Use-Case

1.1 Security Agents/ Intermediaries Provide Externalized Security

Increasingly, security is externalized outside applications and managed by security agents or intermediaries. Applications do not directly manage keys/signing/validation, instead a security agent acts on behalf of the application and generates appropriate security headers. Examples of this type of intermediary are found in J2EE containers and in the .NET framework (service proxy).

Figure 1 shows a typical deployment scenario; a generic container hosts two applications FinApp and HrApp. Security is managed by the SecAgent intermediary embedded in the container. The SecAgent binds each application to a key --- HrKey, FinKey (could be symmetric or assymetric) and generates necessary headers (security token + signature) when the applications accesses other services. SecAgent adds security headers to the message and then sends them onto the web service provider (WSP).

Figure 1:

Figure 1a, shows a variation of the case above. Here a user with name Joe interacts with the HrApp. The WSS header generated by the SecAgent also includes information about Joe, perhaps as an additional signed supporting token (could be a user-name token or SAML token).

Figure 1a:

1.2 Role of STS (WS-Trust draft specification)

The use of STS (Security Token Service) provides important additional flexibility in Scenarios 1 and 1a. As Figure 2 illustrates, the SecAgent component can interact with the STS to create security tokens appropriate for each WSP.

The SecAgent authenticates to the STS using a signing key -- SecAgentKey; for performance reasons, this typically takes the form of a session between the STS and the SecAgent.

Figure 2:

In this scenario, the following steps take place:

I. HrApp sends SOAP message to WSP.

II. SecAgent intervenes; creates WS-Trust RST with the following components:

 (a) SOAP Security Header based on SecAgentKey (typically this will be a session key)

 (b) <wsp:AppliesTo> element describing WSP.

 (c) <wsp:OnBehalfOf> element with the following information (HrApp Signing Token, Signed Supporting Token, Signature).

The SecAgent sends the RST to the STS.

III. The STS responds with a RSTR holding an appropriate STS Brokered Token for WSP. The SecAgent creates an appropriate SOAP message with the STS Brokered Token and a signature for WSP.

3. Need for Generalizing Contents of <wsp:OnBehalfOf>

3.1 Current definition of <wsp:OnBehalfOf>

In the most recent WS-Trust draft (Editors Draft 01, 17 January 2006), the contents of the <wsp:OnBehalfOf> element (Section 9.1) are described as:

[quote]

/wst:RequestSecurityToken/wst:OnBehalfOf

This optional element indicates that the requestor is making the request on behalf of another. The identity on whose behalf the request is being made is specified by placing a security token, <wsse:SecurityTokenReference> element, or <wsa:EndpointReference> element within the <wst:OnBehalfOf> element.

[\quote]

This does not accommodate the use-case described above. There is no way to include a signature or signed supporting tokens within <wsp:OnBehalfOf>

3.2 Possible Solutions

3.2.1 Add Security Information to SOAP header

One proposal, made during the WS-SX conference call, is to include the signing token, additional signature and or signed supporting tokens within the SOAP header (in addition to including a STR in the <wsp:OnBehalfOf> element).
Presumably the <wsp:OnBehalfOf> element can use a direct reference to link to the appropriate token in the header.

The SOAP security header would then include the following information: (a) SecAgentKey based signature (b) Additional signing token, supporting tokens and signature.

The major concern with this solution is that it complicates the processing rules at the STS and we have no processing rules or guidance for this in Section 9.1. If the TC feels this is the correct direction to proceed, I can formulate appropriate specification text.

3.2.2 Allow Multiple Security Tokens and Signatures in <wsp:OnBehalfOf>

Another solution would be to broaden the contents of <wsp:OnBehalfOf> to include multiple security tokens and signatures. The current language could be generalized to read:

[quote]

/wst:RequestSecurityToken/wst:OnBehalfOf

This optional element indicates that the requestor is making the request on behalf of another. The identity on whose behalf the request is being made is specified by placing a security token, <wsse:SecurityTokenReference> element, or <wsa:EndpointReference> element within the <wst:OnBehalfOf> element.

The requestor MAY specify multiple security tokens and or security token references, together with a signature over
the tokens or references. The multiple security tokens should be interpreted as describing the on-behalf-of entity; the signature as providing proof that the requestor is acting for the on-behalf-of entity
[\quote]

FinApp

HrApp

SecAgent

SOAP messages with WSS hdr�(Signing Token + Signature)

�����

WSP

Container

SecAgent

FinApp

SOAP messages with WSS hdr�(Signing Token, Signed Supporting Token, Signature)

�����

WSP

HrApp

Container

Joe

FinApp

SecAgent

SOAP messages with WSS hdr�(STS Brokered Token, Signature)

�����

Joe

WSP

HrApp

Container

STS

