
[image: image1.png]

WSDM Web Services Platform

UPLAT

Working Draft October 2003

Document identifier:

Wsdm-uplat-20031104
Location:

http://www.oasis-open.org/?
Editor:

Homayoun Pourheidari, HP, <homayoun@hp.com>

<Editors should add their names here>
Abstract:

This document provides a list of platform features that must be supported by the WSDM MUWS specification. Each feature is assigned a priority in terms of its relevance and importance to the MUWS architecture. Additionally, this document provides supporting context and recommendations for how to support each feature.

Status:

This document is a working draft of the OASIS Web Services Distributed Management (WSDM) Technical Committee. We solicit your comments.

Committee members should send comments on this specification to the wsdm@lists.oasis-open.org list. Others should subscribe to and send comments to the wsdm-comment@lists.oasis-open.org list. To subscribe, send an email message to wsdm-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the WSDM TC web page (http://www.oasis-open.org/committees/wsdm/).

Table of Contents

3Introduction

31.1 Purpose

31.2 Terminology

31.3 Glossary

42
Platform Features

42.1 Initial Focus

42.1.1 Identification

42.1.2 Versioning

52.1.3 Attributes

62.1.4 Meta Data

62.1.5 Addressing

72.1.6 Notification

82.1.7 Relationships

92.1.8 Security

102.1.9 Registration and Discovery

102.1.10 Policy

142.1.11 Collection

142.1.12 Transaction

152.1.13 Life Cycle

152.1.14 Name Resolution

162.2 Future Focus

162.2.1 Flow

162.2.2 Negotiation

162.2.3 Relationship Service

172.2.4 Logging

183
References

183.1 Normative

183.2 Non-Normative

19Appendix A. Acknowledgments

20Appendix B. Revision History

21Appendix C. Notices

Introduction

1.1 Purpose

This document is the requirements for the Management of Web Services specification of the Web Services Distributed Management Technical Committee, whose purpose and deliverables (http://www.oasis-open.org/committees/wsdm/charter.php) are.

WSDM TC Statement of Purpose

To define web services management. This includes using web services architecture and technology to manage distributed resources. This TC will also develop the model of a web service as a manageable resource. This TC will collaborate with various evolving activities within other standards groups, including, but not limited to, DMTF (working with its technical work groups regarding relevant CIM Schema), GGF (on the OGSA common resource model and OGSI regarding infrastructure), and W3C (the web services architecture committee). Also liaison with other OASIS TC, including the security TC and other management oriented TC.

WSDM TC List of Deliverables

Web Services Distributed Management (WSDM) V1.0 Specification, March 2004 this includes WSDL described manageable resources and the xml schema to complete those descriptions. This document will also define explicit manageability for the components of the Web Services Architecture (WSA) as defined by the W3C.

Initial Focus

The initial focus of the work is to define the minimal set of requirements to represent manageability of Web service endpoints (definition below). However it is expected that related resources, that affect the manageability of Web service endpoints will also need to be address in the tenure of the WSDM TC, these include, but are not limited to; Web service execution environment and Web service conversations.

Relationship to MUWS

This set of requirements is expected to drive the definition of a manageability model, specific to a Web services endpoint that will be exposed using work developed in the WSDM TC addressing management using Web services [MUWS].

1.2 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119].

1.3 Glossary

2 Platform Features

Based on our discussions last time, I have created an initial focus and future focus grouping of this work and have a preliminary grouping. However, we can move things around as needed.

2.1 Initial Focus

The following features must be supported by the current version of the MUWS specification.

2.1.1 Identification

2.1.1.1 What?

Identification is a way to represent that one element is same or different than the other without necessarily looking at the contents or definition of the element. Applied to Web resources in general, as defined by W3C, a Uniform Resource Identifier (URI) can be used to represent the identity of a Web resource. Applied to Web services, every element which Web service description is composed of (service, interface, endpoint, location, etc.), is required to be identifiable by a URI. Such URI must be unique by definition. Identity is not required to be an addressable location, so a dereferencing mechanism may be required to actually locate the corresponding resource.

<Add a section on Correlatable names - Properties of the resource that can help determine how different names related to a resource (or multiple resources?) can be correlated?

Diff. Agents may give resources diff. Identities. You want to make sure that you can correlate these names
Andrea will own this>

2.1.1.2 Why?

Manageable resources need to be uniquely identified for the manager to tell one from the other and also to consistently refer to. Therefore a standard representation of a unique identity is required.

2.1.1.3 How?

<TBD>

2.1.2 Versioning

2.1.2.1 What?

Version is an attribute of a Web service description component identifying a set of supported capabilities and a sequence of modifications to the component.
Below is the UML model of Versioning discussed in MOWS. It is depicted here for reference:

[image: image2.png]0.1 0.1 | predcessor
| B

ehange descrption}<——<{ _change | [rovision

| CEC—
AN

s
0 succassor | 0.1
N N N realizes. 1
(I A e P = |
[roeamespce |~ ®fameRamespacs | .~ [argeNamespace | eroemamespace |

2.1.2.2 Why?

Version information is useful so that the manager can know if the manageable Web Service interfaces have changed (bugs have been fixed or new functions added) since she obtained her copy. She could also learn whether a bug report relates to the current version.

A manager of manageable resources must have the ability to query the available endpoints' revisions along with the corresponding change descriptions such that the manager can discern the most appropriate and compatible interface of a particular manageability function that her management client can use.

2.1.2.3 How?

UPlat doesn’t specify (agnostic) a specific format of version number. An example of version number format is as follow.

Each version is identified by the version information, following a certain specified format signifying the major version number, minor version number, the revision number, and build number.

Typically an increment in the major version signifies a substantial increase in the function of the Webservice or partial or total re-implementation. An increment of the minor version signifies a small increase in the functions of the Webservice such as an extension to the existing functionality. The revision number increases each time the Webservice is changed in any way such as bug fixes or patches. The build number indicates the software build instance.
Version number is accompanied by other version attributes; change description describing what has changed in a revision compared to the previous one, version predecessor pointing to the previous version, version successor pointing to the [successive | next] version.

Below is an example of how versioning can be implemented using existing namespace mechanisms in WSDL. This will require OASIS to define a set of WSDM attributes in http://oasis-open.org/draft/11/2003/wsdm/ schema. In this schema, version attributes (version, version-change-description, version-predecessor, version-successor, etc.) will be declared along with other wsdm related attributes (relationship attributes, etc.).
The advantage of this approach: this WSDL can be processed by client who is not WSDM ready as the wsdm:version attributes will be ignored by clients who don't look for them.
<?xml version="1.0" encoding="UTF-8" ?>

<wsdl:definitions targetNamespace="http://acmecorp.com/stockquoteservice/manageability"

 xmlns:wsdm="http://oasis-open.org/draft/11/2003/wsdm/"

 xmlns:impl="http://acmecorp.com/StockQuote"

 xmlns:intf="http://acmecorp.com/StockQuote"

 xmlns:apachesoap="http://xml.apache.org/xml-soap"

 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

<wsdl:message name="getTransactionNumberInTheLastHoursResponse">

 <wsdl:part name="transaction_numbers" type="xsd:int" />

 </wsdl:message>

<wsdl:message name="getTransactionNumberInTheLastHoursRequest">

 <wsdl:part name="hours" type="xsd:int" />

 </wsdl:message>

<wsdl:portType name="StockQuoteManageability" wsdm:version="2.1.1" wsdm:version-change-description=”fixed type on the interface name”>

 <wsdl:operation name="getTransactionNumberInTheLastHours" parameterOrder="hours">

 <wsdl:input name=" getTransactionNumberInTheLastHoursRequest " message="impl:getTransactionNumberInTheLastHoursRequest " />

 <wsdl:output name=" getTransactionNumberInTheLastHoursResponse " message="impl:getTransactionNumberInTheLastHoursResponse " />

 </wsdl:operation>

 </wsdl:portType>

<wsdl:binding name="StockQuoteManageabilitySoapBinding" type="impl:StockQuoteManageability">

 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name=" getTransactionNumberInTheLastHours ">

 <wsdlsoap:operation soapAction="" />

<wsdl:input name=" getTransactionNumberInTheLastHoursRequest ">

 <wsdlsoap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://acmecorp.com/StockQuote" />

 </wsdl:input>

<wsdl:output name=" getTransactionNumberInTheLastHoursResponse">

 <wsdlsoap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://acmecorp.com/StockQuote" />

 </wsdl:output>

<wsdl:service name="StockQuoteManageabilityService" wsdm:version="1.2.2" wsdm:version-predecessor=”1.2.1” >

<wsdl:port name="StockQuoteManageability" binding="impl:StockQuoteManageabilitySoapBinding" >

<wsdlsoap:address location="http://acmecorp.com/StockQuote/Manageability" wsdm:version="1.1.0" />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

2.1.3 Attributes

2.1.3.1 What?

Attributes are describable information that can be queried and may be written. Attributes may be provided by a Web service. That may incur defining a schema (data type and name) of the attributes and operations (message exchanges) to find, read and write them. Attribute declarations (names) and descriptions (types) should be introspect-able at design time and at runtime. Attribute is synonymous with property in this definition. For manageability, a property is a name, type, value triple that is part of the advertised manageability interface for a resource. An attribute can be used to represent configuration values, metrics, identifiers, etc.
2.1.3.2 Why?

Many manageability capabilities of a manageable resource take the form of information about the resource that the manager is able to query and set. While these can be accessed through individual and special WSDL operations, in management scenarios it is often required to access this information in more efficient ways (like bulk get). In order to allow these scenarios, such information should be modeled as a set of attributes (or properties) with access methods that allow access to it in ways that meet the scalability requirements of management applications.
2.1.3.3 How?

<TBD>

2.1.4 Meta Data

2.1.4.1 What?

Meta data is generally defined as data about data. In the context of management, it is additional information about all the components of an information model that describe a managed resource. These components include: attributes, operations, events, interface categories, and the service representing the managed resource. Meta data may include descriptive information about the context, quality and condition, or characteristics of the data. In the context of management, Meta data values can include units, volatility, modifiability, aliases, policies, duration, etc. For example, Meta data values for attributes can include units, volatility, modifiability, aliases, and policies and Meta data values for operations can include endstate, policies, etc. Meta data should be introspectable at design time and runtime.
2.1.4.2 Why?

In IT management, it is important to describe data in richer ways so that it can ultimately be linked to the business goals that drive the existence of the source of this data. For example, information like limitations, purpose, context, quality, and characteristics of management data as an associated piece of that data will help to describe how the data is related to the business objectives of an IT environment. Meta data is one of the means through which such descriptions are provided.
2.1.4.3 How?

<TBD>

2.1.5 Addressing

2.1.5.1 What?

An address or reference is the data structure to refer to a unique Web service with sufficient information to be able to locate and invoke it given that the supported messages are already understood. The reference must include the ability to locate the description of the service. In this context address and reference are used synonymously.
<Must give an ability to include the description>

2.1.5.2 Why?

It is necessary for management because we need to be able to refer to manageability services and manageable services in relationships, events, and operation signature in an interoperable manner.
2.1.5.3 How?

WS-Addressing

WSDL Service Element – per WSDL WG, William to write up

WSDL 1.0 URL - Hommayun

2.1.6 Notification

<Igor will update this section to support both pull and push models. Additionally he will capture the requirements on the event format and payload.>

2.1.6.1 What?

Notification is a method of conveying information from a source to recipients that expressed interest in that information. In terms of Web services it means delivering an XML message from the source to addressable recipients. An interest in receiving those messages must be established by the recipients, or by third parties on behalf of the recipients. When registering interest, address(es) of recipient(s) must be provided (see Addressing).

2.1.6.2 Why?

Manageable resources need to convey information to the managers. In certain cases, it is unreasonable for the manager to explicitly poll (request) the information, and it has to be sent to the manager by the resource. For example, a manager may be interested when a service receives a new message. The resource representing the service has to notify the manager when it happens (event). The resource needs to know which managers are interested in which information and what are the deliverable addresses of the managers to send the notification message when an event occurs.

2.1.6.3 How?

When considering requirements on the platform with regards to means of notification, it is important to separate capability of simple message exchange for the purposes of notification from the complex event processing (CEP). The former may be achievable with a little effort and the later is a discipline of its own and usually requires a lot of supporting infrastructure that has nothing to do with means of notification, per se. To be concrete simple notification is required to efficiently provide manageability of resources. CEP can be built on top of simple notification and may be considered out of scope for now.

In a very simple case, recipient could poll for the information available at the source. This could be implemented using regular request-response message exchange in which the recipient would send request for information it is interested in and the source would respond with the available information or indicate a fault. In the current context this simple case is not considered to be a notification, but rather an operation. As it is discussed later, polling for available information may need to be standardized too.

To make simple notification possible the following has to happen

1. recipient has to know how to register interest with the source of information

2. source has to know how to deliver information to recipient

3. recipient needs to know that is it being notified and also by which source

Note that the recipient and the source are defined as roles here. Roles do not imply actual implementation approach and merely define a set of responsibilities of the ‘involved parties’. The message exchanges that happen between roles define the protocol. Actual implementations may render roles in any possible way and only need to abide by the protocol. In this case the protocol is the notification – registration of the interest and delivery of information message exchanges.

Assuming that both the source and recipient are implemented with Web services tools and run on Web services platforms, source and recipient want to implement notification (protocol) using Web services. Web services tools/platforms are designed to facilitate easy creation and deployment of a client and a service type of applications. Traditionally, a client is an initiator and a service is the responder in the interactions. To make it possible, a service provides a description of how it expects the interaction to happen and a client finds and understands it. The interesting difference is that both recipient and the source have to be initiators and responders to be able to satisfy the three requirements of the simple notification (protocol). Therefore both the recipient and the source are services and clients at the same time and need to provide descriptions of how the interactions need to happen. Each side can only provide descriptions of interactions it will respond to. The source can provide description of how a recipient needs to register its interest in available information, and the recipient can provide description how a source can deliver information to it. Definitely, both sides need to have an apriori agreement on (and knowledge of) both of the descriptions to allow the bidirectional interaction to happen.

The claim is that if the above three requirements are satisfied by a standard, that is, both recipients' and sources' side descriptions are standardized, it is possible to use existing Web services tools and platforms to implement recipient and source as Web services. Each Web service is actually a client and a service to the other one, but both are aware of each other's abilities as a recipient or a source (role).

Such standard would have to define source's side description (WSDL) with

1. how to register an interest in an identifiable information (e.g. name, QName, URI, etc.)

2. how to convey address of a deliverable recipient (e.g. WS-Addressing, URL, etc.)

3. how to verify registration of the interest

4. how to cancel registration of the interest

5. how a source can notify of the unilateral cancellation of the interest

And the recipient's side description (WSDL) with

7. how to deliver information and identify that it is a notification

8. how to tell what source it came from and possibly what is the context at the source.

Note that in this context ‘information’ is arbitrary, no assumption is made on the purpose or the format of the information itself. Of course, the assumption is that information is representable in XML and its format is described in XML Schema. The standard would allow source to choose a suitable way to identify the information (by a name, use XML Schema element’s QName, etc.). The standard would allow information to be ‘wrapped’ in standard ‘envelope’ (e.g. CBE) to capture some extra situational information. Although, such ‘enveloping’ is not part of the definition of the notification protocol itself.

Using standardized two-side descriptions, a source can embed both of the descriptions (i.e. what the source can provide and what it expects the recipient to support) in one WSDL document using for example BPEL partnerLink specification. In fact this approach is already being widely used for examples of asynchronous messaging in BPEL specified business processes.

The proposition is that such simple notification two-side description specification happens in a standards body and not in WSDM itself. WSDM may specify just the format of the notification information.

To facilitate simple polling for the information available at the source (as an alternate way of ‘receiving’ notifications), the following needs to be standardized. Source’s side description (WSDL) with

1. how to request an identifiable information (e.g. name, QName, URI, etc.)

2. how to respond with an address where to poll for the information (if not the same as the source’s endpoint address)

3. how to respond with the requested information, identify the information and identify which source it came from

4. how to tell that no more information is available for polling
2.1.7 Relationships

2.1.7.1 What?

A relationship is a data structure describing the association between a manageability endpoint and another entity. The data structure includes the type of the association, a reference to the owning manageability endpoint, and a reference to the target entity. Both references will be described using the mechanism described in the section "Addressing". The "owner" of the relationship indicates from which entity's point of view the relationship is defined and is always a manageability endpoint. The target entity may be another manageability endpoint, some other endpoint, or an interface.
2.1.7.2 Why?

Relationships are used by a manageability consumer to help track down the root cause of any failure, to understand how a set of resources are working together to accomplish a task, and to discover other resources that may have manageability endpoints.

2.1.7.3 How?

<TBD>

2.1.8 Security

2.1.8.1 What?

Information/Computer Security. There are many ways to categorize information security, but the most common today is represented by the letters C, I, A: Confidentiality, Integrity, and Authentication. Additional concepts that can be arguably kept separate are: Access Control, Non-repudiation, Availability, and Privacy.

Confidentiality: Preventing unauthorized entities from accessing information or resources.

Integrity: Making sure that when authorized entities access information, it is either not changed or any changes are detectable.

Authentication: Making sure that entities are who/what they claim to be.

Access Control: Making sure that entities can only access services, resources, or information that they are authorized for.

Non-repudiation: Making sure the sender of a message can not deny having sent the message.

Availability: Making sure a service or resource can be accessed by authorized users. While this goes beyond security, security is expected to address denial of service attacks.

Privacy: Making sure that information on entities is used only for the express purposes allowed.

Primarily the issue with Security is that while the requirement for Security within manageability is extremely important, it is not unique to manageability. All the same issues arise with any other Web Services endpoint. Every manageability endpoint and many business endpoints will have requirements for confidentiality, integrity, and authentication, as well as access control, availability, and privacy (see the definition of Security).

Also, there is the issue of location. Security may be implemented in various ways. For example, there could be a security filter/proxy in front of every Web Services endpoint (including the manageability endpoint) that only allows messages through that are valid, authenticated, authorized, and have no integrity problems identified. Or all of those functions could be performed by the endpoint itself.

Thus, the main concern for Security is that the specification allow for external Security infrastructure mechanisms that are compos-able on top of the manageability exposed via Web Services. This will require examining other standards like WS-Security to ensure nothing done in the specification precludes the compos-ability of Security.

Another external effort is to work with standards groups developing interoperable Security infrastructure mechanisms. It is desirable that these mechanisms provide manageability exposed via Web Services.

2.1.8.2 Why?

Resources have to be manageable in a secure way (see definition of security). Security is compos-able on top of the manageability exposed via Web services, similar to securing any other capability of a resource exposed via a Web service. For example, access to a manageability operation can be granted to only clients that present “manager’s identity” in a request message.

Security must be manageable, preferably via Web services. For example, identity or access assertion can be verified by issuing a request to a security Web service.

2.1.8.3 How?

<TBD>

2.1.9 Registration and Discovery

2.1.9.1 What?

Registration is a method of advertising an existence of an element so that it can be discovered. Discovery is a method of locating an existing element so that it can be used or operated. Discovery can be based on selection criteria or simply a name or identity of an element. Location is a method of obtaining an address of an element.

For example, location may mean translating an identity of an element into an address of an existing useable element. In the Web services sense, registration, discovery and location can be represented by a set of operations and schema which may be implemented by a Registry. A Web service can register itself or can be registered by a third party by sending a request to the Registry. A Web service can be discovered by sending a request to the Registry. The Registry can return the description of a Web service with location address included in a description or it may return the location address directly.

2.1.9.2 Why?

1. Manageable resources have to be discoverable by the managers.

2. Manageable resources exposed via Web services can be registered, discovered and located via a Registry.

2.1.9.3 How?

<TBD>

2.1.10 Policy

2.1.10.1 What?

Definition(s):

1. is a course of action, guiding principle, or procedure considered expedient, prudent, or advantageous for a given condition or event.

2. describes a broad range of service requirements, preferences, and capabilities.

3. provides a set of requirements to a manageable resources in a specific context.

There are various policies that can be specified to manageable resources (Webservice functional and manageability endpoints) via MUWS such as: authentication, access control, privacy, non-repudiation, service level agreement, quality of service, routing, content inspection, auditing, etc. policies.

- Authentication Policies:

 The policies describe authentication requirements for the

 manageable resources (Webservice endpoints) and list

 actions that should be taken when an unauthenticated user

 is detected.

 Example:

 1. For Partner A, the request should be accompanied by

 a digital signature. In case a valid digital signature

 with proper service requestor information is not found:

 a. do not process the request

 b. log the incident to Partner A authentication

 failure report

 c. after more than 10 authentication failures from

 Partner A, send an alert to the security

 administration

 2. For internal client, process the request if only if

 the username / password credential is provided and

 authenticated against the company directory. In case

 of unauthenticated user is detected:

 a. do not process the request

 b. log the incident to global internal authentication

 failure report

 c. after 3 consecutive authentication failures, disable

 the user and notify the security administrator

- Access Control Policies:

 The policies describe the authorization requirements for

 manageable resource (Webservice endpoints) and list the

 actions that should be taken when an unauthorized user is

 detected.

 Example: <to be added as soon as we are all in agreement

 with the break down of policy types>

- Privacy Policies:

 The policies specify the visibility and readability of

 different parts of a webservice message in respect to

 the corresponding recipients. The policies also list the

 actions that needs to be taken when the privacy requirements

 are not met.

 Example: <to be added as soon as we are all in agreement

 with the break down of policy types>

- Non-repudiation Policies:

 The policies specify how the validity of the senders can

 be verified and the message has not been altered in transit.

 The policies also list the actions to be taken when the

 non-repudiation requirements are not met.

 Example: <to be added as soon as we are all in agreement

 with the break down of policy types>

- Service Level Agreement Policies:

 The policies specify the commitment made by the service

 providers (which are manageable resources) to the

 service requestors (which can also be manageable resources).

 The policies specify the service level requirements

 defined by a service requestor.

 The policies list actions to be taken against the service

 requestors or service providers when the Service Level

 Agreement is not met.

 Example: <to be added as soon as we are all in agreement

 with the break down of policy types>

- Quality of Service Policies:

 the Policies describe the minimum level the service

 performance, reliability, availability of the manageable

 resources.

 The policies list actions to be taken against the service

 providers when the QoS is not met.

 Example: <to be added as soon as we are all in agreement

 with the break down of policy types>

- Routing Policies:

 The policies specify the final or intermediary destinations

 of a particular webservice message based on a set of

 conditions such as message size, time of the day, specific

 content, arithmetic calculation of items in the message, etc.

 The policies list actions to be taken if a message could

 not be routed as specified.

 Example: <to be added as soon as we are all in agreement

 with the break down of policy types>

- Content Inspection Policies:

 The policies describe the data be found in the webservice

 message. The policy list the actions to be taken when

 a certain data (or type of data) found in the message.

 Example: <to be added as soon as we are all in agreement

 with the break down of policy types>

- Auditing

 The policies specify how to record a set of information for

 a manageable resource or messages that go through the

 manageable resource.

 Example: <to be added as soon as we are all in agreement

 with the break down of policy types>

Policy Enforcement Point:

- A program that enforces various set of policies on (associated)

 various manageable resources.

Policy Decision Point:

- A program or a repository that stores and calculates various

 (overlapping) policies that can be applied to various

 (associated) manageable resources.

2.1.10.2 Why?

MUWS must leverage as much as existing Webservices specifications and technologies in applying policies to the manageable resources. MUWS should endorse a list of such specifications and technologies, and should specify the compatibility and interoperability requirements (i.e. must meet WS-I).

2.1.10.3 How?

<TBD>

2.1.11 Collection

2.1.11.1 What?

A collection is an entity which acts as a proxy to zero or more other entities. A manager can send a single request to a collection where the result is that zero or more members of the collection are acted upon as specified in the request. The members of a collection are managed entities in their own right and have their own management interfaces. The result of a manager sending a single request to a collection must be the same as a manager sending a separate message to each of the selected members of the collection individually. It is not necessary that the collection actually send separate messages to each of its members, only that the result to the members is the same. A collection provides a mechanism to perform the same action on many managed entities at once, and acts as one scalability mechanism in a management system.

2.1.11.2 Why?

As the number of managed resources grows, it becomes more important for a management system to provide a mechanism to allow a manager to perform the same action on many resources at once. For instance, with a collection a manager can query for the state of all resources in the collection at once rather than one at a time. Also, it is possible for a collection to reset the state of metrics for the resources in the collection using a single request. A collection provides the ability for a management system to scale much better than a system not supporting collections. Also, there are cases where the exact membership of a group is better known by an entity, such as a collection, that may be closer to the group than a manager. This allows the manager to defer to the collection to determine the exact entities to act upon.

2.1.11.3 How?

<TBD>

2.1.12 Transaction

2.1.12.1 What?

A “unit of work” that consists of multiple actions against a single resource, the same action applied to multiple resources, or multiple actions against multiple resources. The “unit of work” should be executed once and only once, even if due to transmission failures or other errors, the request may be received multiple times.

2.1.12.2 Why?

Grouping actions against resources and assuring their execution/failure is very valuable. Activities such as IETF’s NetConf discuss “transactions”. The goal is for MUWS to be a superset of the functionality in NetConf – avoiding the need for multiple protocols/solutions in implementations.

Manager may request to perform multiple operations on the manageable resource and integrity of combined request may need to be preserved. Also that transactions are part of regular WSs and implementations of manageability merely makes use of those existing capabilities of WSs.

2.1.12.3 How?

<TBD>

2.1.13 Life Cycle

2.1.13.1 What?

Lifecycle is a set of states that a resource can be in and the valid transitions between those states. A resource goes through a set of states and transitions throughout its life. Lifecycle provides the capability to manage the actual operational state of a resource, operations to influence a change in the state of a resources, and events indicating when a state change has occurred. An application or management tool uses the lifecycle information for a resource to better manage that resource.

For example, valid operations or valid property values of a resource may be determined through introspection of a resource’s state to aid the application or management tool in doing those actions only in the state in which those actions are valid. This is important in autonomic systems where actions taken do not expect exceptions to be thrown.

2.1.13.2 Why?

<TBD>

2.1.13.3 How?

<TBD>

2.1.14 Name Resolution

2.1.14.1 What?

Name resolution service – A service which accepts an identifier (URI) and returns an address/reference? Is it also necessary to accept a reference and return the identifier for it?
2.1.14.2 Why?

It is necessary for management because resources and manageability services have identifiers (from existing instrumentation and technologies) and it will be necessary to be able to get a reference for that resource identifier so that the manager can interact with a resource through its manageability interface.

2.1.14.3 How?

<TBD>

2.2 Future Focus

2.2.1 Flow

2.2.1.1 What?

The capability to describe a sequence of web services interactions, where each interaction is fully or partially determined by the sequence description and the result of previous interactions in that sequence.

2.2.1.2 Why?

<TBD>

2.2.1.3 How?

<TBD>

2.2.2 Negotiation

2.2.2.1 What?

Negotiation is the act or process of arranging for or bringing about through conference, discussion, and compromise. For Web services, negotiation refers to the process of coming to agreement on the advertised aspects of a service (e.g., quality of service).

2.2.2.2 Why?

Negotiation of QoS for a manageability interface seems far off in the distance from the current work of this group.

2.2.2.3 How?

<TBD>

2.2.3 Relationship Service

2.2.3.1 What?

A relationship repository or registry which may be responsible for creating, inventorying, tracking, and validating relationships. This service is not a participant in the relationships. If relationships are rule based, then it would also be responsible for altering relationship members based on the rules. This would include portType operations for querying, adding, finding, and validating relationships. This service would build on the Relationships schema above.

2.2.3.2 Why?

<TBD>

2.2.3.3 How?

<TBD>

2.2.4 Logging

2.2.4.1 What?

Logging is the action in which message producers generate log artifacts, i.e., atomic expressions of diagnostic information, that may or may not be used at a later time by other, independent, message consumers. Secure logging is required for audit trails needed to fulfill judiciary and organizational policy requirements, to reconcile security related inconsistencies, and to provide for forensic evidence both after the fact and real-time.

2.2.4.2 Why?

<TBD>

2.2.4.3 How?

<TBD>

3 References

3.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

3.2 Non-Normative

[WSAR]
A. Austin, A. Barbir, C. Ferris, S. Garg, Web Services Architecture Requirement, http://www.w3.org/TR/wsa-reqs, W3C, November 2002.

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this specification:

· Jane Doe, Example Corp.

· A. Nonymous (chair), Example Corp.

· John Smith, Example Corp.

· Karl Best, OASIS

· John Doe, Other Examples, Inc.

· Eve Maler, Sun Microsystems

· Norman Walsh, Sun Microsystems

In addition, the following people made contributions to this specification:

· Joe Blow, Example Corp.

Appendix B. Revision History

[This appendix is optional, but helpful. It should be removed for specifications that are at OASIS Standard level.]

	Rev
	Date
	By Whom
	What

	wd-00
	2003-11-03
	Andreas Dharmawan
	Transferred aggregated list from email thread into this document.

	Wd-00
	2003-11-10
	Andreas Dharmawan
	Revised Addressing (2.1.5), Name Resolution (2.1.14) sections per Heather’s update.
Revised Versioning (2.1.4) based on the email discussion and attempted to illustrate versioning using targetNamespace.

	Wd-00
	2003-11-12
	Andreas Dharmawan
	Incorporated new what and why for Versioning, Attributes, Relationship based on group discussion 11/11/03.

	
	2003-11-13
	Andreas Dharmawan
	Incorporated new meta data and notification sections based on group discussion 11/11/03

	
	
	
	

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 1
2
wsdm-uplats-200310

May 2003

Copyright © OASIS Open 2002. All Rights Reserved.

Page 12 of 27

_1129745988.bin

