[image: image1.png]31915

Web Services Distributed Management: Management Using Web Services (MUWS 0.5)

Committee Draft, 1 April 2004

Document identifier:

cd-wsdm-muws-0.5-20040401
Location:

http://docs.oasis-open.org/wsdm/2004/04/muws-0.5
Editors:

Andreas Dharmawan, Westbridge Technology <andreas@westbridgetech.com>
William Vambenepe, Hewlett-Packard <william_vambenepe@hp.com>
Abstract:

There are two parts of Web services Distributed Management: Management Using Web services and Management of Web services. This specification defines the former.

Management Using Web services defines how an Information Technology resource connected to a network provides the manageability interfaces such that it can be managed remotely using Web services technologies.

Status:

This document is a committee draft approved by the WSDM TC. It is not intended to become an OASIS standard. There is no guarantee that any part of its content will appear in the final release specification, MUWS 1.0.

Committee members should send comments on this specification to the wsdm@lists.oasis-open.org list. Others should subscribe to and send comments to the wsdm-comment@lists.oasis-open.org list. To subscribe, send an email message to wsdm-comment-request@lists.oasis-open.org with the word “subscribe” as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the WSDM TC web page (http://www.oasis-open.org/committees/wsdm/).

The errata document for this specification is at:
http://docs.oasis-open.org/wsdm/2004/04/muws-0.5-errata
Table of Contents

41
Introduction

41.1
Terminology

41.2
Notational conventions

62
Architecture

62.1
Context

72.2
Conceptual Model

82.3
Logical Model

92.3.1
Role Definitions

102.4
Composability

112.5
Processing Model

112.5.1
Prerequisites

112.5.2
Discovery

112.5.3
Interaction

133
Support from Web Services Platform

144
Manageability Capabilities

154.1
Identity

154.1.1
Definition

164.1.2
Data Types

164.1.3
Properties

174.2
State

174.2.1
Definition

184.2.2
Description of State Model

194.2.3
Data Types

194.2.4
Properties

204.2.5
Operations

214.3
Metrics

214.3.1
Definition

224.3.2
Data Types

234.3.3
Properties

234.3.4
Operations

255
Discovery and Introspection

266
Defining a Manageability Interface

277
References

277.1
Normative

287.2
Non-normative

29Appendix A.
Acknowledgements

31Appendix B.
Notices

32Appendix C.
Schemas (Normative)

34Appendix D.
WSDL elements (Normative)

36Appendix E.
Web Services Platform

36Initial Focus

36Properties

36Meta Data

37Addressing

37Notification

37Versioning

38Security

38Registration and Discovery

38Future Focus

38Policy

39Name Resolution

39Transaction

39Flow

40Negotiation

1 Introduction

Management Using Web Services (MUWS) enables management of distributed IT resources using Web services. Many distributed IT resources use different management interfaces. By leveraging Web service technology, MUWS enables easier and more efficient IT management systems by providing a flexible common framework for manageability interfaces that benefits from the features of Web services protocols. Universal management interoperability across the many different varieties of distributed IT resources can be achieved using MUWS.
The types of management capabilities exposed by MUWS are the management capabilities generally expected in distributed IT management systems. Examples of manageability functions that can be performed via MUWS include:

· monitoring quality of services
· enforcing service level agreements
· controlling tasks
· managing resource life-cycles
MUWS is designed to meet the requirements defined in the MUWS Requirements document [MUWS REQS]. Whenever possible, MUWS leverages existing Web services specifications to ensure interoperability, adoptability, and extensibility.

There is a minimum set of manageability capabilities the manageability provider must support in order to participate in MUWS. This minimum set of manageability capabilities is defined in this specification.

Additionally, the methods and mechanisms provided by MUWS for discovering the manageability interfaces of manageable IT resource is discussed in this specification.
Finally, the manageability interface itself is defined in this specification.

To understand the various topics discussed in this specification, the reader should be familiar with the IT management concepts. In addition, the following assumptions are made:

· The reader is familiar with the Web Services Architecture [WSA]
· The reader is familiar with XML [XML1.0 3rd Edition] , XML Schema [XML Schema Part 1] [XML Schema Part 2], and XML Namespace [XNS]
· The reader is familiar with WSDL [WSDL1.1], SOAP [SOAP1.1] , UDDI [UDDI]
· The reader is familiar with WS-ResourceProperties [WS-ResourceProperties], WS-Addressing [WS-Addressing]
Section 3, 4, 5, 6 and appendices C (schemas) and D (WSDL elements) are normative specifications with the following exception: UML illustrations found in section 4 are non-normative. The rest of the document is a non-normative, explanatory material intended to ease the understanding.
1.1 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT","SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

1.2 Notational conventions

This specification uses an informal syntax to describe the XML grammar of the messages making up the management interfaces. This syntax uses the following rules:
· The syntax appears as an XML instance, but data types appear instead of values.

· {any} is a placeholder for elements from some other namespace (like ##other in the XML Schema).
· The Cardinality of an attribute, element, or {any}, is indicated by appending characters to the item as follows:
? none,or one
* none, or more
+ one, or more
No character exactly one
· Items contained within the square brackets, [and], are treated as a group.
· Items separated by | and grouped within parentheses, (and), indicate syntactic alternatives.

· Three consecutive periods, ... are used in XML start elements to indicate that attributes from some other namespace are allowed.

· The XML namespace prefixes,defined below, indicate the namespace of the Item.
When defining operations, this specification uses pseudo-schema to describe the input and,if appropriate, output messages. A full WSDL description of all operations is available in the appendix of this specification.

2 Architecture

2.1 Context

This section provides a context for the MUWS Architecture. The MUWS Architecture makes use of the Web Services Architecture (WSA).

WSA provides a common definition of a Web service, as well as a conceptual model and context for understanding Web services and the relationships between Web service components. WSA describes the characteristics common to all Web services and describes some characteristics needed by many, but not all, Web services. Additionally, . By identifying the global elements of the global Web services network that are required to ensure interoperation among Web services, WSA provides an architecture of interoperability for MUWS

Since WSA defines how to specify information and operations through WSDL interfaces, access through bindings, and discovery through endpoints it is consistent to use WSA to describe, as well as provide access to, and discoverability of, the manageable components of the WSA itself. In fact, this paradigm can be extended by providing access to, and discoverability of, any manageable resource in the IT infrastructure.

The management interface of a resource can be exposed through a Web service interface in the same way as the functional interface. This is true even if Web services are not used to provide access to the functionality of the resource.

Figure 2.1-1 illustrates two possible methods a manageable Web service may use to fulfill management requests on an exposed resource.

[image: image2.png]Manageability
Endpoint
Description

Manageability
Interface
Description

Figure 2.1-1, MUWS on IT Resource

With the first method, a manageability service interacts directly with an exposed resource through a supported management interface. For example, the manageability service may interact with an exposed resource supporting Java’s JMX facility, or interact with an exposed resource supporting a proprietary C API.

With the second method, the manageability service interacts indirectly with an exposed resource through a management agent acting as an intermediary. This management agent interacts either directly or indirectly with the exposed resource.

This second method enables existing management instrumentation of a resource to be exported through Web services to a management consumer.

Whether the manageability service uses the direct method or the indirect method, the management consumer is provided a consistent view of the management instrumentation of the exposed resource. The management consumer remains unaware of any legacy management agent, facillity or API utilized by the manageability service.

Using Web services to describe and provide access to a manageability interface for an exposed resource creates a consistent, cross platform, cross vendor, and potentially cross enterprise interaction model for consumers and producers of management information.

Creating a Web services to access manageability information of an exposed resource does not preclude alternate means to access this information. For example, a management consumer is able to use any and all of WSDM MUWS, SNMP or CIM/WBEM to access manageability information for an exposed resource.

2.2 Conceptual Model

This MUWS specification defines how manageability of an arbitrary IT resource can be accessed via Web services. Manageability is one possible quality of a resource. Manageability is composed of a number of capabilities. Each capability has its own distinct semantics. Therefore, a manageable resource composes a set of manageability capabilities. Figure 2.3-1 relates the concepts necessary for MUWS.

According to the concepts in the WSDL specification, a Web service is an aggregate of endpoints. Each endpoint offers the Web service at an address that is accessible according to a binding. A Web service has some number of interfaces that are realized by its endpoints.
Each interface describes a set of named messages, and their formats, that can be exchanged. Properly formatted messages can be sent to the address of an endpoint in a way prescribed by the binding. A description, either as a document, or an artifact, is composed with definitions of interfaces and services. A description may contain definitions of interfaces, or definitions of services, or definitions of both.
In accordance with the Web services concepts expressed above, access to the manageability for a resource must be provided by an endpoint. We call such an endpoint a manageability endpoint. Implicitly, a manageability endpoint belongs to a manageability service, which has a number of manageability interfaces that are realized by manageability endpoints.
Thus, a single manageability interface represents all or part of a manageability capability. Similarly, a single manageability capability may be represented by one or more interfaces. The semantics of a particular interface includes the description of the set of possible message exchanges. The exchanges are rendered as message formats grouped into one or more interfaces.

For example, the ability to offer metrics could be captured in a “Metrics” UML model which is an instance of the manageability capability concept. The semantics of offering metrics could be rendered from the UML model into a WSDL interface description defined within the “http://www.docs.oasis-open.org/wsdm/2004/04/manageability/metrics” namespace. Such a rendering would be an instance of the manageability interface concept.

This specification defines the base set of manageability capabilities that can be composed into a manageable resource or combined into aggregate capabilities. For example, a TotallyManagableResource uber-capability could be defined that includes all of the base manageability capabilities defined in this specification. Such an aggregate manageability capability could also be composed into a manageable resource, and in that sense, an aggregate manageability capability is conceptually the same as any other capability. However, this specification does not currently attempt to define or identify aggregate capabilities. Rather, this specification focuses on the definition of the base set manageability capabilities.

[image: image3.png]1

Figure 2.3-1, MUWS Concepts

2.3 Logical Model

A manageability provider may provide manageability capabilities for many resources. In other words a manageability provider may expose many resources as manageable resources.

To accomplish this, a manageability provider maintains manageability endpoints. A manageability endpoint provides a means to access one or more manageable resources. According to our conceptual definition, a manageable resource is a resource composed with any number of manageability capabilities. In order to compose capabilities into the manageable resource, a manageability provider supports the manageability capabilities offered by its manageability endpoints.
For example, a manageability provider could embed code into a resource supporting the manageability capabilities of the resource, thus making the resource manageable. A manageability provider could also support manageability capabilities by deploying resources within a container that supports manageability capabilities for all its resources.
The manageability consumer manages manageable resources. To manage in this context means to exert control and to obtain and interpret information about the manageable resource. In order to manage the manageable resource, the consumer accesses manageability endpoints and exercises the manageability capabilities offered by the endpoint.
To exercise in this context means to use the distinct semantics of a manageability capability. Essentially, the consumer exercises an understanding of the semantics defined by a manageability capability, but exercises this understanding on an actual manageable resource. In a technical sense, to exercise offered manageability capabilities translates into using a distinct group of properties, operations, events and metadata by exchanging messages with the manageability endpoint.

For example, consider a server with several disk drives. The manageability provider could be a software process running on the server. This manageability provider could allow each disk drive to become a manageable resource by providing a manageability endpoint for each disk drive. The implementation of these endpoints by the provider could use OS calls to access the disk drives. This pattern could be used to provide manageability capabilities exposed through manageability endpoints, such as retrieving the amount of disk space available in each disk drive.
An IT management console, acting as a manageability consumer, could then exercise this manageability property by connecting to the manageability endpoints provided by the manageability provider. Using this example, the management console could retrieve the amount of disk space available on each disk drive.
[image: image4.png]supports.
>{manageabilty capabilty <

offers '+

1+ provides adeessto oG
ranages .
ranageabi rsoure ranageabity ot
enables N maintains. N e

[manageabilty provider

1

[manageability consumer|

b e

Figure 2.4-1, MUWS Logical Model

2.3.1 Role Definitions

This section defines the roles and interactions of the major components of MUWS, and related components, within the MUWS Architecture. This section is not intended to constrain the locus of implementation., Rather, this section documents the required components, their roles, and how they interact.

NOTE: One implementation may be a single component with many roles while another implementaion may be composed of several components, each with an assigned role.

The major roles are the manageability consumer, the manageability provider, and the manageability resource. These roles are represented by the shaded boxes in the MUWS Logical Model (Figure 2.4.-1).

2.3.1.1 Manageability Consumer

The manageability consumer:

· Consumes management information about the resource
· Manages, monitors, configures the resource
· Understands the manageability capabilities of the resource
2.3.1.2 Manageability Provider

The manageability provider:

· Provides the manageability quality for a resource, enabling a resource to become a manageable resource
· Provides management information for consumers according to the manageability capabilities of the resource

NOTE: The manageability provider may be implemented in the manageable resource or it may not. The manageability provider may provide the manageability quality for more than one resource. Thus, the role of manageability provider is not intended to constrain the locus of implementation.

2.3.1.3 Manageable Resource

The Manageable Resource is an IT resource that is manageable via a MUWS based infrastructure. Because there are no restrictions on the locus of implementation, the manageable resource may, or may not, implement the role of manageability provider for the manageability service.

An example of a disk drive as a manageable resource was described in section 2.4.
A manageable resource does not have to be fine-grained. To illustrate this point, a complete server could be a manageable resource. The manageability provider offering the manageability endpoint for the server can run either on the server, or on some other machine. At an even higher level of granularity, a server farm could be exposed as a single manageable resource. To illustrate this point, an IT management software package could act as a manageability provider offering manageability endpoints for the server farm, and exposing manageability capabilities. Examples of manageability capabilities might be retrieving the aggregate available disk space for all servers on the farm, or, bringing up or down all servers on the farm. Such a manageability provider for the server farm could be implemented using a set of proprietary interfaces for the servers on the farm., Alternatively, if the servers are manageable resources, such a manageability provider could act as a manageability consumer by accessing and aggregating the manageability capabilities of the servers on the farm.

2.4 Composability

MUWS allows the resource and its service to be manageable in a standard and interoperable manner. This is achieved by defining the manageability capabilities and interfaces of a resource. A resource may support both manageability capabilities and functional capabilities. In this case, the resource may allow manageability consumers access to appropriate functional capabilities along with the manageability capabilities. Managers could discover such composition by inspecting the service description.
 Managers could take advantage of the composition of manageability with functional capabilities by querying for free disk space using a disk manageability capability and then reading disk sectors using a disk functional capability. Composability makes it easy for implementers of a resource service to offer an appropriate subset of functional capabilities along with its manageability capabilities.
2.5 Processing Model

Compliant implementations of the roles as defined in section 2.3, the logical model, act according to the following basic processing rules.

2.5.1 Prerequisites

A manageability consumer and a manageability provider MUST understand the information model within which semantics of a manageability capability are described. For example, a UML model could express a group of properties, operations, events and metadata. The meaning of what the model defines must be equally understood by both parties, provider and consumer. The base capabilities defined in MUWS, as well as the capabilities defined in domain-specific specifications built on top of MUWS, are the means to achieving such an understanding.
A manageability consumer and a manageability provider both MUST understand how to identify which manageability interface corresponds to with a manageability capability, and vice versa. The base capabilities described in MUWS are the means to achieving such and understanding.
A manageability consumer MUST be able to obtain the description of the manageability service, its endpoints and necessary manageability interfaces. The manageability provider,or another party on behalf of the provider, makes such descriptions available to the consumer.
A manageability provider MUST be able to obtain the description of the manageability interfaces for the capabilities it wants to support. MUWS includes in-line descriptions,usually as appendices, of XML Schemas and WSDL elements for manageability capabilities. MUWS also indicates URL locations of such XML schema documents and WSDL documents hosted on the OASIS Web site.
2.5.2 Discovery

A manageability consumer discovers the necessary manageable resources by discovering the manageable endpoints, reading their descriptions and exchanging messages as required. MUWS indicates which manageability capabilities can be used to discover other Web services endpoints or other manageability endpoints.
To discover manageable endpoints, the consumer uses the same discovery techniques as used for any Web service endpoints. For example, the consumer may be provided with a URL referencing a WSDL document describing the manageability service.

A manageability provider advertises, registers, and publishes available manageability endpoints just like any other Web service endpoints.

A manageability consumer establishes which capabilities are supported by the manageable resource either from the description of the manageability service or by exchanging messages with the manageability endpoint. For example, a consumer may inspect a WSDL document looking for manageability operations it is interested in. MUWS and the specifications that build on top of it clearly indicate which message Qnames correspond to which operations and which capabilities they participate in.
2.5.3 Interaction

A manageability consumer exerts control over, and obtains information about, the manageable resource by exchanging messages with one or more manageability endpoints providing access to the manageable resource. Message exchanges must match the format and sequence as prescribed by the binding description of the endpoint. This interaction is no different than exchanging messages with functional Web service endpoints.

Figure 2.5.3-1 captures the main principles of the processing model as described above. In this context, to interact means to exchange messages.

[image: image5.png]control o g
[manageability consumer | > {manageable resource || manageabilty provider]
information enatles
rovidesaccessto * |

inge
3¢
or

Q

Figure 2.5.3-1, MUWS Basic Processing Model

3 Support from Web Services Platform

Management Using Web Services (MUWS) is a foundation for management of all IT resource domains. It accomplishes this goal by using Web services features and standards to provide a flexible, scalable, distributed, and collaborative management framework. An overview of the features of this framework is provided in Appendix E, Web Services Platform. Appendix E also provides details about these Web service features. and motivating factors for using Web services features in MUWS, and provides a non-normative analysis of what standards or capabilities should be leveraged to support these features.
MUWS leverages the Web Services Resources Framework ([WSRF]), in which, the MUWS manageable resources are represented by Web services as “resources”, in the WSRF sense of the term. This implies that references to manageability endpoints in MUWS use the mechanism defined by WSRF, leveraging endpoint references (EPR) as defined by WS-Addressing.

If the manageability endpoint corresponds to a variable number (zero or more) of manageable resources, then the WSRF Implied Resource Pattern MUST be followed. This means that the element(s) listed in the ReferenceProperties of a WS-Resource qualified EPR must be included in the header of messages sent to such manageability endpoints. This specification does not currently define how to obtain the EPR. There may be an out-of-band agreement between provider and consumer on how to obtain EPRs or future versions of this specification would clarify this subject.

In the specific case where a manageability endpoint corresponds to one and only one manageable resource, then, either the WSRF Implied Resource Pattern,as above, or the singleton WS-Resource implied pattern MUST be used. If the singleton WS-Resource implied pattern is used, this means that the manageability endpoint does not expect to receive the elements listed, indicating which resource is being managed, in the ReferenceProperties section of WS-Resource qualified EPRs in the message headers.. A manageability consumer who does not have an EPR for a manageability endpoint MAY try to invoke manageability operations without including reference properties information. If such an invocation succeeds, the manageability consumer knows it is talking about a manageable resource through a manageability provider.

Further, management properties defined in MUWS are represented as “properties”,in the WSRF sense of the term, using the mechanisms defined in WS-ResourceProperties ([WS-ResourceProperties]). This means that each manageable resource exposes a resource properties document and makes this document available as specified in WS‑ResourceProperties.

Supporting WS-ResourceProperties means that any implementation of an interface that includes properties MUST include access methods to these properties as defined by WS‑ResourceProperties. Specifically, the interface MUST include the GetResourceProperty operation defined by WS-ResourceProperties and MAY include the GetMultipleProperties, SetResourceProperties and QueryResourceProperties operations. If the QueryResourceProperties operation is provided, it SHOULD support the XPath 1.0 query expression dialect, represented by URI http://www.w3.org/TR/1999/REC-xpath-19991116.
For security, MUWS relies on generic Web services security mechanisms, including transport‑level security and WSS SOAP Message Security as standardized by OASIS. MUWS 1.0 will include a more detailed “security considerations” section and will include corresponding operations.

Events are not supported in MUWS 0.5 but will be supported in MUWS 1.0. To do so, MUWS 1.0 will leverage a Web services eventing mechanism.
4 Manageability Capabilities

There is a minimum set of manageability capabilities that the manageability provider must support in order to implement the MUWS specification.
Manageability capabilities define resource specific properties, operations and events. Details of these manageability capabilities are exposed by the manageable resource.

A manageable resource MAY also define new resource-specific manageability capabilities.

A manageable resource SHOULD extend a MUWS manageability capability when defining a resource-specific manageability capability that uses similar semantics. A manageable resource is not required to extend a MUWS manageability capability when defining a resource-specific manageability capability that uses conflicting semantics.

Each capability is formally expressed in a UML diagram using the following approach. Figure 4-1 expresses that a ManageableXSampleCapabilityY is a concept X manageability capability, which is also a manageability capability in a general, conceptual, sense. The name of the capability identifies the distinct semantics that the capability bears. Semantics are then expressed as properties, operations, events and metadata contained in the capability model representation (UML class).

[image: image6.png]| WSDM:manageability capability |
s
[WSD: concopt X manageabity capabilty

o ‘SamplePropertyTypel
TTngATaD_] s siing
WanageabioXSampleCapabityY [oname 1 sd:GName
mpEWlsabeProperyl0] SampePropery Typet (]
mﬂ!ﬁbﬁdon‘wwpﬂ\[zﬂ]] xsdint (m% i
CamplsOplonalPropery(0. 1] s datsTime T
oventy sampleEvent(1) : SampleEventinformationTypet MMTM:M yP
SampleOpsralon(n XPaih - XPat) s booean T

Figure 4-1 Manageability Capability UML Sample

Properties and operations are expressed as regular UML properties and operations. The meaning of properties and operations is expressed in the text. Properties are defined with, and operations act upon, the information types that are captured by UML classes. SamplePropertyType1 is an example of such an information type. Simple information types may also be used directly when defining properties and operations. For example, xsd:int is an example of a simple information type that belongs to XML Schema Data Types UML package.
As a simplification, this document uses a convention that all simple information types having a name which name with xsd: belong to that package. XML Schema simple information types, or data types, are defined by the W3C specification at http://www.w3.org/TR/xmlschema-2/.

Events are expressed as UML properties with an <<event>> strereotype. The name of the property is the name of the event. The text describes why and when an event occurs and the specific information that is generated or captured when the event occurs. The information type of an event is captured in a UML class which contains proper information element definitions. SampleEventInformationType1 is an example of an event information type.

Optionality of properties and events is indicated by multiplicity of the corresponding model elements: [1] indicates that an element is mandatory, [0..1] indicates that an element is optional. For array properties, [0..*] indicates optional and [1..*] indicates mandatory.

The metadata about various model elements is captured as UML constrains. For example, sampleReadOnlyProperty has an {ro} constraint. This document uses the following common constraints in the models.

· ro – means read only, applicable to properties,

· rw – means read/write, applicable to properties.

· const – means constant, does not change during runtime, applicable to properties.

In this section the following namespaces will be used unless specified otherwise. Table 4-1 describes what prefix corresponds to which namespace URI.

	Prefix
	Namespace

	muws-xs
	http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema

	muws-wsdl
	http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/wsdl

	wsdl
	http://www.w3.org/2002/07/wsdl

	soap
	http://schemas.xmlsoap.org/wsdl/soap/

	xs
	http://www.w3.org/2001/XMLSchema

Table 4-1 Manageability Capability Namespaces

XML elements and schema types introduced in this section belong to the muws-xs namespace.

WSDL elements introduced in this section belong to the muws-wsdl namespace.
4.1 Identity

4.1.1 Definition

The goal of Identity is to establish whether two entities are the same. This is a required capability and it MUST be provided by every manageability service. Observe that this requirement does not preclude the manageability service using a security policy that prevents some requester from accessing a capability).

In addition, this interface is used as a “marker” interface to allow a consumer to know that the service that implements it is a manageability service. See section 2.5.2, Discovery, for additional information.

Figure 4.1.1-1 shows the UML representation of MUWS Identity.

[image: image7.png]| WSDM:manageability capability

[WSDM-common manageabilty capal

MUWS:identity
TrceIa[T] - xs aryUR (9]

[Namefo. 1) s:sting rv)

fersion(0. 1] xs:sting ()

Figure 4.1.1-1 MUWS Identity

4.1.2 Data Types

This specification does not define any data type to represent Identity.

4.1.3 Properties

Following is the specification of the resource Identity properties (elements).

<ResourceId>xsd:anyURI</ResourceId>

<Name>xsd:string</Name>?
<Version>xsd:string</Version>?
Following is an example excerpt from a resource properties instance document that contains these properties.

<ResourceId>http://example.com/resource/diskDrive/9F34AD35B</ResourceId>

<Name>The disk drive in Bob’s laptop</Name>

<Version>1.0</Version>

ResourceId is an opaque identifier of the resource managed through the manageability endpoint. It is a read-only mandatory property that has a cardinality of 1.
The following constraints are applicable to ResourceId:

· Globally unique: A manageability endpoint MUST create the ResourceId URI in a way that ensures that the ResourceId is unique to the resource managed through the manageability endpoint and globally unique.. This specification does not prescribe the means by which global uniqueness is achieved.
· Uniqueness in time: A ResourceId MUST NOT be reused by any manageability endpoint for another resource, even after the original resource no longer exists.
· Consistency across endpoints: A manageability provider SHOULD use the ResourceId that is suggested by the characteristics of the resource to identify the resource. This is possible when the ResourceId can be retrieved from the resource by the manageability endpoint or when an application of MUWS to a given domain specifies a method to build the ResourceId based on characteristics of the resources within the domain. It is not guaranteed that different manageability endpoints attached to the same resource will, in all cases. return the same ResourceId
· Consistency within an endpoint: A manageability provider that exposes several manageability endpoints for the same resource SHOULD use the same ResourceId for all manageability endpoints.
· Persistence: A manageability endpoint SHOULD return the same ResourceId during the entire lifetime of the manageability endpoint, including across power cycles of the manageability endpoint. Resources which are not able to persist the ResourceId across power cycles of the manageability endpoint SHOULD try to provide a consistent ResourceId via predictable identifier generation or delegation of Identity assignment. Managers may not be able to determine if a resource which does not provide the same ResourceId are the same resource and a single resource may be treated as many resources.
· Equality: If the ResourceIds are equal then the consumer MUST assume that the two manageability endpoints represent the same resource. However, a manageability consumer MUST NOT assume that two manageability endpoints are representing two different resources solely because the ResourceId is different. Two different ID’s could conceivably reference the same resource. It is strongly recommended that this condition be avoided in a conscious and deliberate manner, as some managers may not be able to distinguish that the two identifiers are, in fact, attached to the same resource. Thus, the managers would be forced to treat every identifier as an attachment to an unique resource.
Since the ResourceId is defined as opaque, this specification does not allow the consumer to infer any characteristic of the resource by examining the ResourceId, other than comparing the ResourceId to another ResourceId as one way to establish oneness. For example, one possible way to construct the ResourceId and ensure its uniqueness is to use a UUID wrapped in a URI.

Note that this specification does not define equivalence of URIs and the consumer should decide which level of the comparison ladder defined in section 6 of [RFC2396bis] is appropriate to use for this comparison.

The following paragraph describes a mechanism, intended to be introduced in MUWS 1.0, called “correlatable names”. This mechanism is not available in MUWS 0.5.

The correlatable names mechanism is one of several possible mechanisms that can be used when the ResourceId mechanism cannot provide certainty about the oneness of two resources. The correlate management capability can be used by a resource manager to determine if two different resouceIds, produced at different times, by the same manageability provider for an endpoint, represents the same endpoint.
The basic idea is to provide a list of properties that, if all are equal between two manageability endpoints, guarantees that the resource(s) behind the manageability endpoints are one. In the case where two ResourceIds match but the correlatable names do not, a case that is not allowed, but can not be guaranteed never to happen, the resource is considered to be the same. This is because the ResourceId has precedence over the correlatable name.

Name is a string containing a descriptive name for the resource being managed. The Name is intended for human consumption. It is a read-write optional property that has a cardinality of 0..1.
Version is a string representing the version of the resource being managed. MUWS does not specify how this string is constructed. The version string can be specified by any domain-specific specification that use MUWS. Version is a read-write optional property with a cardinality of 0..1.
4.2 State

4.2.1 Definition
The goal of this section is to define a state model for any IT resource and state management capabilities through Web services. The state model MUST support the state change capabilities and the events for lifecycle and status changes. Additionally, the state model MUST be extensible.
Figure 4.2.1-1 shows the resource state model without any sub-states.

[image: image8.png]Avaiable

Unavailable

Figure 4.2.1-1 Resource State Model

Figure 4.2.1-2 shows the UML representation of MUWS State.

[image: image9.png]| WSDNM: manageability capability

[WSDNI-common manageabty capabilty
MUWS:State
sourceSate1] - muws Sttelrfommaion (o]

)
10p()

Figure 4.2.1-2 MUWS State

4.2.2 Description of State Model

The following are the identifiers of the valid top-level resource states.

http://docs.oasis-open.org/wsdm/2004/04/muws/state/available

This corresponds to the Available state in the UML diagram. In this state, the resource is able to perform all functional tasks it is designed to perform.

http://docs.oasis-open.org/wsdm/2004/04/muws/state/degraded

This corresponds to the Degraded state in the UML diagram. In this state, the resource is able to perform some but not all functional tasks it is designed to perform.

http://docs.oasis-open.org/wsdm/2004/04/muws/state/unavailable

This corresponds to the Unavailable state in the UML diagram. In this state, the resource is not able to perform any of the functional tasks it is designed to perform.
The states defined by this specification are intended to be generic states that are relevant for any type of resource. Implementers SHOULD reuse existing states if they are appropriate for their resources. Implementers are sole judges in deciding what states are appropriate and it is expected that new states will be defined (and therefore new URIs created to represent them), for example if the existing states do not cover the intended meaning or if the existing states are too general and the implementer wishes to expose a more specific state description. Just like they MAY create new states, implementers MAY create new transitions between any two states (the two states don't need to have been defined by the same people). Note that until MUWS defines a way to represent the state model for a resource, "creating a new transition" just means writing some text to explain that a resource's state can change from one state to another. Finally, it is expected that MUWS 1.0 will define a way for states to be defined as sub-states of another state, at which point the specification will have specifications and recommendations on using this mechanism.

The following table lists the valid transitions between the top-level resource states.

	Start State
	End State

	Available
	Degraded

	Available
	Unavailable

	Degraded
	Available

	Degraded
	Unavailable

	Unavailable
	Available

4.2.3 Data Types

Following is the schema fragment that declares the (reusable) data types used to manage the resource state.

<xs:complexType name="StateInformation">

<xs:sequence>

<xs:element name="State" type="xs:anyURI"/>

<xs:element name="TimeEntered" type="xs:dateTime"/>

</xs:sequence>
</xs:complexType>
(StateInformation) type contains information about a resource state.

(StateInformation)/State is an identifier of a resource state.

(StateInformation)/TimeEntered is time at which the resource entered the identified state.

4.2.4 Properties

Following is the specification of the resource state properties (elements).

<ResourceState>StateInformation</ResourceState>

Following is an example excerpt from a resource properties instance document that contains this property.

<ResourceState>

<State>

 http://docs.oasis-open.org/wsdm/2004/04/muws/state/available
</State>

<TimeEntered>2004-03-11T11:30:56Z</TimeEntered>
</ResourceState>

ResourceState contains information about the current state of the resource (current at the moment of retrieving this property). It is a read-only mandatory property that has a cardinality of 1.
4.2.5 Operations

Following are the definitions of the messages that can be exchanged to perform operations on the resource state.

4.2.5.1 Start

Request:

<Start/>

Reply:

<StartOK/>

Upon receiving a request for a Start operation, manageability provider attempts to change the resource state from Unavailable state to Available state according to the UML diagram. If the transition completes, this operation completes successfully. If the resource is already in the Available state, this operation completes successfully.

4.2.5.2 Stop

Request:

<Stop/>

Reply:

<StopOK/>

Upon receiving a request for a Stop operation, manageability provider attempts to change the resource state from Available or Degraded state to Unavailable state according to the UML diagram. If the proper transition completes, this operation completes successfully. If the resource is already in the Unavailable state, this operation completes successfully.

4.3 Metrics

4.3.1 Definition

Metrics are a specific type of property. Metrics represent collected values and have a related collection period.

The goal of this section is to describe the characteristics of a typical property used to represent collected numerical, called Metrics. A common characteristic of metrics is that they change overtime and can be reset.

Figure 4.3.1-1 presents the Metrics capability in context.
[image: image10.png]AN

WUWS::Matrics
[CurmentTime[) s dateTime o)
[Resetll)

Figure 4.3.1-1 MUWS Metrics

As a simple example, consider a toll bridge and two properties; the length of the bridge and the number of cars that have passed over the bridge. The length of the bridge, while numeric, is not a metric; it represents the current configuration of the bridge. You can not reset the length of the bridge. By contrast, the number of cars that have passed over the bridge is a metric. It requires collection (counting) the number of cars, which is typically done over some duration, such as the last hour, the last day or even since the bridge was constructed. You can reset the number of cars, for example at the start of a new interval.

When accessing metrics, the time represented by the metric is typically required. In the example, above would be useful to know that a number of 500 represented the number of cars that have passed over the bridge in the last 3 minutes. Similarly, if data is posted periodically, there are cases when it is useful to know the last time the data was updated. For this reason, the standard data type for Metrics allows for both reset time and updated time attributes. However, both are optional.

When looking at a value, it is important to have a notion of how changes to that metric are to be interpreted. That notion is defined as a change type. Metrics have two (2) change types:
· Counter, increments with usage

· Gauge, moves between a range of values

Metrics can be reset either periodically, such as 'once a day', or on demand. The meaning of resetting a metric varies with each metric and should be clarified, if needed, in the description of a metric. Often, resetting a metric means setting its base or initial value, which is typically zero, but this is not mandatory. (Note that this specification provides no specific means for the scheduling of reset operations.)

4.3.2 Data Types

Following is the schema fragment that declares the (reusable) data types used to manage the resource metrics. All attributes defined in the MetricAttributes attribute group are optional.
<xs:attributeGroup name="MetricAttributes">

<xs:attribute name="ResetAt" type="xs:dateTime"/>

<xs:attribute name="LastUpdated" type="xs:dateTime"/>

<xs:attribute name="ChangeType">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Counter"/>

<xs:enumeration value="Gauge"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="TimeScope">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Interval"/>

<xs:enumeration value="PointInTime"/>

<xs:enumeration value="SinceReset"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:anyAttribute namespace="##other" processContents="lax"/> </xs:attributeGroup>
(MetricAttributes) attribute group has to be included in every metric type or metric property element declaration.

(MetricAttributes)/ResetAt indicates time when a particular metric has been reset. UTC or Z-coded!

(MetricAttributes)/LastUpdated indicates time when a particular metric value was last updated.

(MetricAttributes)/ChangeType indicates a type of change pattern supported by a particular metric.

· Counter declares an incrementally increasing metric value.

· Gauge declares a metric value that can increase and decrease.

(MetricAttributes)/TimeScope indicates a time interval which is used to calculate a particular metric.

· Interval declares that a metric value is calculated within a certain time interval. Usually the interval would be defined by the metric property specification. For example, a RequestsPerSecond is an interval metric.

· PointInTime declares that a metric value is calculated for the moment of retrieving a metric property. For example, CurrentTemperature is a point-in-time metric.

· SinceReset declares that a metric value is calculated since ResetAt time mark.

The following three types are defined for metrics that are integers, durations or times. Specifications that use MUWS to create manageability properties applicable to specific domains are free to use these types or to create new metric types by including the MetricAttributes attribute group in their types.

<xs:complexType name="IntegerMetric">

<xs:simpleContent>

<xs:extension base="xs:integer">

<xs:attributeGroup ref="muws-xs:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>
</xs:complexType>
(IntegerMetric) type declares an xsd:integer metric.

<xs:complexType name="DurationMetric">

<xs:simpleContent>

<xs:extension base="xs:duration">

<xs:attributeGroup ref="muws-xs:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>
</xs:complexType>

(DurationMetric) type declares an xs:duration metric.

4.3.3 Properties

Following is the specification of the resource metrics properties (elements).

<CurrentTime>xs:dateTime</CurrentTime>

Following is an example excerpt from a resource properties instance document that contains this property.

<CurrentTime>2004-03-11T11:30:56Z</CurrentTime>

CurrentTime contains information about the current time at the manageability provider (current at the moment of retrieving this property). This property is meant to help manageability consumers interpret times received from the manageability endpoint in the absence of a time synchronization mechanism. It is a read-only mandatory property that has a cardinality of 1.
The Metrics capability requires that the CurrentTime property be present, providing a reference point for the time-based attributes defined for the metric data types. (Note that CurrentTime is not a metric, it is a property of type xsd:dateTime that is defined as part of the “Metrics” capability, consequently, the ResetAll() operation has no effect on it.)

4.3.4 Operations

Following are the definitions of the messages that can be exchanged to perform operations on the resource metrics.

4.3.4.1 ResetAll

Request:

<ResetAll/>

Reply:

<ResetAllOK/>

Upon receiving a request for a ResetAll operation, manageability provider resets values of all metrics that it is collecting. Metrics may be grouped into logical groups that can be reset individually through some other mechanisms. However, this action indicates that all metrics be reset. A manageability consumer MUST NOT assume that different metrics are reset at the same time, even if they are provided by the same manageability endpoint.

5 Discovery and Introspection

Many forms of discovery are supported by Web services. This specification does not normatively prescribe specific ways of discovering manageability services. It is expected that the discovery methods commonly used for Web services will be used for manageability Web services.

The only normative requirement in this specification that applies to discovery is the need for a manageability service to provide the Identity capability, through the corresponding WSDL interface defined by this specification. As a result, when a consumer discovers a WSDL description for a Web service (through any discovery mean), it is able to determine whether or not the service acts as a manageability service by checking whether the service implements the Identity interface defined by MUWS.

6 Defining a Manageability Interface

The following are normative statements for MUWS representation.

· WSDL 1.1 must be used.

· Additionally, WSDM defines portTypes which have to be manually put together into a custom portType operation by operation according to the WSDL specification.

· Document/literal binding must be used.

· WSDM defines property elements which have to be manually put together into a custom properties document according to WS-ResourceProperties specification

7 References

7.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XML Schema Part 1]

Henry S. Thompson, et al. XML Schema Part 1: Structures, W3C Recommendation, May 2001, http://www.w3.org/TR/xmlschema-1/

[XML Schema Part 2]

Paul V. Biron, et al. XML Schema Part 2: Datatypes, W3C Recommendation, May 2001, http://www.w3.org/TR/xmlschema-2/
[XML1.0 3rd Edition]

Tim Bray, et al., Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, February 2004, http://www.w3.org/TR/REC-xml
[XNS]
Tim Bray, et al., Extensible Namespaces in XML, W3C Recommendation, January 1999, http://www.w3.org/TR/REC-xml-names/
[SOAP1.1]
Don Box, et al., Simple Object Access Protocol (SOAP) 1.1, W3CNote, May 2000, http://www.w3.org/TR/soap11/
[WSDL1.1]
Erik Christensen, et al., Web services Description Language (WSDL) 1.1, W3C Note, March 2001, http://www.w3.org/TR/wsdl
[UDDI]
Tom Bellwood, et al., Web UDDI Version 3.0, UDDI Spec Technical Committee Specification, July 2003, http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
[WSA]
David Booth, et al. Web Servics Architecture, W3C Working Group Note, February 2004, http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
[WSRF]
Karl Czajkowski, et al. The WS-Resource Framework version 1.0, http://devresource.hp.com/drc/specifications/wsrf/WSRF_overview-1-0.pdf and related documents available at http://devresource.hp.com/drc/specifications/wsrf/index.jsp
[WS-ResourceProperties]

Steve Graham, et al., Web service Resource Properties version 1.1, January 2004, http://devresource.hp.com/drc/specifications/wsrf/WS-ResourceProperties-1-1.pdf
[WS-Addressing]
Don Box, et al., Web services Addressing, March 2003, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-addressing.asp
7.2 Non-normative

[RFC2396bis]
T. Berners-Lee, et al., Uniform Resource Identifier (URI): Generic Syntax, IETF RFC 2396bis-04, February 2004, http://www.ietf.org/internet-drafts/draft-fielding-uri-rfc2396bis-04.txt
[MUWS REQS]
Pankaj Kumar, et al., Requirements – Management Using Web Services, Committee Draft, October 2003, http://www.oasis-open.org/apps/org/workgroup/wsdm/download.php/6185/WSDM-MUWS-Req-committee-draft-1.0-20031002.pdf
Appendix A. Acknowledgements
The following people made contributions to this specification:

· Winston Bumpus

<winston_bumpus@dell.com>

· Brian Carol

<brian.carroll@merant.com>
· Fred Carter

<fred.carter@amberpoint.com>

· John DeCarlo

<jdecarlo@mitre.org>

· Andreas Dharmawan
<andreas@westbridgetech.com>

· Mark Ellison

<ellison@ieee.org>

· Heather Kreger

<kreger@us.ibm.com>

· Hal Lockhart

<hlockhar@bea.com>

· Bryan Murray

<bryan.murray@hp.com>

· Richard Nikula

<Richard_Nikula@bmc.com>

· Micheal Perks

<mperks@us.ibm.com>
· Homayoun Pourheidari
<homayoun@hp.com>

· Karl Schopmeyer

<k.schopmeyer@attglobal.net>

· Igor Sedukhin

<Igor.Sedukhin@ca.com>

· Ellen Stokes

<stokese@us.ibm.com>

· William Vambenepe
<william_vambenepe@hp.com>

· Andrea Westerinen

<andreaw@cisco.com>

The following individuals were voting members of the committee during the development of this specification:

· Guru Bhat

<Guru.Bhat@oracle.com>

· Jeff Bohren

<jbohren@opennetwork.com>

· Winston Bumpus

<winston_bumpus@dell.com>

· Fred Carter

<fred.carter@amberpoint.com>

· John DeCarlo

<jdecarlo@mitre.org>

· Andreas Dharmawan
<andreas@westbridgetech.com>

· Mark Ellison

<ellison@ieee.org>

· Daniel Foody

<dan@actional.com>

· Heather Kreger

<kreger@us.ibm.com>
· Bryan Murray

<bryan.murray@hp.com>

· Paul Lipton

<paul.lipton@ca.com>

· Hal Lockhart

<hlockhar@bea.com>

· Rajiv Maheshwari

<rajiv.k.maheshwari@oracle.com>

· Richard Nikula

<Richard_Nikula@bmc.com>

· Michael Perks

<mperks@us.ibm.com>

· Homayoun Pourheidari
<homayoun@hp.com>

· Karl Schopmeyer

<k.schopmeyer@attglobal.net>

· Igor Sedukhin

<Igor.Sedukhin@ca.com>

· Davanum Srinivas

<Davanum.Srinivas@ca.com>

· Ellen Stokes

<stokese@us.ibm.com>

· Thomas Studwell

<studwell@us.ibm.com>

· Ryoichi Ueda

<ueda@sdl.hitachi.co.jp>

· William Vambenepe
<william_vambenepe@hp.com>

· Andrea Westerinen

<andreaw@cisco.com>
Concepts for the "Metrics" section were inspired by work from the DMTF applications/Metrics WG.

Appendix B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix C. Schemas (Normative)
<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:muws-xs="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema"

targetNamespace="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="ResourceId" type="xs:anyURI"/>

<xs:element name="Name" type="xs:string"/>

<xs:element name="Version" type="xs:string"/>

<xs:complexType name="StateInformation">

<xs:sequence>

<xs:element name="State" type="xs:anyURI"/>

<xs:element name="TimeEntered" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceState" type="muws-xs:StateInformation"/>

<xs:attributeGroup name="MetricAttributes">

<xs:attribute name="ResetAt" type="xs:dateTime"/>

<xs:attribute name="LastUpdated" type="xs:dateTime"/>

<xs:attribute name="ChangeType">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Counter"/>

<xs:enumeration value="Gauge"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="TimeScope">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Interval"/>

<xs:enumeration value="PointInTime"/>

<xs:enumeration value="SinceReset"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:attributeGroup>

<xs:complexType name="IntegerMetric">

<xs:simpleContent>

<xs:extension base="xs:integer">

<xs:attributeGroup ref="muws-xs:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="DurationMetric">

<xs:simpleContent>

<xs:extension base="xs:duration">

<xs:attributeGroup ref="muws-xs:MetricAttributes"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:element name="CurrentTime" type="xs:dateTime"/>

<xs:complexType name="ResourceIdentityPropertiesType">

<xs:sequence>

<xs:element ref="muws-xs:ResourceId"/>

<xs:element ref="muws-xs:Name" minOccurs="0"/>

<xs:element ref="muws-xs:Version" minOccurs="0"/>

<xs:any minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceIdentityProperties"

type="muws-xs:ResourceIdentityPropertiesType"/>

<xs:complexType name="ResourceStatePropertiesType">

<xs:sequence>

<xs:element ref="muws-xs:ResourceState"/>

<xs:any minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceStateProperties"

type="muws-xs:ResourceStatePropertiesType"/>

<xs:complexType name="ResourceMetricsPropertiesType">

<xs:sequence>

<xs:element ref="muws-xs:CurrentTime"/>

<xs:any minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="ResourceMetricsProperties"

type="muws-xs:ResourceMetricsPropertiesType"/>

<xs:element name="Start"><xs:complexType/></xs:element>

<xs:element name="StartOK"><xs:complexType/></xs:element>

<xs:element name="Stop"><xs:complexType/></xs:element>

<xs:element name="StopOK"><xs:complexType/></xs:element>

<xs:element name="ResetAll"><xs:complexType/></xs:element>

<xs:element name="ResetAllOK"><xs:complexType/></xs:element>
</xs:schema>
Appendix D. WSDL elements (Normative)
<?xml version="1.0" encoding="utf-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsrp="http://www.ibm.com/xmlns/stdwip/web-services/WS-ResourceProperties"

xmlns:muws-xs="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema"

xmlns:muws-wsdl="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/wsdl"

targetNamespace="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/wsdl">

 <types>

 <xs:schema elementFormDefault="qualified"

targetNamespace="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/wsdl">

<xs:import namespace="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema"

schemaLocation="http://docs.oasis-open.org/wsdm/2004/04/muws-0.5/schema"/>

 </xs:schema>

 </types>

 <message name="StartRequest">

<part name="body" element="muws-xs:Start"/>

 </message>

 <message name="StartResponse">

<part name="body" element="muws-xs:StartOK"/>

 </message>

 <message name="StopRequest">

<part name="body" element="muws-xs:Stop"/>

 </message>

 <message name="StopResponse">

<part name="body" element="muws-xs:StopOK"/>

 </message>

 <message name="ResetAllRequest">

<part name="body" element="muws-xs:ResetAll"/>

 </message>

 <message name="ResetAllResponse">

<part name="body" element="muws-xs:ResetAllOK"/>

 </message>

 <portType name="Identity"

wsrp:ResourceProperties="muws-xs:IdentityProperties"/>

 <portType name="ResourceState"

wsrp:ResourceProperties="muws-xs:ResourceStateProperties">

 <operation name="Start">

 <input name="StartRequest" message="muws-wsdl:StartRequest"/>

 <output name="StartResponse" message="muws-wsdl:StartResponse"/>

 </operation>

 <operation name="Stop">

 <input name="StopRequest" message="muws-wsdl:StopRequest"/>

 <output name="StopResponse" message="muws-wsdl:StopResponse"/>

 </operation>

 </portType>

 <portType name="Metrics"

wsrp:ResourceProperties="muws-xs:MetricsProperties">

 <operation name="ResetAll">

 <input name="ResetAllRequest" message="muws-wsdl:ResetAllRequest"/>

 <output name="ResetAllResponse" message="muws-wsdl:ResetAllResponse"/>

 </operation>

 </portType>

</definitions>

Appendix E. Web Services Platform

This section briefly describes the Web services platform features that are required in order to specify management using Web services and recommendations for how to support each feature. Recommendations will either reference another specification to be used to provide the feature, identify the feature to be provided by the industry in the future, or identify the feature that the WSDM TC must define in an interim specification until one is available for the Web services platform.

Initial Focus

The following features must be supported by the Web services platform depended upon by the current version of the MUWS specification.

Properties

Properties are describable information that can be queried and may be written. Properties may be provided by a Web service interface with a schema (data type and name) of the properties and operations (message exchanges) to find, read and write them. Property declarations (names) and descriptions (types) should be introspect-able at design time and at runtime. For manageability, a property is part of the advertised manageability interface for a resource. A property can be used to represent configuration values, metrics, identifiers, etc.

Motivation: Many manageability capabilities of a manageable resource take the form of information about the resource that the manager is able to query and set. Such information should be modeled as a set of properties with access methods that allow access to it in ways that meet the scalability requirements of management applications, e.g. bulk get.
Recommendation: Use the WS-Resource Properties specification [WS-ResouceProperty] to describe the properties of a manageable resource.
Meta Data

Meta data is generally defined as data about data. In the context of management, it is additional descriptive information about all the components of a manageability interface, including properties, operations, events, capabilities, the context, quality and condition, or characteristics of the data. Meta data can be introspected at design time and runtime.

Motivation: In IT management, meta data is important to a) describe data in richer ways so that it can ultimately be linked to the goals that drive the existence of the source of this data, e.g. limitations, purpose, context, quality, and characteristics of management data as an associated piece of that data will help to describe how the data is related to the objectives of an IT environment. b) meta data can be used to enable interoperability of manageability capabilities provided by a number of different providers
Recommendation: Descriptive information about the manageability interface will be expressed as XML element attributes as a tactical solution for WSDM 0.5. This satisfies runtime introspection, but does not provide design time introspection.

A strategic solution will be developed for WSDM 1.0 which supports runtime and design time introspection. The Distributed Management Task Force's Common Information Model (CIM) qualifiers (meta-data concerning a class, property, method, notification or method parameter) may be mined for useful information for manageability meta-data.
Addressing

An address or reference is the data structure used to refer to a unique Web service. Addressing may be used to refer to Web services for a manageability provider as well as a manageable resource. The data structure must have sufficient information for a manageability consumer to be able to locate the Web service and send messages to the Web service. In the case the referenced Web service provides manageability for several resources, it is also necessary to uniquely identify a specific resource in the reference data structure. The reference data structure must include the ability to locate the description of the Web service in order for the manageability consumer to identify the messages understood by the Web service. In this context, address and reference are used synonymously.

Motivation: Management needs interoperable addressing in order to refer to common manageability services and manageable resources for relationships, notifications, and as part of messages exchanged.

Recommendation: Use the WS-Addressing specification (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-addressing.asp).

Notification

Notification is a method of conveying information from a source to recipients that expressed interest in that information. In terms of Web services it means delivering an XML message from the source to addressable recipients. An interest in receiving those messages must be established by the recipients, or by third parties on behalf of the recipients. When registering interest, address(es) of recipient(s) must be provided (see Addressing).

Motivation: Manageable resources need to convey information to the managers. In certain cases, it is unreasonable for the manager to explicitly poll (request) the information, and it has to be sent to the manager by the manageable resource. For example, a manager may be interested when a service receives a new message. The manageable resource for the service has to notify the manager when it happens (event). The manageable resource needs to know which managers are interested in which information and what are the deliverable addresses of the managers to send the notification message when an event occurs.

Recommendation: Use the WS-Notifications specification [WS-Notification].

Versioning

Version is an attribute of a resource identifying a set of supported capabilities and a sequence of modifications to the component. There are two kinds of versioning; the resource version and the Web service version. The format of the former is out of scope of this work. Version information is useful so that the manager can know if the manageable Web Service interfaces have changed since she obtained her copy.
Motivation: A manager of manageable resources must have the ability to query the available endpoints’ revisions along with the corresponding change descriptions such that the manager can discern the most appropriate and compatible interface of a particular manageability function that her management client can use.

Recommendation: Addressed by WSDM as part of the “Management of Web Services” specification development for a Web service, taking into account W3C recommendations on this topic [W3C TAG finding on Versioning]. “Management Using Web Services” must provide access to version information as part of description of identity of manageable resources.

Security

There are many ways to categorize information security, but the most common today are Confidentiality, Integrity, and Authentication. Additional concepts that can be arguably kept separate are: Access Control, Non-repudiation, Availability, and Privacy. [see Glossary] Security requirements within manageability are not unique to manageability. Every manageability endpoint and many business endpoints will have requirements for confidentiality, integrity, and authentication, as well as access control, availability, and privacy (see the definition of Security).

Motivation: Resources have to be manageable in a secure way (see definition of security). Security infrastructure mechanisms should be composed and layered on top of the manageability exposed via Web services, similar to securing any other capability of a resource exposed via a Web service. For example, access to a manageability operation can be granted to only clients that present “manager’s identity” in a request message.
Recommendation: WSDM will follow the recommendation of the OASIS WS-Security TC. WSDM 1.0 should examine WS-Security to ensure nothing done in the specification precludes the composability of Security. In addition, security should be manageable via Web services.
Registration and Discovery

Registration is a method of advertising an existence of an element so that it can be discovered. Discovery is a method of locating an existing element so that it can be used or operated. Discovery can be based on selection criteria or simply a name or identity of an element. Location is a method of obtaining an address of an element. In the Web services sense, registration, discovery and location can be represented by a set of operations and schema which may be implemented by a Registry.

Motivation: Manageable resources have to be discoverable by the managers. Manageable resources exposed via Web services can be registered, discovered and located via a Registry.

Recommendation: UDDI specification will satisfy most requirements. Existing Web services discovery practices are sufficient.
Future Focus

For future versions of WSDM may also require the following support from the Web services platform.
Policy

A Policy is a course of action, guiding principle, or procedure considered expedient, prudent, or advantageous for a given condition or event. It describes a broad range of service requirements, preferences, and capabilities. There are two kinds of policy that governs management of manageable resources: a) a set of policy that describes how the client of a manageable resource interacts with the functional interfaces of the resource (e.g. policy describing the privacy of data), b) a set of policy that describes how the manager of a manageable resource places operational requirements on to the resource, e.g. service level agreements.

Motivation: There are various policies that can be specified to manageable resources including: authentication, access control, privacy, non-repudiation, service level agreement, quality of service, routing, content inspection, and auditing, etc. policies. MUWS must leverage as much as existing Webservices specifications and technologies in applying policies to the manageable resources. MUWS should endorse a list of such specifications and technologies, and should specify the compatibility and interoperability requirements.

Recommendation: None at this time.

Name Resolution

For management purposes: A service which accepts a name identifier (URI) of a resource and returns an address or reference for the manageability endpoint for the resource. The service should return sufficient information such that the manageability endpoint can be invoked. The name resolution service may be used to resolve names to references in other application domains unrelated to management as well, i.e. service discovery, etc.
Motivation: A name resolution service is necessary for management because resources and manageability services have identifiers (from existing instrumentation and technologies) and it will be necessary to be able to get a reference for that resource identifier so that the manager can interact with a resource through its manageability interface.

Recommendation: None at this time.

Transaction

A “unit of work” that consists of multiple actions (typically, an ordered set) invoked against a single resource, the same action applied to multiple resources, or multiple actions against multiple resources. The “unit of work” should be executed once and only once, even if due to transmission failures or other errors, the request may be received multiple times. One of three outcomes will result from the execution of a transaction: a) all actions against all resources may succeed, b) one or more actions may fail and all actions against all resources are rolled back (if roll back is not possible or not supported, then the resources should be reconfigured to an operational, state of compensation), or c) one or more actions may fail and the resources are left as affected by the actions
Motivation: Grouping actions against resources and assuring their execution is very valuable. A manager may request that multiple actions/operations be performed as a single “unit”, and that the integrity of the complete/combined request be preserved.
 Recommendation: None at this time.

Flow

Flow, more often called workflow or workflow management, is the management of business processes with information technology. By defining, analyzing, and organizing an organization’s resources and operations, workflow management systems ensure that the right information reaches the right person or computer application at the right time. Business process management (BPM) workflow or execution languages support composing services into more complex processes and may expose itself as a Web service. Such coordination description includes, but may not be limited to, constructs for the identification of partners, message correlation, fault detection and compensating activities, parallel and serial execution of services, and so on.

Motivation: Web services orchestration languages may be useful tools allowing Web services management providers to enable more complex and meaningful actions to be taken as a result of observations. A manageability interface may need to be defined for a business process engine to properly and consistently monitor and control flows and composite Web services which might expose the sessions and state of a process, subordinate resources, etc.

Recommendation: None at this time.

Negotiation

Negotiation is the process by which two services dynamically negotiate terms of a contract between initiators and participants of that contract. A contract is a document that represents a set of objectives and resources.

Motivation: It is important for resources to understand what they can expect from the other resources both between managed resources, management services, and managers. This enables them to better describe their own level of performance, as well as how information is exchanged between the components of federated deployments.
Recommendation: None at this time.

�my best guess on this one....

wd-wsdm-muws-05

Created on 3/31/2004 11:48 AM
Copyright © OASIS Open 2003. All Rights Reserved.

Page 19 of 40

