
1.0 Capabilities
Manageability capabilities are composable sets of properties, operations, events, design patterns and behaviors, i.e. a manageability model, for supporting a particular management task. Capabilities are described by WSDL interfaces, i.e. one or more WSDL documents, resource property documents, and meta information documents

Managers utilize manageability capabilities to accomplish management tasks like monitoring, changing configuration, changing operational state, and subscribing for events.

Managers need to be able to understand what manageability capabilities a resource supports.

1.0.1 Motivation

A manager may need to know what capabilities a given manageable resource offers. Given current specifications, there are two ways to determine that: by interrogating the WSDL description, and by asking the manageable resource itself. Each of these approaches does not return a deterministic understanding of what capabilities are supported.
Interrogating the WSDL description means that clients are inferring that certain capabilities are supported based on the operation signatures and properties in the interface.

This approach is complex and insufficient because:

· It may require multiple operation and resource property patterns to be matched in order to detect a capability.

· It the capability has optional aspects then those operation signatures cannot be used to detect a capability.
· If the capability shares resource properties or operations with other capabilities then those operations cannot be used to detect a particular capability.

· If the capability has very few standard interfaces, then there is very little to match on with a high degree of confidence that you have only detected the desired capability.

· If the capability has behavior that is not embodied in the interface descriptions, then matching up all the operations in the capability is not sufficient to determine if the capability is implemented.

In addition, managers need to understand the capabilities a resource supports from interacting with the manageable resource itself as well as from the descriptions of the resources manageability interface. This is because finding resources based on capability and accessing resources based on capabilities will be a common manager task, processing WSDL for each of these tasks is inefficient and does not allow dynamic support of additional capabilities.
Currently managers must either attempt to invoke marker operations or properties. If the operation or property access fails, then it is inferred that the capability is not supported.

Dividing the manageability into capabilities provides a number of advantages:

· there is usually a high degree of isolation between capabilities, allowing their definitions to be done separately,

· clients should be able quickly and efficiently to determine what manageability a manageable resource supports.

· Capabilities are composable, allowing a manageable resource to implement only those capabilities that are appropriate.

1.0.2 Definition
Capabilities are course grained indicators of manageability provided. Managers should use this as a hint that further inspection of the interface is necessary to understand which optional aspects or extensions of the capability are supported. Capabilities have the following characteristics:
Identifiability: Capabilities are identified by a URI. The capability URI identifies an interface and behavior contract that manageable resources must support.

Cardinality: Manageable resources support one or more manageability capabilities. The only required capability is the identity capability. Other basic capabilities include configuration, metrics, lifecycle, and relationships. There are standard WSDL interfaces for basic capabilities.

Optionality: Some aspects (properties, operations, and events) of a capability may be optional. These SHOULD be defined in separate portTypes so that it if a manageable resource implementation does not support that operation it simply does not implement it – thus giving managers the ability to detect this through the interface description rather than by calling an operation and getting a “not implemented” fault.

Extensibility: In some cases capabilities define design patterns whereby the capability can be extended. For example, the metrics capability defines the format for a metric change event, and meta information, and also how to use these to define metrics in other capabilities or specific manageable resource types.

Manageable resources may implement extensions of these capabilities which add resource specific properties, operations, and events according to the design patterns established in the capability. For example, where a manageable resource exposes some metrics, it MUST implement the metric manageability capability: managers can then use the fact that the manageable resource declares that it supports the metric capability to determine that there are metrics available.

1.0.3 Discovery of Manageability Capabilities

From WSDL - inspect the most derived WSDL interface for the manageable resource AND/OR inspect the WS-Resource Properties Capabilites Property element.

From EPRs – inspect the EPR retrieving the WSDL document URI, process the WSDL document AND/OR request the capabilities directly from the Manageable Resource at the EPR.

From Manageable Resources – use WS-Resource Properties ‘getProperty’ operation to retrieve the ‘Capabilities’ property
From a Registry – use UDDI to advertise capabilities of a resource using the TModels. .

1.0.4 Syntax

1.0.4.1 Inspection

For WSDL inspection, the capability URIs will be provided as part of the most derived WSDL interface description of the manageable resource. These capabilities are static and the same for all manageable resources that implement the interface.
<wsdl:defintions …>
 <wsdl:portType …

 wsdm:capabilites=”xsd:QName”? … >

…

</wsdl:portType>

Yielding the following example:

<portType …

wsdm:capabilities=”wsdm:identity, wsdm:metrics, wsdm:state”>

</portType>
1.0.4.2 Reflection

For access to the capabilities at runtime for a particular manageable resource, the capabilities are maintained in a required resource property ‘capability’. << Should this be on the Identity capability?>>

<element name=”capability” type=”xsd:anyURI” minOccurs=”1” maxOccurs=”unbounded” />

 where an instance document looks like:

<capability> wsdm:identity</capability>

<capability> wsdm:metrics </capability>
<capability> wsdm:state</capability>

<<Note from HK, we can discuss alternative schemas for this. Alternatively we could do:>>

<element name="capabilities ">

 <complexType>

 <sequence>

 <element ref="capability" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

</element>

<element name="capability " type="xsd:anyURI " />

<capabilities>

<capability> wsdm:identity</capability>

<capability> wsdm:metrics </capability>

<capability> wsdm:state</capability>

<capabilities>

Capabilities can be added at runtime, and therefore the capabilities property MAY contain more capabilities than the capabilities statement in the manageable resource’s WSDL document. In fact, if other Web services are used to associate new capabilities with resources at runtime, the list of capabilities in the capabilities property must include all those supported directly by the manageable resources WSDL AND the capabilities supported by the other Web services associated with the manageable resource.

Manageable resources must also provide access to the EPR for each of the supported capabilities. << Question: Should this be an operation? Or a part of the capabilities property? Should we do ‘GetAllEPRSForCapabilities’ or ‘getEPRForCapability’?>>

�Issue: problem if a capability, like metrics, may be implemented across multiple other interfaces.

