6 September 2010
12

Advanced Scheduling 271

The examples so far have included only simple partitions and single schedules. This 272

section illustrates some of the flexibility of the WS-Calendar scheduling model 273

Multiple Relationships 274

Key interactions in smart energy involve mutually unintelligible systems coordinating their 275

behavior for the optimum economic result. Today’s interactions are machine to machine 276

interactions; tomorrows will be business to business. 277

 278

Figure 11: One Association, Two Sequences 279

Figure 11 illustrates an Energy Management System (EMS), which is offering demand 280

response (DR) to the grid-based markets. The building system integrator has defined the 281

Sequence to shut down certain systems, and then to restore them to full operation 282

afterwards. This is the HVAC Load Shed Contract. 283

The energy use effect of these decisions appears in a parallel Sequence, herein the DR 284

Offer. Notice that the lead time in HVAC operation is longer than the lead time in DR; the 285

first activities of the HVAC system do not yet reduce energy use. Notice as well, that 286

during system restoration, the building will use more energy than it does during normal 287

operations, indicated by a -5kWh Demand Response. 288

When the DR Event comes from outside, it schedules the event to begin at 1:30 and to 289

last for two and a half hours. This offer also comes with a monetary value. When the EMS 290

accepts the offer, it shares the DR event as scheduled with the purchaser, and notifies the 291

building systems of the three intervals in the HVAC contract as scheduled. 292

Conceptual Overview of WS-Calendar WD01

Neither the EMS system nor the DR purchaser needs to have any understanding of the 293

underlying systems. Each needs merely to read the WS-Calendar based service 294

attributes. 295

Classroom Scheduling Revisited 296

We started this document with an illustration of classroom schedules rendered in WS-297

Calendar. We now revisit this illustration using the concepts including inheritance and 298

contracts that that paper has illustrated. We started this discussion of Sequences with an 299

illustration of classroom scheduling in Figure 4. 300

 301

Figure 12: Classroom Schedules Revisited 302

In Figure 12, we revisit this using the inheritance. In this high-tech classroom, there are 303

systems to warm up, and ventilation levels to be maintained to support each class. The 304

registrar’s office puts out a schedule for each classroom indicating how many students will 305

be in it for each of six periods during the day. 306

The classes are not really an hour long, but are 50 minutes long with a 10 minute break 307

between classes. A Campus EMS creates a schedule with an Association that includes a 308

50 minute duration and a FINISHSTART relationship with a duration of 10 minutes. Each 309

day begins at 9:00. This is the standard building system contract for Fall Classes. 310

To actually schedule contract performance, an association referencing the Fall Classes 311

and the date for each school day during the semester is created. 312

