Proposed revised BPEL appendix C

Peter Furniss and Alastair Green, Choreology Ltd.

C. Abstract Coordination Protocol

It is illuminating to express the fault and compensation handling relationship between an enclosing scope and each of its nested scopes as an exchange of signals between them. This exchange forms an abstract coordination protocol. If the signals model is applied strictly, so there is no communication between scopes other than by signals (which might be the case with a federated implementation strategy), then the coordination protocol needed is the same as would be required for distributed coordination between separate processes. However, the abstract protocol presented here is a subset of the type of abstract protocol that would be required to achieve distributed coordination, as it does not detail all the collision possibilities or the possibility of independent (partial) failure. A full distributed protocol specification would also need to include initiation and registration mechanisms.

The signals of the abstract protocol are given names derived from their function in BPEL. It should be emphasized that the abstract protocol described here is intended to aid understanding of the scope model defined in the main part of the specification, and therefore has no normative force.
Abstract Coordination Protocol for BPEL Scope Interactions
· The initiation of the nested scope is modeled with a Run signal from the parent scope to the nested scope

· A nested scope may complete successfully. In this case a compensation handler is installed for the nested scope. This is modeled with a Success signal from the nested scope to its parent scope. 

· A nested scope may encounter a fault internally. In this case the scope always terminates unsuccessfully. 

· If the fault handler rethrows a fault to its enclosing scope, this is modeled as a Fault signal from the nested scope to its parent scope. 

· If the fault is handled and not rethrown (nor another fault thrown), the scope exits gracefully, but unsuccessfully, from the work of its parent scope. This is modeled as a Failed signal from the nested scope to its parent scope. 

· After a nested scope has completed, (a fault or compensation handler for) the parent scope may ask it to compensate itself by invoking its compensation handler. The compensate action is modeled with a Compensate signal from the parent scope to the nested scope. 

· Upon successful completion of the compensation, the nested scope sends the Compensated signal to its parent scope. 

· The compensation handler may itself fault internally. In this case

· If the fault is not handled by a scope within the compensation handler, it is rethrown to the parent scope. This is modeled as a NotCompensated signal from the nested scope to its parent scope. 

· If the fault is handled and not rethrown, we assume that the compensation was able to complete successfully. In this case the nested scope sends the Compensated signal to its parent scope. 

· If there is a fault in the parent scope independent of the work of the nested scope, the parent scope will instruct the nested scope to prematurely abandon its work by sending a Terminate signal. 

· The nested scope, upon receiving the Terminate signal, will interrupt its work and trigger the bpws:forcedTermination fault. After internally handling this fault, the nested scope returns a Terminated signal to the parent.

· Finally, when a parent scope decides that the compensation for a completed nested scope is not needed any more (this occurs when the process, viewed for this purpose as the outermost scope, completes) it sends a Finish signal to the nested scope. After discarding the compensation handler the nested scope responds with a Finished signal. 

· In case there is a race between the Success signal from the nested scope and the Terminate signal from the parent scope, the Success signal wins, i.e., the nested scope is deemed to have completed and the Terminate signal is ignored. The fault handler of the parent scope (which will have been the source of the Terminate signal) must treat the nested scope as completed – with a default fault handler (and perhaps with an explicit handler), a Compensate signal will then be sent to the nested scope.)
· In case a Terminate signal is sent to a nested scope that has already faulted internally, the Terminate signal is ignored and the scope will eventually send either a Fault or an Failed signal to the parent. 

[image: image1.jpg]Frg.. P,.n-f Scor,e \5

Fra- ne!f¢J
]A‘fcn\ ~ o

Stop e
~ested

Slor’e

—‘5
\-—\—-b




The state diagram above summarizes the preceding discussion. In the diagram, the parent (enclosing) scope generates Run, Terminate, Compensate and Finish signals and the nested scope generates Success, Fault, Failed, Compensated, Terminated and Finished signals. It is important to emphasize that the states represent the state of the relationship between the parent scope and one specific nested scope. However, it is very nearly the case that the states represent the states of the nested scope itself: this is true except in the case of the signal races described in the last two points above. 

