SecurityPolicy Examples

Working Draft 06, December 5, 2006

Editor(s):

Rich Levinson, Oracle

Ashok Malhotra, Oracle

Prateek Mishra, Oracle
Ramana Turlapati, Oracle

Contributors:

Martin Gudgin, Microsoft

Marc Goodner, Microsoft

Paul Cotton, Microsoft

Hal Lockhart, BEA

Symon Chang, BEA

Frederick Hirsch, Nokia

Greg Whitehead, Hewlett-Packard

Ching-Yun (C.Y.) Chao, IBM

Anthony Nadalin, IBM

Abstract:

This document contains examples of how to set up WS-SecurityPolicy policies for a variety of common token types that are described in WS-Security 1.0 and WS-Security 1.1 profiles. Particular attention is focused on different WS-Security bindings within the example policies. Actual messages that have been documented in WS-Security and other Interops that conform to some of the example policies are referenced when appropriate.

The purpose of this document is to give examples of how policies may be defined for several existing use cases that have been part of the WS-Security Interops that have been conducted (see References section for Interop documents). In addition, some example use cases have been included which show some variations from the WS-Security Interop use cases in order to demonstrate how different options and bindings impact the structure of the policies.

Table of Contents

41
Introduction

51.1
Terminology and Concepts

51.1.1
Actors

71.1.2
Concepts

81.1.2.1
X509 Certificates

92
Scenarios

92.1
Username Token

92.1.1
Username token – no binding

92.1.1.1
Username token with plain text password

102.1.1.2
Username token without password

102.1.1.3
Username token with timestamp, nonce and password hash

102.1.2
Use of SSL Transport Binding

112.1.2.1
Username token as supporting token

112.1.3
(WSS 1.0) User Name token with Mutual X.509v3 Authentication, Sign, Encrypt

142.1.4
(WSS 1.1), User Name with Certificates, Sign, Encrypt

162.2
X.509 Token Authentication Scenario Assertions

162.2.1
(WSS1.0) X.509 Certificates, Sign, Encrypt

182.2.2
(WSS1.0) Mutual Authentication with X.509 Certificates, Sign, Encrypt

202.2.3
(WSS1.1) Anonymous with X.509 Certificate, Sign, Encrypt

222.2.4
(WSS1.1) Mutual Authentication with X.509 Certificates, Sign, Encrypt

242.3
SAML Token Authentication Scenario Assertions

252.3.1
WSS 1.0 SAML Token Scenarios

252.3.1.1
(WSS1.0) SAML10 Assertion (Bearer)

262.3.1.2
(WSS1.0) SAML10 Assertion (Sender Vouches) over SSL

272.3.1.3
(WSS1.0) SAML10 Assertion (HK) over SSL

282.3.1.4
(WSS1.0) SAML10 Sender Vouches with X.509 Certificates, Sign, Encrypt

302.3.1.5
(WSS1.0) SAML10 Holder of Key, Sign, Encrypt

322.3.2
WSS 1.1 SAML Token Scenarios

322.3.2.1
(WSS1.1) SAML2.0 Bearer

322.3.2.2
(WSS1.1) SAML2.0 Sender Vouches over SSL

332.3.2.3
(WSS1.1) SAML2.0 HoK over SSL

342.3.2.4
(WSS1.1) SAML1.1/2.0 Sender Vouches with X.509 Certificate, Sign, Encrypt

362.3.2.5
(WSS1.1) SAML1.1/2.0 Holder of Key, Sign, Encrypt

382.4
Kerberos Security

382.4.1
Kerberos V5 GSS APREQ

403
References

403.1
Specifications

403.2
Interops and Sample Messages

414
Appendix - Interop messages

414.1
WS-Security UsernameToken Interop1 Message

414.2
WS-Security 1.0 SAML 1.1 Interop SV-SSL message

1 Introduction

This document describes several WS-SecurityPolicy examples. An example typically consists of the security aspects of a high-level Web Service use-case with several variable components. Many of the examples are based on existing use cases that have been conducted during WS-Security Interops. In those examples a reference is included to identify the specific use case in the specific interop document that is being demonstrated.
In the policy examples below, the “wsp” prefix refers to the elements defined in the WS-Policy namespace and the “sp” prefix to the elements defined in the WS-SecurityPolicy (WS-SP) namespace.

Where uses cases are based on existing scenarios, those scenarios are referenced at the beginning of the use case section. The explicit documents describing the scenarios are identified by links in Section 3.

1.1 Terminology and Concepts

This section describes the logical “actors” that participate in the examples. In addition, there is a discussion on general concepts that describes how the logical actors typically relate to the physical message exchanges that take place.

1.1.1 Actors

The following diagram shows the actors and the relationships that may be typically involved in a network security scenario:

Figure 1.

The diagram is intended to show the possible interactions that may occur between actors in any given scenario, although, in general, depending on the policy specified by the recipient, only a subset of the possible interactions will actually occur in a given scenario.

First, a brief narrative will describe the diagram, then the actors will be defined in more detail.

In a typical example interaction, a Requestor wants to issue a Web Service request to a Web Service that is hosted by the “Recipient” web site on behalf of a RelyingParty, who is actually the business entity responsible for making the service available and with whom any business arrangements with the Requestor are made. One may think of this as an end to end interaction between a Requestor and a RelyingParty, with technical resources being provided by the Initiator on the Requestor side and the Recipient on the RelyingParty side.

Technically, what occurs is that the Requestor hands the request to the Initiator, which in turn issues a query to the Recipient and is returned the WSDL describing the Web Service, which includes WS-SP Policy structures that describe the security policies supported by the Recipient for this Web Service. This interaction is shown by the upper pair of arrows between the Initiator and the Recipient.

Upon receipt of the WS-SP WSDL Policy structures, the Initiator then interacts with the Requestor and the Issuing Authority, as needed in order to meet the requirements specified by the WS-SP. Generally, what is required here is that credentials and tokens are obtained from the Requestor and Issuing Authority and assembled as required in a new WS-Security request message that is to be issued to the Recipient.

(For example, if a UsernameToken is required by the Recipient, one possibility is that the Initiator will query the Requestor for Username and Password and create the appropriate token to include in the Request.

Other possibilities exist as well, but WS-SP only governs what the final message must contain. How it gets constructed and how the pieces are assembled are specific to the system environment that is being used.

In general, the examples in this document will explain the interactions that might occur to meet the policy requirements, but the actual sequences and specifics will be determined by the setup of the systems involved.)

Finally, after assembling the necessary tokens, the Initiator will sign and encrypt the message as required by the WS-SP Policy and send it to the Recipient.

Similar to the Requestor side, on the Recipient side, the details of how the Recipient processes the message and uses a Validating Authority to validate the tokens and what basis the RelyingParty uses to accept or reject the request is system specific. However, in a general sense, the 3 actors identified on the Recipient side will be involved to accept and process a request.

(For example, the Recipient may decrypt an encrypted UsernameToken containing a clear text password and username and pass it to the Validating Authority for validation and authentication, then the Recipient may pass the Request to the RelyingParty, which may in turn issue a request for authorization to the Validating Authority.

These details are beyond the scope of WS-SP and the examples in this document, however, knowing that this is the context in which WS-SP operates can be useful to understanding the motivation and usefulness of different examples.)

The following list is a reference to identify the logical actors in Figure 1. (In general, these actors may physically be implemented such that more than one actor is included in the physical entity, such as an STS that implements both an IssuingAuthority and a ValidatingAuthority. Similarly, in a scenario where a user is at a security-enabled work station, the work station may combine a Requestor and Initiator in a single physical entity.)

· Requestor: the person or entity requesting the service and will be supplying credentials issued by the IssuingAuthority and will be validated by a ValidatingAuthority.

· IssuingAuthority: a Security Token Service (STS), which is an organization or entity that typically issues authentication credentials for Requestors. Examples include X509 Certificate Authority, Saml Token Authority, Kerberos Token Authority. (For user passwords, the IssuingAuthority may be thought of as the entity the user contacts for password services, such as changing password, setting reminder phrases, etc.)

· Initiator: the system or entity that sends the message(s) to the Recipient requesting use of the service on behalf of the Requestor. Typically, the Initiator will first contact the Recipient on behalf of the Requestor and obtain the WS-SP policy and determine what tokens from what kind of IssuingAuthority (X509, SAML, Kerberos, etc) that the Requestor will require to access the service and possibly assist the Requestor to obtain those credentials. In addition, based on the WS-SP policy, the Initiator determines how to format the WS-Security headers of the messages being sent and how to use the binding required by the policy.

· Recipient: the system or entity or organization that provides a web service for use and is the supplier of the WS-SP policy that is contained in each example and is the recipient of messages sent by Initiators.

· ValidatingAuthority: the organization or entity that typically validates Requestor credentials for Relying Parties, and, in general, maintains those credentials in an ongoing reliable manner.

· RelyingParty: the organization or entity that relies on the security tokens contained in the messages sent by the Initiator as a basis for providing the service. For this document, the Recipient and RelyingParty may be considered the same entity.

Of these actors, the Requestor and Initiator can generally being regarded as “client-side” or “requestor-side” actors. The Recipient and RelyingParty can be regarded as “server-side” actors.

1.1.2 Concepts

Physical message exchanges are between the Initiator and Recipient. For the purposes of this document the Initiator and Recipient may be considered to be the physical systems that exchange the messages. The Initiator and Recipient use the keys that are involved in the WS-SP Binding that protects the messages.

The Requestor should generally be thought of as a separate physical entity from the Initiator, although in some cases, such as a user at a client workstation equipped with signing and encryption capabilities, the Requestor may actually also be the Initiator.

Similarly, the IssuingAuthority should generally be thought of as a separate physical entity from the Initiator. However, in some cases, such as SAML sender-vouches, the IssuingAuthority and the Initiator may be the same entity.

In some other cases, such as the case where user passwords are involved, the ValidatingAuthority system entity may also comprise the Recipient and the Relying Party, since passwords are typically checked locally for validity.

The focus of WS-SP is the Policy that is sent from the Recipient to the Initiator, however, the concepts in those policies generally require understanding specifically the relation of the Requestor and IssuingAuthority to the Initiator. This is because the Requestor in general does not know in advance what policies each Web Service provider requires and it is necessary for practical purposes to have a front end Initiator resolve the policy and coordinate whatever actions are required to exchange the Requestor tokens for the tokens required by the service. This exchange may be done using WS-Trust to prepare the necessary requests and process responses from an STS IssuingAuthority.

Typically both the Requestor/Initiator and Recipient/RelyingParty will have relations with the IssuingAuthority/ValidatingAuthority and often establish contact with that Authority using WS-Trust. The policies for using the Authority may also be represented using WS-SP, but they are typically no different from the policies shown in the examples in this document. The policies in this document may be used for any kind of request, whether it be a request to a service provider for general content or operations or a request to an Authority for authentication tokens.

In each example the relations between these actors and how the request message is prepared will be described, because, in general, the policy requirements will imply these relationships. Generally, each of the 3 client side actors, the Requestor, the Initiator, and the IssuingAuthority will contribute to the preparation of the request message, which is the primary focus of this document. For validation of the message, the Recipient, the RelyingParty, and the ValidatingAuthority are generally involved, but for this document the focus is simply that the Recipient provides the WS-SP policy that dictates the preparation of the request message.

1.1.2.1 X509 Certificates

The specifics of who is trusted for X509 certificates depends on the specific organization’s PKI (Public Key Infrastructure) setup. For this document, we shall assume the Subject of the X509 certificate identifies the actor, which may be the IssuingAuthority, or the Initiator, or the Requestor, depending on the example, and that the issuer of the X509 certificates is a general Certificate Authority not directly involved in any authorization of the web service transactions, but is relied on for the validity of the X509 certificate in a manner out of scope of the scenarios covered. In addition, this document does not explicitly address the case of X509 certificates issued by the IssuingAuthority actor. Such use cases are generally implicitly covered if one assumes that such relations are automatically covered by the specifics of the organization PKI setups.

However, the IssuingAuthority may issue tokens, such as SAML holder-of-key that contain X509 certificates. In these cases, the basis of trust is that the X509 Certificate of the IssuingAuthority was used to protect the X509 certificate of the Requestor which is contained in the signed SAML holder-of-key token. I.e. any “chaining” of tokens is done by referencing those tokens within signed XML structures and not by issuing actual X509 certificates.

2 Scenarios

2.1 Username Token

Username Token Authentication scenarios that use simple username password token for authentication. There are several sub-cases.
2.1.1 Username token – no binding

In this model a user name token is placed within a WS-Security header in the SOAP Header. No other security measure is used.

Because no security binding is used, there is no explicit distinction between the Requestor, who is identified in the UsernameToken and the Initiator, who physically sends the message. They may be one and the same or distinct parties. The lack of a security binding indicates that any direct URL access method (ex. HTTP) may be used to access the service.

2.1.1.1 Username token with plain text password

This scenario is based on the first WS-Security Interop Scenarios Document [WSS10-INTEROP-01 Scenario 1 – section 3.4.4]
(http://www.oasis-open.org/committees/download.php/11374/wss-interop1-draft-06-merged-changes.pdf).

This policy says that Requestor/Initiator must send a password in a UsernameToken in a WS-Security header to the Recipient (who as the Authority will validate the password). The password is required because that is the default requirement for the WS-Security Username Profile [WSS10-USERNAME].

This setup is only recommended where confidentiality of the password is not an issue, such as a pre-production test scenario with dummy passwords, which might be used to establish that the Initiator can read the policy and prepare the message correctly, and that connectivity and login to the service can be performed.

<wsp:Policy>

 <sp:SupportingToken>
 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
 </sp:SupportingToken>

</wsp:Policy>

An example of a message that conforms to the above stated policy is as follows.
<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Header>
 <wsse:Security soap:mustUnderstand=“1” xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">
 <wsse:UsernameToken>
 <wsse:Username>Chris</wsse:Username>
 <wsse:Password Type="wsse:PasswordText">sirhC</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soap:Header>
 <soap:Body>
 <Ping xmlns="http://xmlsoap.org/Ping">
 <text>EchoString</text>
 </Ping>
 </soap:Body>
</soap:Envelope>
The UsernameToken element starting on line 335 satisfies the the UsernameToken assertion on line 321. By default, a Password element is included in the UsernameToken on line 337 holding a plain text password.
2.1.1.2 Username token without password

This policy is the same as 2.1.1.1 except no password is to be placed in the UsernameToken. There are no credentials to further establish the identity of the Requestor and no security binding that the Initiator is required to use. This is a possible production scenario where all the service provider wants is a Username to associate with the request. There is no explicit Authority implied in this scenario, except possibly that the Username would be evaluated by a server-side “Authority” that maintained a list of valid username values.

<wsp:Policy>

 <sp:SupportingToken>
 <wsp:Policy>
 <sp:UserNameToken>
 <wsp:Policy>
 <sp:NoPassword/>
 </wsp:Policy>
 </sp:UserNameToken>
 </wsp:Policy>
 </sp:SupportingToken>

</wsp:Policy>

2.1.1.3 Username token with timestamp, nonce and password hash

This scenario is similar to 2.1.1.1, except it is more secure, because the Requestor password is protected by combining it with a nonce and timestamp, and then hashing the combination. Therefore, this may be considered as a potential production scenario where passwords may be safely used. It may be assumed that the password must be validated by a server-side ValidatingAuthority and so must meet whatever requirements the specific Authority has established.

<wsp:Policy>

 <sp:SupportingToken>
 <wsp:Policy>
 <sp:UserNameToken>
 <wsp:Policy>
 <sp:HashPassword>
 </wsp:Policy>
 </sp:UserNameToken>
 </wsp:Policy>
 </sp:SupportingToken>

</wsp:Policy>
An example of a message that conforms to the above stated policy is as follows.

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Header>
 <wsse:Security soap:mustUnderstand=“1” xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">
 <wsse:UsernameToken>
 <wsse:Username>Chris</wsse:Username>
 <wsse:Password Type="wsse:PasswordDigest">weYI3nXd8LjMNVksCKFV8t3rgHh3Rw==</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soap:Header>
 <soap:Body>
 <Ping xmlns="http://xmlsoap.org/Ping">
 <text>EchoString</text>
 </Ping>
 </soap:Body>
</soap:Envelope>

This message is very similar to the one in section 2.1.1.1. A UsernameToken starts on line 402 to satisfy the UserNameToken assertion. However, in this example the Password element on line 404 is of type PasswordDigest to satisfy the HashPassword assertion on line 386.
2.1.2 Use of SSL Transport Binding

Both server-authentication and mutual authentication SSL are supported via use of the TransportBinding policy assertion. (For mutual authentication, a RequireClientCertificate assertion may be inserted within the HttpsToken assertion. The ClientCertificate may be regarded as a credential token for authentication of the Initiator, which in the absence of any additional token requirements would generally imply the Initiator is also the Requestor. The Authority would be the issuer of the client certificate.)

<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken />
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>
</wsp:Policy>

2.1.2.1 Username token as supporting token

Additional credentials can be included as supporting tokens. Each of the UsernameTokens described in section 2.1.1 may be used in this scenario and any clear text information or password will be protected by SSL. So, for example, including a user name token over server authentication SSL we have:

<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken />
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>
 <sp:SupportingToken>
 <wsp:Policy>
 <sp:UserNameToken>...</sp:UserNameToken>
 </wsp:Policy>
 </sp:SupportingToken>
</wsp:Policy>

2.1.3 (WSS 1.0) User Name token with Mutual X.509v3 Authentication, Sign, Encrypt

This scenario is based on WS-I SCM Security Architecture Technical requirements for securing the SCM Sample Application, March 2006 [WSI-SCM-SAMPLEAPPL – GetCatalogRequest, SubmitOrderRequest].

This usecase corresponds to the situation where both parties have X.509v3 certificates (and public-private key pairs). The Initiator includes a user name token that may stand for the Requestor on-behalf-of which the Initiator is acting. The user name token is included as a SupportingToken; this is also encrypted. The Authority for this request is generally the Subject of the Initiator’s trusted X.509 Certificate.

We model this by using asymmetric binding with a user name supporting token.

The message level policies cover a different scope of the web service definition than the binding policy and so appear as separate policies and are attached at Message Policy Subject. These are shown below as input and output policies. Thus, we need a set of coordinated policies one with endpoint subject and two with message subjects to achieve this use case.

<wsp:Policy wsu:Id="wss10_up_cert_policy" >
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="AlwaysToRecpt">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp:Policy>
 </sp:Wss10>
 <sp:SignedEncryptedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken sp:IncludeToken="AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedEncryptedSupportingTokens>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10UsernameForCertificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10UsernameForCertificate_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.1.4 (WSS 1.1), User Name with Certificates, Sign, Encrypt

This scenario is based on WCF (Indigo) Interoperability Lab: Web Services Security September 1st, 2005 [WCF-PLUGFEST-INTEROP].

The use case here is the following: the Initiator generates a symmetric key; the symmetric key is encrypted using the Recipient’s certificate and placed in an encrypted key element. The UsernameToken identifying the Requestor and message body are signed using the symmetric key. The body and UsernameToken are also encrypted. The Authority for this request is generally the Subject of the Initiator’s X509 certificate.

We can use symmetric binding with X509token as the protection token to illustrate this case. If derived keys are to be used, then the derived keys property of X509Token should be set.

<wsp:Policy wsu:Id="WSS11UsernameWithCertificates_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never”>
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken sp:IncludeToken="AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="UsernameForCertificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="UsernameForCertificate_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.2 X.509 Token Authentication Scenario Assertions

2.2.1 (WSS1.0) X.509 Certificates, Sign, Encrypt

This use-case corresponds to the situation where both parties have X.509v3 certificates (and public-private key pairs). The requestor identifies itself to the service. The message exchange is integrity protected and encrypted.

This modeled by use of an asymmetric binding assertion.

<wsp:Policy wsu:Id="wss10_anonymous_with_cert_policy" >
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="AlwaysToRecpt">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10Anonymous with Certificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10anonymous with certs_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.2.2 (WSS1.0) Mutual Authentication with X.509 Certificates, Sign, Encrypt

This scenario is based on WSS Interop, Scenario 3, Web Services Security: Interop 1, Draft 06, Editor, Hal Lockhart, BEA Systems

This use case corresponds to the situation where both parties have X.509v3 certificates (and public-private key pairs). The requestor wishes to identify itself to the service using its X.509 credential (strong authentication). The message exchange needs to be integrity protected and encrypted as well. The difference from previous use case is that the X509 token inserted by the client is included in the message signature (see <ProtectTokens />).

<wsp:Policy wsu:Id="wss10_mutual_with_cert_policy" >
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="AlwaysToRecpt">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10 mutual with Certificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10 mutual with certs_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.2.3 (WSS1.1) Anonymous with X.509 Certificate, Sign, Encrypt

This scenario is based on WCF (see sec 2.1.4)

In this use case the Request is signed using DerivedKeyToken1(K), then encrypted using a DerivedKeyToken2(K) where K is ephemeral key protected for the server's certificate. Response is signed using DKT3(K), (if needed) encrypted using DKT4(K). The requestor does not wish to identify himself; the message exchange is protected using derived symmetric keys. As a simpler, but less secure, alternative, ephemeral key K (instead of derived keys) could be used for message protection by simply omitting the sp:RequireDerivedKeys assertion.

<wsp:Policy wsu:Id="AnonymousForCertificateSignEncrypt_IPingService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:RequireDerivedKeys/>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 <sp:Trust10>
 <wsp:Policy>
 <sp:MustSupportIssuedTokens/>
 <sp:RequireClientEntropy/>
 <sp:RequireServerEntropy/>
 </wsp:Policy>
 </sp:Trust10>

 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts >
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.2.4 (WSS1.1) Mutual Authentication with X.509 Certificates, Sign, Encrypt

This scenario is based on WCF (see sec 2.1.4)

Client and server X509 certificates are used for client and server authorization respectively. Request is signed using K, then encrypted using K, K is ephemeral key protected for server's certificate. Signature corresponding to K is signed using client certificate. Response is signed using K, encrypted using K, encrypted key K is not included in response. Alternatively, derived keys can be used for each of the encryption and signature operations by simply adding an sp:RequireDerivedKeys assertion.

<wsp:Policy wsu:Id="MutualCertificate11SignEncrypt_IPingService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:EndorsingSupportingTokens>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken=”AlwaysToRecipient">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:EndorsingSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 <sp:Trust10>
 <wsp:Policy>
 <sp:MustSupportIssuedTokens/>
 <sp:RequireClientEntropy/>
 <sp:RequireServerEntropy/>
 </wsp:Policy>
 </sp:Trust10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts >
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>
2.3 SAML Token Authentication Scenario Assertions

For SAML, the combination of SAML and WSS version numbers is supported (WssSamlV11Token10, WssSamlV11Token11, WssSamlV20Token11).

Instead of explicitly including the SAML assertion, a key identifier reference can also be used. To enable this last behavior, the IncludeToken attribute is set to http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/Never.

In all of the SAML scenarios, the SAML assertion confirmation method expected to be used by the Initiator is communicated implicitly by the context of the sp: binding in use and type of sp: element containing the SAML token. There are 3 general SAML use cases covered: holder-of-key (hk), sender-vouches (sv), and bearer (br).

For the holder-of-key case, there is always a contained reference (or value) in the SAML Assertion to key material that may be used for message protection in the scenario. The hk case can be assumed if the WssSamlV**Token** element appears either in the InitiatorToken element of the AsymmetricBinding element, in the ProtectionToken element of the SymmetricBinding element. In the TransportBinding case, if the WssSamlV**Token** element appears in an EndorsingSupportingTokens or SignedEndorsingSupportingTokens element, the SAML Assertion type can be assumed to be hk.

The sender-vouches case can be assumed if the WssSamlV**Token** version will always appear in a SignedSupportingTokens element to indicate that the SAML Authority associated with this token is the Initiator that signs the message.

The bearer case can be assumed if the WssSamlV**Token** version appears in a SupportingTokens element (it may be signed as a SignedPart, but it is not involved in the message protection).

It is recognized that other uses cases might exist, where these guidelines might need further elaboration in order to address all contingencies, however that is outside the scope of the current version of this document.

Note: in the discussions below the term SamlToken refers to the policy requirement that a SAML Assertion be used as that token.

Note: SAML Assertions have issuers. In addition, these Assertions are generally signed with an X509 certificate. In general, the SAML IssuingAuthority may be regarded as the Subject of the X509 certificate, which is trusted by a RelyingParty. In general, as well, there is usually a known mapping between the Issuer identified within the SAML Assertion and the Subject of the X509 certificate used to sign that Assertion. It will be assumed in this document that the SAML IssuingAuthority may be identified by either of these identities and that in general a RelyingParty will check the details as necessary.

2.3.1 WSS 1.0 SAML Token Scenarios

2.3.1.1 (WSS1.0) SAML10 Assertion (Bearer)

Initiator adds a SAML assertion (bearer) representing the Requestor to the SOAP security header.

Since the SamlToken is listed in the SupportingTokens element, it will not explicitly be covered by a message signature. The Initiator may infer that a Saml Bearer Assertion is acceptable to meet this requirement, because the Initiator is not required to explicitly cover a SupportingToken with a signature.

The SAML assertion itself could be signed. The Authority in this scenario is the Issuer (and signer) of the SAML Assertion. The Initiator simply passes the token through and is not actively involved in the trust relationship between the Authority that issued the SAML Assertion and the Requestor who is the Subject of the SAML Assertion.

This scenario might be used in a SAML Federation application where a browser-based user with a SAML Assertion indicating that user’s SSO (Single Sign On) credential has submitted a request to a portal using the Assertion as a credential, and the portal as Initiator is generating a web service request on behalf of this user, but the trust of the Recipient is based on the Assertion and its IssuingAuthority, not the Initiator who delivered the request.

<wsp:Policy>

 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>
 <wsp:Policy>
 <sp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SupportingToken>

</wsp:Policy>

2.3.1.2 (WSS1.0) SAML10 Assertion (Sender Vouches) over SSL

This scenario is based on first WSS SAML Profile InterOp [WSS10-SAML11-INTEROP Scenario #2 section 4.4.4]

(http://www.oasis-open.org/committees/download.php/7702/wss-saml-interop1-draft-12.doc):
Initiator adds a SAML Assertion (sv) to the SOAP Security Header. Because the TransportBinding requires a Client Certificate AND the SAML token is in a SignedSupportingTokens element, when the Initiator uses the Client Certificate to protect the message under SSL, the Initiator may be considered as effectively “signing” the SAML sv Assertion and acting as a SAML Authority (i.e. the issuer of the sv Assertion). By including the sv assertion in the header and using the Client Certificate to protect the message, the Initiator takes responsibility for binding the Requestor, who is the Subject of the Assertion to the contents of the message.

<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken>

 <wsp:Policy>

 <sp:RequireClientCertificate>

 </wsp:Policy>

 </sp:HttpsToken>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>
 <sp:SignedSupportingToken>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>
 <wsp:Policy>
 <sp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingToken>

2.3.1.3 (WSS1.0) SAML10 Assertion (HK) over SSL

Initiator adds a SAML assertion (hk) to the SOAP Security Header. Because the TransportBinding requires a Client Certificate AND the SAML token is in an EndorsingSupportingTokens element, the Initiator may be considered to be authorized by the issuer of the hk SAML assertion to bind message content to the Subject of the assertion. If the Client Certificate matches the certificate identified in the hk assertion, the Initiator may be regarded as executing SAML hk responsibility of binding the Requestor, who would be the Subject of the hk assertion, to the content of the message.

In this scenario, the IssuingAuthority is the issuer(signer) of the hk SAML Assertion. The Requestor is the Subject of the Assertion and the Initiator is authorized by the Authority to bind the Assertion to the message using the ClientCertificate identified in the SAML Assertion, which should also be used to sign the timestamp of the message with a separate Signature included in the WS-Security header.

<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken>

 <wsp:Policy>

 <sp:RequireClientCertificate>

 </wsp:Policy>

 </sp:HttpsToken>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 <sp:EndorsingSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>
 <wsp:Policy>
 <sp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:EndorsingSupportingTokens>
 </wsp:Policy>
 </sp:TransportBinding>

2.3.1.4 (WSS1.0) SAML10 Sender Vouches with X.509 Certificates, Sign, Encrypt

This scenario is based on first WSS SAML Profile InterOp [WSS10-SAML11-INTEROP Scenario #3].

In this case, SAML token is included as part of the message signature and sent only to the Recipient. The message security is provided using X.509 certificates with both requestor and service having exchanged credentials via some out of band mechanism.

In this scenario the SAML Authority is the Initiator who uses the message signature to both provide the integrity of the message and to establish the Initiator as the SAML Authority based on the X509 certificate used to sign the message and the SignedSupportingToken SAML Assertion. Effectively the SAML Assertion is being “issued” as part of the message construction process. The Requestor is the Subject of the SAML Assertion. The Initiator knows the Recipient is expecting it to be the SAML Authority by specifying that the message requires a SignedSupportingToken SamlToken.

<wsp:Policy wsu:Id="wss10_saml_cert_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="AlwaysToRecpt">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp:Policy>
 </sp:Wss10>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken="AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10SamlForCertificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10SamlForCertificate_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.3.1.5 (WSS1.0) SAML10 Holder of Key, Sign, Encrypt

This scenario is based on second WSS SAML Profile InterOp [WSS11-SAML1120-INTEROP Scenario #4].

Here the SAML token provides the key material for message security hence acts as the Initiator token. SAML assertion points to the public key of the signer of the message. The Initiator knows Recipient's public key but does not share a direct trust relation with the Recipient. The Recipient has a trust relation with the Authority that issues the hk SAML Assertion. On the request the message body is signed using Initiator’s private key referenced in the SAML HK Assertion and it is encrypted using Recipient’s server certificate. On the response, the server signs the message using its private key and encrypts the message using the key provided within SAML HK Assertion.

<wsp:Policy wsu:Id="wss10_saml_hok_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken="AlwaysToRecpt”>
 <wsp:Policy>
 <wsp:WssSamlV11Token10/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken=”Never”>
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10SamlHok_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="WSS10SamlHok_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.3.2 WSS 1.1 SAML Token Scenarios

2.3.2.1 (WSS1.1) SAML2.0 Bearer

Similar to 2.3.1.1, except token is of version 2.0.

<wsp:Policy>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SupportingTokens>

</wsp:Policy>

2.3.2.2 (WSS1.1) SAML2.0 Sender Vouches over SSL

This scenario is based on second WSS SAML Profile InterOp [WSS11-SAML1120-INTEROP Scenario #2].

Similar to 2.3.1.2 except SAML token is of version 2.0.

<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken>

 <wsp:Policy>

 <sp:RequireClientCertificate>

 </wsp:Policy>

 </sp:HttpsToken>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>

 <wsp:Policy>

 <sp:WssSamlV20Token11/>

 </wsp:Policy>

 </sp:SamlToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>
</wsp:Policy>

2.3.2.3 (WSS1.1) SAML2.0 HoK over SSL

This scenario is based on second WSS SAML Profile InterOp [WSS11-SAML1120-INTEROP Scenario #5].

Similar to 2.3.1.3 except SAML token is of version 2.0.

<wsp:Policy>
 <sp:TransportBinding>
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken>

 <wsp:Policy>

 <sp:RequireClientCertificate>

 </wsp:Policy>

 </sp:HttpsToken>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 <sp:EndorsingSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken=”AlwaysToRecpt”>
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:EndorsingSupportingTokens>
 </wsp:Policy>
 </sp:TransportBinding>
</wsp:Policy>

2.3.2.4 (WSS1.1) SAML1.1/2.0 Sender Vouches with X.509 Certificate, Sign, Encrypt

Here the message and SAML Assertion are signed using a key derived from the ephemeral key K. The ephemeral key is encrypted using Recipient’s public key.

Alternatively, derived keys can be used for each of signing and encryption operations.

In this scenario the Authority is the Initiator who signs the message with the generated key. In order to establish trust in the generated key, the Initiator must sign the message signature with a second signature using an X509 certificate, which is indicated as the EndorsingSupportingToken. This X509 certificate establishes the Initiator as the SAML Authority.

<wsp:Policy wsu:Id="WSS11SamlWithCertificates_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="Never”>
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:RequireDerivedKeys/>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken="AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV11Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sp:EndorsingSupportingTokens>

 <wsp:Policy>

 <sp:X509Token sp:IncludeToken=”AlwaysToRecipient">

 <wsp:Policy>

 <sp:WssX509V3Token10/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:EndorsingSupportingTokens>

 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="SamlForCertificates_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="SamlForCertificate_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.3.2.5 (WSS1.1) SAML1.1/2.0 Holder of Key, Sign, Encrypt

This scenario is based on IBM WS-SecureConversation Interop, WS-SecureConversation and WS-Trust Interop Scenarios Version 1.0a August 24, 2004 [WSSX-PRE-INTEROP].

SAML Assertion contains the ephemeral key K in the EncryptedKey construct encrypted using server’s certificate. The body of the message is signed using DKT1(K) and encrypted using DKT2(K). Response is also signed using derived keys. In a simpler alternative, ephemeral key K itself could be used for message protection.

In this scenario, the Authority is the Issuer of the SAML 20 hk Assertion that contains the symmetric signing key. The Recipient can trust the Initiator that uses the symmetric key, because the same key gets delivered to the Recipient in the SAML hk Assertion, which is signed by the trusted Authority.

<wsp:Policy wsu:Id="WSS11SamlHok_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:SamlToken sp:IncludeToken="AlwaysToRecpt”>
 <wsp:Policy>
 <sp:RequireDerivedKeys/>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="SAmlHok_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="SamlHok_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

2.4 Kerberos Security

2.4.1 Kerberos V5 GSS APREQ

This use case deals exclusively with Kerberos. The message exchange pattern is specified in WSS Kerberos Token Profile. The kerberos token is included as V5 GSS APREQ, which is as per WS-I, the most interoperable representation of Kerberos token. The body of the request and response are signed and encrypted.

<wsp:Policy wsu:Id="WSS11Kerberos_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:KerberosToken sp:IncludeToken="AlwaysToRecpt”>
 <wsp:Policy>
 <sp:RequireDerivedKeys/>
 <sp:WssGssKerberosV5ApReqToken11/>
 </wsp:Policy>
 </sp:KerberosToken>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefEncryptedKey/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Kerberos_input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy wsu:Id="Kerberos_output_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

3 References

3.1 Specifications

WSS10-USERNAME:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
WSS11-USERNAME:

http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
3.2 Interops and Sample Messages

WSS10-INTEROP-01:

http://www.oasis-open.org/committees/download.php/11374/wss-interop1-draft-06-merged-changes.pdf
WSS10-INTEROP-02:

http://www.oasis-open.org/committees/download.php/11375/wss-interop2-draft-06-merged.doc
WSS11-INTEROP-01:

http://www.oasis-open.org/committees/download.php/12997/wss-11-interop-draft-01.doc
WSS10-KERBEROS-INTEROP:
http://www.oasis-open.org/committees/download.php/10991/wss-kerberos-interop.doc
WSS10-SAML11-INTEROP:

http://www.oasis-open.org/committees/download.php/7702/wss-saml-interop1-draft-12.doc
WSS11-SAML1120-INTEROP:

http://www.oasis-open.org/committees/download.php/16556/wss-saml2-interop-draft-v4.doc
WSSX-PRE-INTEROP:

http://www.oasis-open.org/committees/download.php/16357/Trust_SecureConversation_Interop.2004-10.doc
WSSX-WSTR-WSSC-INTEROP:

http://www.oasis-open.org/committees/download.php/20354/ws-sx-interop-ed-07.doc
WCF-PLUGFEST-INTEROP:

http://mssoapinterop.org/ilab/WSSecurity/WCFInteropPlugFest_Security.zip
WSI-SCM-SAMPLEAPPL:

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2006-04/SCMSecurityArchitectureWGD5.00.doc

(login required)

4 Appendix - Interop messages

This appendix contains duplicate messages copied from source Interop docs for reference in some of the use cases.
4.1 WS-Security UsernameToken Interop1 Message

This message is from WSS10-INTEROP-01 section 3.4.4
(http://www.oasis-open.org/committees/download.php/11374/wss-interop1-draft-06-merged-changes.pdf):
Here is an example request.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Header>

 <wsse:Security soap:mustUnderstand=“1” xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">

 <wsse:UsernameToken>

 <wsse:Username>Chris</wsse:Username>

 <wsse:Password
 Type="wsse:PasswordText">sirhC</wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

 </soap:Header>

 <soap:Body>

 <Ping xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </Ping>

 </soap:Body>

</soap:Envelope>

4.2 WS-Security 1.0 SAML 1.1 Interop SV-SSL message

This scenario is based on first WSS SAML Profile InterOp [WSS10-SAML11-INTEROP Scenario #2 section 4.4.4]
(http://www.oasis-open.org/committees/download.php/7702/wss-saml-interop1-draft-12.doc):

Here is an example request.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <soap:Header>

 <wsse:Security soap:mustUnderstand="1">

 <wsu:Timestamp>

 <wsu:Created>2003-03-18T19:53:13Z</wsu:Created>

 </wsu:Timestamp>

 <saml:Assertion

 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

 MajorVersion="1" MinorVersion="1"

 AssertionID="2sxJu9g/vvLG9sAN9bKp/8q0NKU="

 Issuer="www.opensaml.org"

 IssueInstant="2002-06-19T16:58:33.173Z">

 <saml:Conditions

 NotBefore="2002-06-19T16:53:33.173Z"

 NotOnOrAfter="2002-06-19T17:08:33.173Z"/>

 <saml:AuthenticationStatement

 AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"

 AuthenticationInstant="2002-06-19T16:57:30.000Z">

 <saml:Subject>

 <saml:NameIdentifier

 NameQualifier="www.example.com"

 Format="">

 uid=joe,ou=people,ou=saml-demo,o=example.com

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>

 <saml:ConfirmationMethod>

 urn:oasis:names:tc:SAML:1.0:cm:sender-vouches

 </saml:ConfirmationMethod>

 </saml:SubjectConfirmation>

 </saml:Subject>

 </saml:AuthenticationStatement>

 </saml:Assertion>

 </wsse:Security>

 </soap:Header>

 <soap:Body>

 <Ping xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </Ping>

 </soap:Body>

</soap:Envelope>

Requestor

Issuing

Authority

(STS)

Initiator

Recipient

(+ WSDL policy)

Validating

Authority

(STS)

Relying

Party

WS-SP

Examples

securitypolicy-for-scenarios-04

5-Dec-2006

Oracle Corporation

Page 11 of 43

