Working Document, Resource State Capabilities.
V0.1 21 January 2004

V 0.2 22 January 2004. Ellen and Karl. Sent to form basis for discussion 22 January. NOT Complete.
Summary of Requirements (from discussions and Minutes)

· Heather noted that WS-Manageability had two models: 1) Resource States and Transitions, and 2) Request Processing States. But 2) belongs to MOWS so will not be discussed today.

· WS-Manageability uses URNs to identify states and sub-states and URNs to identify transitions. Igor noted that we should standardize a pattern for the states and transitions. Knowledge about what they mean may require domain knowledge related to the resource.

· You create the resource state model and publish it. Can change the state, query the current state, subscribe to events about state changes.

· William noted that the pattern needs to identify the hierarchy of states and sub-states, so that when a Consumer requests the current state and only understands the top layer, the response the Provider gives can be understood, even if it has sub-state information in it.

· William provided information about the WSMF approach. It included the full hierarchy of parent and child states and sub-states. It also did not specify Transitions in a machine-readable form. So registering for Events involved specifying the state(s) of interest.

· The following were agreed to:

· Document the patterns to use for States and Transitions.

· Register for Event Notification based on Transitions or groups of Transitions.

· Transitions must end in exactly one State/sub-State.

· Will use Available and NotAvailable as the two top-level States (a decision about a possible third state has not been reached). These will be defined clearly so those who develop a sub-State of “Stopping”, for example, will be able to clearly identify whether it should come under Available or NotAvailable. It was agreed that the resource must be providing some level of service (possibly only to priority customers or such) to be Available or a sub-state of Available.

· Sub-States have a Parent state.

· Transitions are modeled as instantaneous. For real-life situations where a resource may spend significant time in a real-life transition such as powering up, additional states would be needed to reflect this.

· The TC will define a few likely sub-states, such as Congested, Stopping, Starting. Input from DMTF and ISO work in this area will be considered.

· The order of events is likely to be:

· 1. Develop a UML Model for the states. With accompanying text to explain the states.

· 2. Develop a table for Transitions. With accompanying text to explain.

· 3. Document a Markup example.

· 4. Document interfaces and events and data that would go into the events.

Discussion of the Requirements for the model

This will be a multilevel model. There will be a well-defined top-level set of states and possible substates beneath these high level states.
Top Level States

The primary candidates for high level resource states are;

· Available – Providing the defined service. It is assumed that valid service requests would NOT be rejected in this state.
· Not Available(NA) – Not providing service, whatever the reason.

· Available(Degraded) – This is being considered as a possible third state. The advantage is that it allows the requestor to understand that there may be further query required to understand the full state. This state implies that the resource is providing a service but that the requestor should ask more to determine if there are any limitations to this service. In this state, valid service requests may be rejected by the service.
A resource or service goes through a set of states throughout its life. For example, a queue is in the NA state when it is created, in the Available state when it can receive and process requests, and in the failed state if it stops unexpectedly and is no longer responding. Lifecycle is a set of states that a resource can be in and the valid transitions between those states. So far we have only addressed describing the valid states (and at the top level), and not the transitions and the operations that effect those transitions.
Any information other than simply availability of the service will be handled through the concept of substates. Any of the above states may have substates that provide additional information.

All state transitions are instantaneous. The availability/NA state transitions do not take into account issues such as time to start, time to stop. The state information simply transitions from available to NA.

This must be defined through a deterministic state transition definition.
It appears that a normalized set of substates should be defined to provide the most common.

Issues such as the transition time can be handled through the use of substates of these states. Thus, for example, the issues of start time, stop time, are handled as possible substates of NA since, in effect, the system is really not available.

COMMENT: This is different than is currently modeled in other models such as CRM where issues such as start and stop time, failed status vs. stopped, etc. are part of the top level state model.
DISCUSSION: This top level model is admirably suited to understanding the ability of the service to provide its service. It however, does not provide much help for the management tool that has to execute operations to cause changes in transition or to understand what transitions are possible. In effect, the 2 or 3 states in this state enumeration allow all possible transitions between the three states. We can define a transition diagram that represents a simple set of changes as follows:

Substates

The discussions to date have not clearly defined it but it appears that there is a need for a standard set of substates to cover the common cases. Generally the key substates that might appear logical are defined below;
Substates of Not Available;

· Stopped – In this state the resource has been created but not started. It cannot do useful work
· Failed – – In this state the resource is not available except for managing first-failure artifacts that are useful for problem determination. This state is typically entered after the resource crashes. The resource must be transitioned to a Down state before it can be started again.
· Running – This is the equivalent of the available state. Or, in effect, it is the transition to this substate that sets available in the top level state definition.
· Starting - This is a transient state that indicates that the resource is in the process of starting up. The next state is either the Running or Failed state.
· Stopping – This is a transient state that indicates that the resource is in the process of stopping. During this state it is unlikely that new work will be accepted (i.e., the top level state should be set to Not Available when the stopping state is entered. The next state is either the Down or Failed state.

COMMENT: This is inconsistent because it is not just a submodel but at this point a complete model including running. Need to reconcile the submodel with the top level state model.
Substates of NotAvailable.Down

· Stopped

· Maintenance

Substates of the available/degraded state include:

· Blocked (Congested) – resource running and processing service but not accepting new services requests.

· Degraded - resource runs but not optimally. It may not deliver 100% of expected service, e.g. performance bottleneck, or it may be consuming excess system resources, it may be starved for resources, it may be saturated with work, it may recognize that failure is imminent, or it may be running maintenance with limited availability

Mapping the lower level states to the top level states: TBD
Operations and the State model
The objective of using state rather than simply status as a tool for managing services is that the state concepts not only provide information on the lifecycle status of an object but allow controlling the change of status due to inputs both internal and external. It is these inputs combined with the states that drive the transitions.
Proposed external Inputs (Operations)

· Start

· Stop

· TBD.

States and Status

TBD
The State Model

Not Done yet
Open Issues

1. Is there any need for an unknown state? Is there any condition where we need to report something at the top level other than available/NA?
2. How do we allow for extensibility? We propose a fixed set of states at this point at the high level and a defined set at the substate level. We need to determine which of these are really part of the specification and which are simply patterns of usage and how the user can extend, either adding new states or new substate models
3. How do we define the concept of processing current operations but not accepting new ones?

