[image: image1.png]31915

Web Services Distributed Management: Management Using Web Services (MUWS 0.5)

Working Draft 07, 2 March 2004
Document identifier:

wd-wsdm-muws-0.5-20040302
Location:

http://www.oasis-open.org/XXXXXXXXXXXX/ (TODO: correct URL)

Editors:

Andrea Dharmawan, Westbridge Technology <andreas@westbridgetech.com>
William Vambenepe, Hewlett-Packard <william_vambenepe@hp.com>
Abstract:

There are two parts of Web Services Distributed Management: Management Using Web Services and Management of Web Services. This specification defines the former.

Management Using Web Services defines how an Information Technology resource connected to a network provides the manageability interfaces such that it can be managed remotely using Web Services technologies.

Status:

This document is a draft approved by the WSDM TC. It is not intended to become an OASIS standard. There is no guarantee that any part of its content will appear in the final release specification, WSDM MUWS 1.0.
Committee members should send comments on this specification to the wsdm@lists.oasis-open.org list. Others should subscribe to and send comments to the wsdm-comment@lists.oasis-open.org list. To subscribe, send an email message to wsdm-comment-request@lists.oasis-open.org with the word “subscribe” as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the WSDM TC web page (http://www.oasis-open.org/committees/wsdm/).

Since this specification is not yet final, there is no errata available. (TODO: add a link to the errata page before final release)

TODO: turn all URNs into URLs when spec name has been decided (I highlited those I saw)
TODO: change name of the specification throughout the document when name has been decided
Table of Contents

51
Introduction

1.1
Terminology
6
2
Architecture
7
2.1
Context
7
2.2
Composability
8
2.3
Conceptual Model
9
2.4
Logical Model
10
2.5
Role Definitions
11
2.5.1
Consumer of Manageability
12
2.5.2
Provider of Manageability
12
2.5.3
Manageable Resource
12
2.6
Processing Model
12
2.6.1
Prerequisites
12
2.6.2
Discovery
13
2.6.3
Interaction
13
3
Support from Web Services Platform
15
4
Manageability Capabilities
16
4.1
Identity
16
4.1.1
Definition
16
4.1.2
Data Types
17
4.1.3
Properties
17
4.2
State
18
4.2.1
Definition of State Model
18
4.2.2
Description of State Model
19
4.2.3
Data Types
20
4.2.4
Properties
21
4.2.5
Operations
21
4.3
Metrics
22
4.3.1
Definition
22
4.3.2
Data Types
23
4.3.3
Properties
24
4.3.4
Operations
25
5
Discovery and Introspection
26
6
Defining a Manageability Interface
27
7
References
28
7.1
Normative
28
7.2
Non-normative
28
Appendix A. Acknowledgments
29
Appendix B. Revision History
31
Appendix C. Notices
36
Appendix D. Web Services Platform
37
Initial Focus
37
Properties
37
Meta Data
37
Addressing
37
Notification
37
Versioning
37
Security
37
Registration and Discovery
37
Future Focus
37
Policy
37
Name Resolution
37
Transaction
37
Flow
37
Negotiation
37
Appendix E. Representation of MUWS
37
Appendix F. Schemas
38
Appendix G. WSDL elements
40

1 Introduction

Management Using Web Services enables management of distributed IT resources using Web Services. Examples of manageability functions that can be performed via MUWS are quality of service monitoring, service level agreement enforcement, task control, etc.

MUWS is designed with the following in mind; it will be used over public or private network (internet or intranet), there is no central point of control or failure, a manager can manage multiple resources, a resource can be managed by multiple managers, it can tolerate time difference, and it should support hierarchical manager, as well as cross enterprise boundaries and collaboration.

At the high level, the MUWS architecture is composed of the IT resource, the manageability provider, the manageability consumer, the manageability interface description, and the manageability interface discovery mechanism.

Whenever possible, MUWS leverages existing Web Services specifications to ensure interoperability, adoptability, and extensibility.

There is a minimum set of manageability capabilities that the provider of manageability must support in order to participate in MUWS. This minimum set of manageability capabilities is defined in this specification.

This specification discusses the methods and mechanisms provided by MUWS to discover the manageability interfaces of the manageable IT resource.

Finally, the manageability interface itself is defined.

To understand the various topics discussed in this specification, the following assumptions are made:

· The reader is familiar with the Web Services Architecture and its usage scenario.

· The reader is familiar with XML, and XML Schema

· The reader is familiar with WSDL, SOAP, UDDI, WS-I

· The reader is familiar with WS-ResourceProperties, WS-ResourceLifetime, WS-Addressing

(TODO: Add normative and non-normative paragraph)

1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT","SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
1.2 Notational conventions

This specification makes use of XSD schema as well as the “pseudo-schema” notation (TODO: copy/paste description of “pseudo schema” from another spec, such as BPEL).

When defining operations, this specification uses pseudo-schema to describe the input and (if appropriate) output messages. A full WSDL description of all operations is available in appendix.
2 Architecture

2.1 Context

This section provides a context for the WSDM MUWS Architecture. The MUWS Architecture makes use of the Web Services Architecture.

Since the Web services architecture defines how to specify information, operations, and notifications through WSDL interfaces, access through bindings, and locateability through endpoints, it is consistent to use the Web services architecture to describe as well as provide access to and discoverability of the manageable components of the Web services architecture itself. In fact, the paradigm can be extended to provide the basis for providing the access and discoverability of any manageable resource in the IT infrastructure.

TODO: short description of the WSA

If a Web Service can expose the functionality of an exposed resource through a web service functional interface, then, a webservice can expose the manageabiity of the exposed resource.
This is true even if Web Services are not used to provide access to the functionality of the resource.

[image: image2.png]Manageability
Endpoint
Description

Manageability
Interface
Description

Figure 2.1-1, MUWS on IT Resource

The above diagram illustrates two possible methods a manageable Web Service may use to fulfill management requests on an exposed resource.

With the first method, a manageability service interacts directly with an exposed resource through a supported management interface. For example, the manageability service may interact with an exposed resource supporting Java’s JMX facility, or, interact with an exposed resource supporting a proprietary C API.

With the second method, the manageability service interacts indirectly with an exposed resource through a management agent acting as an intermediary. This management agent interacts either directly or indirectly with the exposed resource.
This second method enables existing management instrumentation of a resource to be exported through web services to a management consumer.
Whether the manageability service uses the direct method or the indirect method, the management consumer is provided a consistent view of the management instrumentation of the exposed resource. The WSDM management consumer remains unaware of any legacy management agent, facillity or API utilized by the manageability service.

Using web services to describe and provide access to a manageability interface for an exposed resource creates a consistent, cross platform, cross vendor, and potentially cross enterprise interaction model for consumers and producers of management information.

Creating a web services to access manageability information of an exposed resource does not preclude alternate means to access this information. For example, a management consumer is able to use any and all of WSDM, SNMP or CIM/WBEM to access manageability information for an exposed resource supporting these facilities.

2.2 Composability

A resource (e.g. disk) could be exposed as a Web service, such as; its read/write/seek function could be exposed as a service. WSDM specification allows the resource and its service to be manageable in a standard and interoperable manner by defining manageability capabilities and interfaces of a resource and a service (a kind of resource too). Manageability capabilities and interfaces could be composed into the service that offers functions of the resource. For example, a Web service that is to offer manageable disk resource would implement its functional interfaces and also interfaces that allow disk management and management of the service that offers the disk functions.
Managers could easily discover such composition by inspecting the service description. Managers could take advantage of the composition of manageability by, for example, querying free disk space using disk manageability capability and along with that reading sectors from the disk service.
Composability makes it easy for Managers to deal with resources exposed as Web services and also makes it easy for implementers of the resource services to offer proper set of manageability capabilities.

The following diagram illustrates the composability feature described above.

[image: image3.png]Disk Web Service Interface

Cuom, | read

uncional | m wite N
m seek

Disk Managoabilty Intorfaco

 bingOniine

»_bingOffine

Web Service Manageat

Sewice |m requestsCounter
» shutdown

®_requesiProcessingState

Resaurce

Interface

Manageable
Disk Web Service:
Implementation

Disk Resource

Figure 2.2-1 Composability
2.3 Conceptual Model

This Management Using Web Services specification defines how manageability of an arbitrary IT resource can be accessed via Web services. Thus, manageability is one possible quality of a resource. ‘’Manageability” is composed of a number of capabilities. Each capability has its own distinct semantics. Therefore, a manageable resource composes a set of manageability capabilities. Figure 2.3-1, relates the concepts necessary for management using Web services.

According to the concepts in the WSDL specification, a Web service is an aggregate of endpoints each offering the service at an address and accessible according to a binding. A service has a number of interfaces that are realized by all of its endpoints. Each interface describes a set of named messages that could be exchanged and their format. Properly formatted messages could be sent to an endpoint’s address in a way prescribed by the binding. A description (document, artifact) is composed of definitions of interfaces and services. A description may contain both or either of the definitions.

In accordance with the Web Services concepts expressed above, access to the manageability for a resource must be provided by an endpoint. We call such an endpoint a manageability endpoint. Implicitly, a manageability endpoint belongs to a manageability service, which has a number of manageability interfaces that are realized by manageability endpoints. Thus, a single manageability interface represents all or part of a manageability capability. Similarly, a single manageability capability may be represented in one or more interfaces. The semantics of a particular includes the description of a set of possible message exchanges which is rendered in message formats grouped into one or more interfaces.

For example, ability to offer metrics could be captured in a ‘Metrics’ UML model which is, therefore, an instance of the manageability capability concept. The semantics of offering metrics could be rendered from the UML model into a WSDL interface description defined in a “urn:wsdm:common:manageability:metrics
” namespace. That would be an instance of the manageability interface concept.

This specification defines the base set of manageability capabilities that could be composed into a manageable resource or combined into aggregate capabilities. For example, a TotallyManagableResource uber-capability could be defined that includes all of the base manageability capabilities defined in this specification. Such aggregate capability could also be composed into a manageable resource, and in that sense, an aggregate capability is conceptually the same as any other capability. However, this specification does not currently attempt to define (identify) the aggregate capabilities and focuses on the definition of the base set.

[image: image4.png]i ok '
= [omdpaint & somie Trertace_J&——{ Gescripton |
Y
© - provdes soossto
B s
[anageable rosourca] [amageabity andpomt <. @{manageabity srca]. . >{anageabity mtariace]
B i realzes | | 1.t
s 1
o
opresens
s manaceaiy coai] o oo meraeaiy et manageany s
umL ‘WSDL

model rendition

Figure 2.3-1, MUWS Concepts

2.4 Logical Model

A Manageability Provider may provide the manageability quality for many resources. In other words a Manageability Provider may enable many resources become manageable resources, instances of which belong to one instance of the Provider. To accomplish this, a Manageability Provider maintains manageability endpoints which provide access to the manageable resources. According to the concepts definition, a manageable resource is a resource with a number of manageability capabilities composed into it. In order to compose capabilities into the manageable resource, a Manageability Provider supports the manageability capabilities that are are offered by the manageability endpoints. For example, a Manageability Provider could embed a piece of code to support the manageability capabilities into a resource thus making a resource manageable. A Provider may also support the capabilities by deploying resources in a container that could add manageability quality to all its resources.
The manageability consumers manage manageable resources. To ‘manage’ in this context means to exert control and to obtain and interpret the information. In order to manage the manageable resource, consumers access manageability endpoints and exercise offered manageability capabilities. To ‘exercise’ in this context means to make use of the distinct semantics defined by a given manageability capability. Essentially, consumers exercise understanding of the semantics defined by a capability, but exercise it on the actual manageable resource. Technically, it translates into being able to use a distinct group of properties, operations, events and metadata by exchanging messages with the manageability endpoint.
[image: image5.png]supports.
>{manageabilty capabilty <

offers '+

1+ provides adeessto oG
ranages .
ranageabi rsoure ranageabity ot
enables N maintains. N e

[manageabilty provider

1

[manageability consumer|

b e

Figure 2.4-1, MUWS Logical Model

2.4.1 Role Definitions

This section documents the roles that the major components of the MUWS Architecture, as well as related components, will have during Management Using Web Services. It is not intended to constrain the locus of implementation, but instead is intended to document the required components and how they interact.

NOTE: One application implementation may have many roles or a full role may be implemented by a combination of many different applications.

The major roles are the Manageability Consumer, the Manageability Provider, and the Manageability Resource. These roles are represented by the shaded boxes in the MUWS Logical Model (Figure 2.4.-1).

2.4.1.1 Manageability Consumer
The Manageability Consumer does the following:

· Consumes manageability information.

· Manages the resource (monitor, configure, etc).

· Understands the manageability capabilities of the resource.

2.4.1.2 Manageability Provider
The Manageability Provider does the following:

· Provides the Manageability quality for a manageable resource, enabling a resource to become a manageable resource.

· Provides information for Consumer (according to the manageability capabilities of the resource).

NOTE: The Provider may be implemented in the manageable resource or it may not. The Provider may supply Manageability for more than one manageable resource. In other words, this is not intended to constrain the locus of implementation.

2.4.1.3 Manageable Resource

The Manageable Resource is an IT resource that can be managed by a WSDM based infrastructure. Because there are no restrictions on the locus of implementation, the manageable resource may or may not implement the role of Provider of the Manageability Service.

2.5 Processing Model

The compliant implementations of the roles defined in the logical model act according to the following basic processing rules.

2.5.1 Prerequisites

1. A manageability consumer and a manageability provider have to understand the information model in which the semantics of a manageability capability are described. For example, it could be a UML model that expresses a group of properties, operations, events and metadata. The meaning of what the model defines has to be equally understood by both parties. Base capabilities defined in MUWS as well as those defined in domain-specific specifications that build on top of MUWS are the means to achieve such understanding.
2. A manageability consumer and a manageability provider both have to equally understand how to establish which manageability interface corresponds to which manageability capability and vice versa. Specification of WSDM manageability capabilities clearly indicates that.
3. A manageability consumer has to be able to obtain the description of the manageability service, its endpoints and necessary manageability interfaces. The manageability provider (or another party on behalf of the provider) makes such description available to the consumer.
4. A manageability provider has to be able to obtain the description of the manageability interfaces for the capabilities it wants to support. MUWS includes in-line descriptions (usually as appendices) of XML Schemas and WSDL elements for all of the manageability capabilities. It also indicates URL locations of such XML schema documents and WSDL documents hosted on the OASIS Web site.
2.5.2 Discovery

1. A manageability consumer discovers necessary manageable resources by discovering manageable endpoints, reading their descriptions and exchanging messages as required. MUWS indicates which manageability capabilities can be used to discover other Web services endpoints and/or other manageability endpoints. To discover manageable endpoints in the first place, the consumer uses same techniques as if discovering any other Web service endpoints. For example, it may be provided a URL to a WSDL document that describes a manageability service.

2. A manageability provider advertises/registers/publishes available manageability endpoints just like any other Web service endpoints.

3. A manageability consumer establishes which capabilities are supported by the manageable resource either from the description of the manageability service or by exchanging messages with the manageability endpoint. For example, a consumer may introspect a WSDL document looking for manageability operations it is interested in. MUWS and the specifications that build on top of it clearly indicate which message Qnames correspond to which operations and which capabilities they participate in.
2.5.3 Interaction

1. A manageability consumer exerts control over and obtains information about the manageable resource by exchanging messages with one or more manageability endpoints that provide access to the manageable resource. Message exchanges must match that format and sequence which is prescribed by the binding description of the endpoint. This is not any different than exchanging messages with any other Web service endpoint.
The following UML diagram captures main principles of the processing model described above. In this context, to interact means to exchange messages.

[image: image6.png]control o g
[manageability consumer | > {manageable resource || manageabilty provider]
information enatles
rovidesaccessto * |

inge
3¢
or

Q

Figure 2.6-1, MUWS Basic Processing Model

3 Support from Web Services Platform

Management Using Web Services is a foundation for management of all IT resource domains. It accomplishes that by using Web services features and standards to provide a flexible, scalable, distributed, and collaborative management framework. The features of this framework are provided in Appendix "Web Service Platforms."
MUWS leverage the Web Services Resources Framework (TODO: add reference), in which the MUWS manageable resources are represented by Web services as “resources” (in the WSRF sense of the term). This implies that references to manageability endpoints in MUWS use the mechanism defined by WSRF, leveraging endpoint references (EPR) as defined by WS-Addressing.

Furthermore, management properties defined in MUWS are represented as “properties” (in the WSRF sense of the term), using the mechanisms defined in WS-ResourceProperties (TODO: add reference). This means that each manageable resource exposes a resource properties document and makes it available as specified in WS-ResourceProperties.
For security, MUWS relies on generic Web services security mechanisms, including transport-level security and WS-Security as standardized by OASIS. MUWS 1.0 will include a more detailed “security considerations” section.
Events are not supported in MUWS 0.5 but will be supported in MUWS 1.0. To do so, MUWS 1.0 will leverage a generic Web services eventing mechanism.
4 Manageability Capabilities

In this section the following namespaces will be used unless specified otherwise. The table below describes what prefix corresponds to which namespace URI.

	Prefix
	Namespace

	muws
	urn:wsdm:muws

	wsdl
	http://www.w3.org/2002/07/wsdl

	soap
	http://schemas.xmlsoap.org/wsdl/soap/

	xs
	http://www.w3.org/2001/XMLSchema

	xsd
	http://www.w3.org/2001/XMLSchema-datatypes

XML elements and schema types introduced below belong to the muws namespace.

	UML Nomenclature

When UML is used to represent the manageability capability:

· Events are expressed as UML properties with an <<event>> stereotype. Name of the property is the name of the event. Text describes why and when an event occurs and the specific information that is generated (captured) when it occurs. The information type of an event is captured in a UML class which contains proper information element definitions..

· Property and Event are indicated by multiplicity of the corresponding model elements: [1] indicates that an element is mandatory, [0..1] indicates that an element is optional. For array properties, [0..*] indicates optional and [1..*] indicates mandatory.

· The metadata about various model elements is captured as UML constrains. This document uses the following common constraints in the models.

· ro – means read only, applicable to properties,

· rw – means read/write, applicable to properties.

· const – means constant, does not change during runtime, applicable to properties.

4.1 Identity

4.1.1 Definition

The goal of identity is to establish whether two entities are the same. This is a required capability and it MUST therefore be provided by manageability services (this doesn’t preclude the manageability service to have a security policy preventing some requester to access this capability).

In addition, this interface is used as a “marker” interface to allow a consumer to know that the service that implements it is a manageability service. See “discovery” section for more information.

The following figure shows the UML representation of MUWS Identity.

[image: image7.png]| WSDM: manageability capability

[WSDM-common manageabilty capal

MUWS:identity
FesourGeIaT] - xstanyURI o}
lpame[0.1] - xscsiring frw)
fersionf0. 1] - xsd:sting (rw)

Figure 4.1.1-1 MUWS Identity

4.1.2 Data Types

This specification does not define any data type to represent identity.

4.1.3 Properties

Following is the specification of the resource identity properties (elements).

<ResourceId>xsd:anyURI</ResourceId>

<Name>xsd:string</Name>

<Version>xsd:string</Version>

ResourceId is an opaque identifier of the resource managed through the manageability endpoint.

Name is a string containing a descriptive name for the resource being managed. The name is intended for human consumption.

Version is a string representing the version of the resource being managed. MUWS doesn’t specify how this string is constructed. This can be specified by domain-specific specifications that use MUWS

A manageability endpoint MUST create the resourceId URI in a way that ensures that the resourceId is unique to the resource as managed through the manageability endpoint. Furthermore, a given resourceId MUST NOT be reused by any manageability endpoint for another resource even after the resource it was attached to has stopped existing. In the general case it is not possible to guarantee that different manageability endpoints attached to the same resource will return the same resourceId. Nevertheless, there are cases when this might be possible, such as when the resourceId can be retrieved from the resource by the manageability endpoint or when an application of MUWS to a given domain specifies a method to build the resourceId based on characteristics of the resources in that domain. In such cases, a manageability provider SHOULD use the resourceId that is suggested by the characteristics of the resource to identify the resource. Furthermore, a manageability provider that exposes several manageability endpoints for the same resource SHOULD use the same resourceId for all the manageability endpoints.

A Manageability endpoint might go down at times, and it cannot always be expected to persist the resourceId across power cycles of the manageability endpoint. Nevertheless, when possible a manageability endpoint SHOULD return the same resourceId during the entire lifetime of the manageability endpoint, including across power cycles of the manageability endpoint.

Since there is no guarantee that the same resourceId is provided across all manageability endpoints for a given resource and at all points in time, a manageability consumer MUST NOT assume that two manageability endpoints represent two different resources solely because the resourceId is different. On the other hand, if the resourceIds are equal then the consumer can assume that the two manageability endpoints represent the same resource.
Since the resourceId is defined as opaque, this specification does not allow the consumer to infer any characteristic of the resource by examining the resourceId, other than comparing the resourceId to another resourceId as one way to establish oneness. For example, one possible way to construct the resourceId and ensure its uniqueness is to use a UUID wrapped in a URI.

Note that this specification does not define equivalence of URIs and the consumer should decide which level of the comparison ladder defined in section 6 of [RFC2396bis] is appropriate to use for this comparison.

The following paragraph is a description of a mechanism intended to be introduced in MUWS 1.0, called “correlatable names”. The mechanism is not available in MUWS 0.5.
The correlatable names mechanism is one of possible mechanisms to solve the case where the resourceId mechanism cannot provide certainty about the oneness of two resources but not necessarily the only such mechanism. The correlate management capability can be used by the resource manager to discern whether the two different resouceIds, produced at different times by the same manageability provider for the one endpoint, represents the same endpoint. The basic idea is to provide a list of properties that, if all equal between two manageability endpoints, guarantee that the resources behind the manageability endpoints are one. In the case where resourceId match but the correlatable name doesn’t (this case is not allowed but can’t be guaranteed that it will never happen), the resource is considered to be the same because the resourceId has the precedence over the correlatable name.

4.2 State

4.2.1 Definition of State Model

Figure 4.2.1-1 the resource state model without any sub-states.

[image: image8.png]/ Quiesce

/Unguiesce

Slart

Figure 4.2.1-1 Resource State Model
The following figure shows the UML representation of MUWS State.

[image: image9.png][WSDM: common manageabilty capabily|

MUWS:State

umeniResourceState[1] - Sieinformation (o}

=}
™

Figure 4.2.1-2 MUWS State
4.2.2 Description of State Model

The following are the identifiers of the valid top-level resource states.

Urn:wsdm:resource:available

This corresponds to the Available state in the UML diagram. In this state, the resource is able to perform all functional tasks it is designed to perform.
Urn:wsdm:resource:degraded

This corresponds to the Degraded state in the UML diagram. In this state, the resource is able to perform some but not all functional tasks it is designed to perform.
Urn:wsdm:resource:unavailable

This corresponds to the Unavailable state in the UML diagram. In this state, the resource is not able to perform any of the functional tasks it is designed to perform.
The following are the identifiers of the valid transitions between the top-level resource states.

Urn:wsdm:resource:start

This corresponds to the Start transition in the UML diagram.

Urn:wsdm:resource:stop1

This corresponds to the Stop transition from Available state in the UML diagram.

Urn:wsdm:resource:stop2

This corresponds to the Stop transition from Degraded state in the UML diagram.

Urn:wsdm:resource:quiesce

This corresponds to the Quiesce transition in the UML diagram.

Urn:wsdm:resource:unquiesce

This corresponds to the Unquiesce transition in the UML diagram.

4.2.3 Data Types

Following is the schema fragment that declares the (reusable) data types used to manage the resource state.

<xs:complexType name="StateInformation">

<xs:sequence>

<xs:element name="State" type="xs:anyURI"/>

<xs:element name="TimeEntered" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

(StateInformation) type contains information about a resource state.

(StateInformation)/State is an identifier of a resource state.

(StateInformation)/TimeEntered is time at which the resource entered the identified state.

4.2.4 Properties

Following is the specification of the resource state properties (elements).

<CurrentResourceState>StateInformation</CurrentResourceState>

CurrentResourceState contains information about the current state of the resource (current at the moment of retrieving this property).

4.2.5 Operations

Following are the definitions of the messages that can be exchanged to perform operations on the resource state.

4.2.5.1 Start

Request:

<Start/>

Reply:

<StartOK/>

Upon receiving a request for a Start operation, manageability provider attempts to execute the Start transition according to the UML diagram. If the transition completes, this operation completes successfully. If the resource is already in the Available state, this operation completes successfully.

4.2.5.2 Stop

Request:

<Stop/>

Reply:

<StopOK/>

Upon receiving a request for a Stop operation, manageability provider attempts to execute either of the Stop transitions according to the UML diagram and according to the current resource state (Available or Degraded). If the proper transition completes, this operation completes successfully. If the resource is already in the Unavailable state, this operation completes successfully.

4.3 Metrics

4.3.1 Definition

Metrics are a specific type of object property. Metrics represent collected values and have a related collection period.
The goal of this section is to describe the characteristics of a typical object property used to represent collected numerical, called Metrics. A common characteristic of metrics is that they change overtime and can be reset.
As a simple example, consider a toll bridge and two properties; the length of the bridge and the number of cars that have passed over the bridge. The length of the bridge, while numeric, is not a metric; it represents the current configuration of the bridge. You can not reset the length of the bridge. By contrast, the number of cars that have passed over the bridge is a metric. It requires collection (counting) the number of cars, which is typically done over some duration, such as the last hour, the last day or even since the bridge was constructed. You can reset the number of cars, for example at the start of a new interval.

When accessing metrics, the time represented by the metric is typically required. In the example, above would be useful to know that a number of 500 represented the number of cars that have passed over the bridge in the last 3 minutes. Similarly, if data is posted periodically, there are cases when it is useful to know the last time the data was updated. For this reason, the standard data type for Metrics allows for both reset time and updated time attributes. However, both are optional.
When looking at a value, it is important to have a notion of how changes to that metric are to be interpreted. That notion is defined as a change type. Metrics have two (2) change types:
· Counter, increments with usage

· Gauge, moves between a range of values

Metrics can be reset, either periodically, such as 'once a day', or on demand. The meaning of resetting a metric varies with each metric and should be clarified, if needed, in the description of a metric. Often, resetting a metric means setting its value to zero, but this is not mandatory. (Note that this specification provides no specific means for the scheduling of reset operations.)
The following diagram presents the Metrics capability in context. The Metrics capability requires that a currentTime metric be present, providing a reference point for the time-based attributes defined for the metric data types (§4.3.2). (Note that currentTime is a read-only metric and, consequently, the resetAll() operation has no effect.)
[image: image10.png]AN

WUWS::Matrics
[FurentTme[T] xsd-daiaTime (]
feseTy

Figure 4.3.1-1 MUWS Metrics
4.3.2 Data Types

Following is the schema fragment that declares the (reusable) data types used to manage the resource metrics.

<xs:attributeGroup name="MetricAttributes">

<xs:attribute name="ResetAt" type="xs:dateTime"/>

<xs:attribute name="LastUpdated" type="xs:dateTime"/>

<xs:attribute name="ChangeType">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Counter"/>

<xs:enumeration value="Gauge"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="TimeScope">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Interval"/>

<xs:enumeration value="PointInTime"/>

<xs:enumeration value="StartupInterval"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:attributeGroup>

(MetricAttributes) attribute group has to be included in every metric type or metric property element declaration.

(MetricAttributes)/ResetAt indicates time when a particular metric has been reset. UTC or Z-coded.
(MetricAttributes)/LastUpdated indicates time when a particular metric value was last updated.

(MetricAttributes)/ChangeType indicates a type of change pattern supported by a particular metric.

· Counter declares an incrementally increasing metric value.

· Gauge declares a metric value that can increase and decrease.

(MetricAttributes)/TimeScope indicates a time interval which is used to calculate a particular metric.

· Interval declares that a metric value is calculated within a certain time interval. Usually the interval would be defined by the metric property specification. For example, a RequestsPerSecond is an interval metric.

· PointInTime declares that a metric value is calculated for the moment of retrieving a metric property. For example, CurrentTemperature is a point-in-time metric.

· StartupInterval declares that a metric value is calculated since ResetAt time mark.

The following three types are defined for metrics that are integers, durations or times. Specifications that use MUWS to create manageability properties applicable to specific domains are free to use these types or to create new metric types by including the MetricAttributes attribute group in their types.
<xs:complexType name="IntegerMetric">

<xs:simpleContent>

<xs:extension base="xs:integer">

<xs:attributeGroup ref="muws:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

(IntegerMetric) type declares an xsd:integer metric.

<xs:complexType name="DurationMetric">

<xs:simpleContent>

<xs:extension base="xs:duration">

<xs:attributeGroup ref="muws:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

(DurationMetric) type declares an xsd:duration metric.

<xs:complexType name="TimeMetric">

 <xs:simpleContent>

 <xs:extension base="xsd:dateTime">

 <xs:attributeGroup ref="MetricAttributes"/>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

(TimeMetric) type declares an xsd:time metric.

4.3.3 Properties

Following is the specification of the resource metrics properties (elements).

<CurrentTime>muws:TimeMetric</CurrentTime>

CurrentTime contains information about the current time
at the manageability provider (current at the moment of retrieving this property). This property is meant to help manageability consumers interpret times received from the manageability endpoint in the absence of a time synchronization mechanism.

4.3.4 Operations

Following are the definitions of the messages that can be exchanged to perform operations on the resource metrics.

4.3.4.1 ResetAll

Request:

<ResetAll/>

Reply:

<ResetAllOK/>

Upon receiving a request for a ResetAll operation, manageability provider resets values of all metrics that it is collecting. Metrics may be grouped into logical groups that can be reset individually through some other mechanisms. However, this action indicates that all metrics be reset. A manageability consumer MUST NOT assume that different metrics are reset at the same time, even if they are provided by the same manageability endpoint.
5 Discovery and Introspection

Many forms of discovery are supported by Web Services. This specification does not normatively prescribe specific ways of discovering manageability services. It is expected that the discovery methods commonly used for Web services will be used for manageability Web services.

The only normative requirement in this specification that applies to discovery is the need for a manageability service to provide the identity capability, through the corresponding WSDL interface defined by this specification. As a result, when a consumer discovers a WSDL description for a Web service (through any discovery mean), it is able to determine whether or not the service acts as a manageability service by checking whether the service implements the identity interface defined by MUWS.

6 Defining a Manageability Interface

The following are normative statements for MUWS representation.

· WSDL 1.1 must be used.

· Document/literal binding must be used.

· WSDM defines portTypes which have to be manually put together into a custom portType operation by operation according to the WSDL specification.

· WSDM defines property elements which have to be manually put together into a custom properties document according to WS-ResourceProperties specification

7 References

7.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XML Schema Part 1]

Henry S. Thompson, et al. XML Schema Part 1: Structures, W3C Recommendation, May 2001, http://www.w3.org/TR/xmlschema-1/

[XML Schema Part 2]

Paul V. Biron, et al. XML Schema Part 2: Datatypes, W3C Recommendation, May 2001, http://www.w3.org/TR/xmlschema-2/

[XML1.0 3rd Edition]

Tim Bray, et al., Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, February 2004, http://www.w3.org/TR/REC-xml

[SOAP1.2]
Martin Gudgin, et al., Simple Object Access Protocol (SOAP) 1.2, World Wide Web Consortium Note, June 2003, http://www.w3.org/TR/soap12
[WSDL1.1]
Erik Christensen, et al., Web Services Description Language (WSDL) 1.1, W3C Note, March 2001, http://www.w3.org/TR/wsdl

[WS-ResourceProperties]

Steve Graham, et al., Web Service Resource Properties, January 2004, http://devresource.hp.com/drc/specifications/wsrf/WS-ResourceProperties.pdf

[WS-Addressing]
Don Box, et al., Web Services Addressing, March 2003, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-addressing.asp

7.2 Non-normative

[RFC2396bis]
T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifier (URI): Generic Syntax, http://www.apache.org/~fielding/uri/rev-2002/rfc2396bis.html, IETF RFC 2396bis, September 2003.

Appendix A. Acknowledgments

The following people made contributions to this specification:

· Winston Bumpus

<winston_bumpus@dell.com>

· Brian Carol

<brian.carroll@merant.com>
· Fred Carter

<fred.carter@amberpoint.com>

· John DeCarlo

<jdecarlo@mitre.org>

· Andreas Dharmawan
<andreas@westbridgetech.com>

· Mark Ellison

<ellison@ieee.org>

· Heather Kreger

<kreger@us.ibm.com>

· Hal Lockhart

<hlockhar@bea.com>

· Bryan Murray

<bryan.murray@hp.com>

· Richard Nikula

<Richard_Nikula@bmc.com>

· Micheal Perks

<mperks@us.ibm.com>
· Homayoun Pourheidari
<homayoun@hp.com>

· Karl Schopmeyer

<k.schopmeyer@attglobal.net>

· Igor Sedukhin

<Igor.Sedukhin@ca.com>

· Ellen Stokes

<stokese@us.ibm.com>

· William Vambenepe
<vbp@hp.com>

· Andrea Westerinen
<andreaw@cisco.com>

The following individuals were voting members of the committee during the development of this specification:

· Guru Bhat

<Guru.Bhat@oracle.com>

· Jeff Bohren

<jbohren@opennetwork.com>

· Winston Bumpus

<winston_bumpus@dell.com>

· Fred Carter

<fred.carter@amberpoint.com>

· John DeCarlo

<jdecarlo@mitre.org>

· Andreas Dharmawan
<andreas@westbridgetech.com>

· Mark Ellison

<ellison@ieee.org>

· Daniel Foody

<dan@actional.com>

· Heather Kreger

<kreger@us.ibm.com>

· Paul Lipton

<paul.lipton@ca.com>

· Hal Lockhart

<hlockhar@bea.com>

· Rajiv Maheshwari

<rajiv.k.maheshwari@oracle.com>

· Richard Nikula

<Richard_Nikula@bmc.com>

· Michael Perks

<mperks@us.ibm.com>

· Homayoun Pourheidari
<homayoun@hp.com>

· Karl Schopmeyer

<k.schopmeyer@attglobal.net>

· Igor Sedukhin

<Igor.Sedukhin@ca.com>

· Davanum Srinivas

<Davanum.Srinivas@ca.com>

· Ellen Stokes

<stokese@us.ibm.com>

· Thomas Studwell

<studwell@us.ibm.com>

· Ryoichi Ueda

<ueda@sdl.hitachi.co.jp>

· William Vambenepe
<vbp@hp.com>

· Andrea Westerinen

<andreaw@cisco.com>

Appendix B. Revision History

	Rev
	Date
	By Whom
	What

	wd-01
	2003-10-25
	William Vambenepe
	Initial version

	
	2004-02-01
	Andreas Dharmawan
	Added UML Identity diagram, merged notes on the use of correlatable names to resolve oneness, incorporated conceptual and logical models, and roles of Webservice Architecture to this doc.

	Wd-wsdm-muws-0.5-20040216

	2004-02-16
	Andreas Dharmawan
	· Added Abstract and Introduction

· Incorporated composability note from Igor’s email under architecture section

· Incorporated Metrics draft from F2F, and State draft from F2F

· Modify Identity section format to conform with the rest of capabilities

	wd-wsdm-muws-0.5-20040218

	2004-02-18
	Andreas Dharmawan
	· Updated MUWS Role Diagram Thanks Bryan M.

· Incorporated Igor’s feedback on composability section, empty subsections, properties format in identity section.

· Updated MUWS Logical Diagram. Thanks Igor.

· Added Processing Model section. Thanks Igor

	wd-wsdm-muws-0.5-20040219
	2004-02-19
	William Vambenepe
	· Added “marker” capability of “identity” interface

· Clarified “required” nature of identity interface.

· Added simple discovery mechanism.

· Reassigned U-Plat section TODO to Homayoun and Heather.

	wd-wsdm-muws-0.5-20040222
	2004-02-22
	Andreas Dharmawan
	· Added MUWS Identity back. It was left out during last editing.

· Minor tweak to the property section of Identity. Put the XML representation together.

· Added entries to reference section (not complete yet).

· Updated the MUWS logical model diagram and the accompanying paragraph (line 200-208). Thanks Igor.

· Removed MUWS Roles diagram since redundant. Refer to the logical diagram in roles discussion.

· Updated MUWS basic processing model diagram.

	wd-wsdm-muws-0.5-20040224
	2004-02-24
	Andreas Dharmawan
	· Incorporated description for Architecture Context section. Thanks Heather.

· Added Representation of MUWS Appendix. Thanks Igor.

· Copied UML explanatory text in the MUWS document from MOWS document.

· Incorporated Richard N. feedback on Metrics section.

· Filled in Acknowledgements Appendix.

	wd-wsdm-muws-0.5-20040226
	2004-02-26
	Andreas Dharmawan
	· Incorporated MUWS Platform section and appendix. Thanks Homayoun and Heather

· Incorporated feedback from fred carter on metrics

· Added WSDL and Schema for MUWS. Thanks Igor.

	wd-wsdm-muws-0.5-20040227
	2004-02-27
	William Vambenepe
	· Updated status of the doc
· Removed MOWS-related content from architecture section
· Added notational conventions section
· Removed “Platform” appendix and provided short summary of the parts that are relevant for MUWS 0.5 implementers
· Many minor editorial corrections

	wd-wsdm-muws-0.5-20040301
	2004-03-01
	Andreas Dharmawan
	· Incorporated feedback from John DeCarlo,Richard Nikula, Igor, Mark Ellison
· Replaced MUWS Context diagram with printer friendly diagram.
· Replaced UML diagram with non-visio object to minimize size.
· Removed WS-ResourceLifetime from normative section
· Fixed date of WS-ResourceProperty

	wd-wsdm-muws-0.5-20040302
	2004-03-02
	Andreas Dharmawan
	· Fixed oversized document issue (bug in 2003 when tracking is on)
· Reduced diagram sizes

· Fixed all schemas in data types section based on schema in the appendix

· Added UML for State and Metrics
· On going minor editorial tweaks

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix A.

7.3

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

7.3.6

7.3.7

7.4

7.4.1

7.4.2

7.4.3

[image: image11.png]Transaction

Action Request (incl Rollback)

[Aggregates

0.1

Request Confirmation
Message

1
Addresse

Through

[

Manageab

ity Endpoint

Provides|Access To

¥

Manageable Resource

7.4.4

7.4.5

Appendix A.

·
·
·
·
Appendix D. Schemas

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:muws="urn:wsdm:muws"

targetNamespace="urn:wsdm:muws"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="ResourceID" type="xs:anyURI"/>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Version" type="xs:string"/>

<xs:complexType name="StateInformation">

<xs:sequence>

<xs:element name="State" type="xs:anyURI"/>

<xs:element name="TimeEntered" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:element name="CurrentResourceState" type="muws:StateInformation"/>

<xs:attributeGroup name="MetricAttributes">

<xs:attribute name="ResetAt" type="xs:dateTime"/>

<xs:attribute name="LastUpdated" type="xs:dateTime"/>

<xs:attribute name="ChangeType">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Counter"/>

<xs:enumeration value="Gauge"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="TimeScope">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Interval"/>

<xs:enumeration value="PointInTime"/>

<xs:enumeration value="StartupInterval"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:attributeGroup>

<xs:complexType name="IntegerMetric">

<xs:simpleContent>

<xs:extension base="xs:integer">

<xs:attributeGroup ref="muws:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="DurationMetric">

<xs:simpleContent>

<xs:extension base="xs:duration">

<xs:attributeGroup ref="muws:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:element name="CurrentTime" type="xs:dateTime"/>

<xs:complexType name="ResourceIdentityPropertiesType">

<xs:sequence>

<xs:element ref="muws:ResourceID"/>

<xs:element ref="muws:Name"/>

<xs:element ref="muws:Version"/>

<xs:any minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceIdentityProperties"

type="muws:ResourceIdentityPropertiesType"/>

<xs:complexType name="ResourceStatePropertiesType">

<xs:sequence>

<xs:element ref="muws:CurrentResourceState"/>

<xs:any minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceStateProperties"

type="muws:ResourceStatePropertiesType"/>

<xs:complexType name="ResourceMetricsPropertiesType">

<xs:sequence>

<xs:element ref="muws:CurrentTime"/>

<xs:any minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceMetricsProperties"

type="muws:ResourceMetricsPropertiesType"/>

<xs:element name="Start"><xs:complexType/></xs:element>

<xs:element name="StartOK"><xs:complexType/></xs:element>

<xs:element name="Stop"><xs:complexType/></xs:element>

<xs:element name="StopOK"><xs:complexType/></xs:element>

<xs:element name="ResetAll"><xs:complexType/></xs:element>

<xs:element name="ResetAllOK"><xs:complexType/></xs:element>

</xs:schema>
Appendix E. WSDL elements

<?xml version="1.0" encoding="utf-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsrp="http://www.ibm.com/xmlns/stdwip/web-services/WS-ResourceProperties"

xmlns:muws="urn:wsdm:muws"

targetNamespace="urn:wsdm:muws">

 <types>

 <xs:schema elementFormDefault="qualified"

targetNamespace="urn:wsdm:muws:types"

 xmlns:muws="urn:wsdm:muws">

<xs:import namespace="urn:wsdm:muws" schemaLocation="MUWS.xsd"/>

 </xs:schema>

 </types>

 <message name="StartRequest">

<part name="body" element="muws:Start"/>

 </message>

 <message name="StartResponse">

<part name="body" element="muws:StartOK"/>

 </message>

 <message name="StopRequest">

<part name="body" element="muws:Stop"/>

 </message>

 <message name="StopResponse">

<part name="body" element="muws:StopOK"/>

 </message>

 <message name="ResetAllRequest">

<part name="body" element="muws:ResetAll"/>

 </message>

 <message name="ResetAllResponse">

<part name="body" element="muws:ResetAllOK"/>

 </message>

 <portType name="Identity"

wsrp:ResourceProperties="muws:IdentityProperties"/>

 <portType name="ResourceState"

wsrp:ResourceProperties="muws:ResourceStateProperties">

 <operation name="Start">

 <input name="StartRequest" message="muws:StartRequest"/>

 <output name="StartResponse" message="muws:StartResponse"/>

 </operation>

 <operation name="Stop">

 <input name="StopRequest" message="muws:StopRequest"/>

 <output name="StopResponse" message="muws:StopResponse"/>

 </operation>

 </portType>

 <portType name="Metrics"

wsrp:ResourceProperties="muws:MetricsProperties">

 <operation name="ResetAll">

 <input name="ResetAllRequest" message="muws:ResetAllRequest"/>

 <output name="ResetAllResponse" message="muws:ResetAllResponse"/>

 </operation>

 </portType>

</definitions>

WSDM

Interact

�Show more clearly that you are accessing the same resource whether you go straight to it or through an agent

�Do we use URNs or URLs?

�Reformat in a set of rules?

�(fred) I think currentTime’s datatype should be TimeMetric. I don’t have the visio thing to fix.

��TODO: make attributes optional

�Should we define the effect, if any, of the resetAll() operation? Always ignored, causes a time sync, etc.?

�Is there a general statement to be made about the effect here on {ro} metrics?

wd-wsdm-muws-05

Created on 3/2/2004 1:16 PM
Copyright © OASIS Open 2003. All Rights Reserved.

Page 23 of 41

_1139738091.bin

