
ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 1 of 137 

 

Web Services Federation Language (WS-
Federation) Version 1.2 

Committee Draft 01 

June 23 2008 

Specification URIs: 
This Version: 

http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-01.doc 
(Authoritative) 
http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-01.pdf  
http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-01.html  

Previous Version: 

na 

Latest Version: 
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.doc  
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.pdf  
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.html  

Technical Committee: 

OASIS Web Services Federation (WSFED) TC 

Chair(s): 
Chris Kaler, Microsoft 
Michael McIntosh, IBM 

Editor(s): 
Marc Goodner, Microsoft 
Anthony Nadalin, IBM 

Related work: 

This specification is related to: 

 WSS 

 WS-Trust 

 WS-SecurityPolicy 

Declared XML Namespace(s): 
http://docs.oasis-open.org/wsfed/federation/200706   
http://docs.oasis-open.org/wsfed/authorization/200706   
http://docs.oasis-open.org/wsfed/privacy/200706  

Abstract: 
This specification defines mechanisms to allow different security realms to federate, such that 
authorized access to resources managed in one realm can be provided to security principals 
whose identities and attributes are managed in other realms.   This includes mechanisms for 
brokering of identity, attribute, authentication and authorization assertions between realms, and 
privacy of federated claims. 

http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-01.doc
http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-01.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/cd/ws-federation-1.2-spec-cd-01.html
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.doc
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsfed
http://docs.oasis-open.org/wsfed/federation/200706
http://docs.oasis-open.org/wsfed/authorization/200706
http://docs.oasis-open.org/wsfed/privacy/200706


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 2 of 137 

By using the XML, SOAP and WSDL extensibility models, the WS-* specifications are designed 
to be composed with each other to provide a rich Web services environment. WS-Federation by 
itself does not provide a complete security solution for Web services.  WS-Federation is a building 
block that is used in conjunction with other Web service, transport, and application-specific 
protocols to accommodate a wide variety of security models. 

Status: 
This document was last revised or approved by the WSFED TC on the above date. The level of 
approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location 
noted above for possible later revisions of this document. 

Technical Committee members should send comments on this specification to the Technical 
Committee’s email list. Others should send comments to the Technical Committee by using the 
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/wsfed/. 

For information on whether any patents have been disclosed that may be essential to 
implementing this specification, and any offers of patent licensing terms, please refer to the 
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/wsfed/ipr.php). 

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/wsfed/. 

http://www.oasis-open.org/committees/wsfed/
http://www.oasis-open.org/committees/wsfed/
http://www.oasis-open.org/committees/wsfed/ipr.php
http://www.oasis-open.org/committees/wsfed/ipr.php
http://www.oasis-open.org/committees/wsfed/
http://www.oasis-open.org/committees/wsfed/


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 3 of 137 

Notices 

Copyright © OASIS® 2008. All Rights Reserved. 

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual 
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. 

This document and translations of it may be copied and furnished to others, and derivative works that 
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, 
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 
and this section are included on all such copies and derivative works. However, this document itself may 
not be modified in any way, including by removing the copyright notice or references to OASIS, except as 
needed for the purpose of developing any document or deliverable produced by an OASIS Technical 
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must 
be followed) or as required to translate it into languages other than English. 

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 
or assigns. 

This document and the information contained herein is provided on an "AS IS" basis and OASIS 
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. 

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would 
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, 
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to 
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that 
produced this specification. 

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of 
any patent claims that would necessarily be infringed by implementations of this specification by a patent 
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR 
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such 
claims on its website, but disclaims any obligation to do so. 

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that 
might be claimed to pertain to the implementation or use of the technology described in this document or 
the extent to which any license under such rights might or might not be available; neither does it 
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with 
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be 
found on the OASIS website. Copies of claims of rights made available for publication and any 
assurances of licenses to be made available, or the result of an attempt made to obtain a general license 
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee 
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no 
representation that any information or list of intellectual property rights will at any time be complete, or 
that any claims in such list are, in fact, Essential Claims. 

The names "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should 
be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and 
implementation and use of, specifications, while reserving the right to enforce its marks against 
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance. 
 

http://www.oasis-open.org/who/trademark.php


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 4 of 137 

Table of Contents  

1 Introduction 8 

1.1 Document Roadmap 8 

1.2 Goals and Requirements 9 

1.2.1 Requirements 9 

1.2.2 Non-Goals 10 

1.3 Notational Conventions 10 

1.4 Namespaces 11 

1.5 Schema and WSDL Files 12 

1.6 Terminology 12 

1.7 Normative References 14 

1.8 Non-Normative References 17 

2 Model 18 

2.1 Federation Basics 18 

2.2 Metadata Model 21 

2.3 Security Model 24 

2.4 Trust Topologies and Security Token Issuance 24 

2.5 Identity Providers 28 

2.6 Attributes and Pseudonyms 28 

2.7 Attributes, Pseudonyms, and IP/STS Services 32 

3 Federation Metadata 34 

3.1 Federation Metadata Document 34 

3.1.1 Referencing Other Metadata Documents 35 

3.1.2 TokenSigningKeyInfo Element 37 

3.1.3 TokenKeyTransferKeyInfo Element 38 

3.1.4 IssuerNamesOffered Element 39 

3.1.5 TokenIssuerEndpoints Element 39 

3.1.6 TokenIssuerMetadata Element 40 

3.1.7 PseudonymServiceEndpoints Element 41 

3.1.8 AttributeServiceEndpoints Element 41 

3.1.9 SingleSignOutSubscripionEndpoints Element 42 

3.1.10 SingleSignOutNotificationEndpoints Element 42 

3.1.11 TokenTypesOffered Element 43 

3.1.12 ClaimTypesOffered Element 44 

3.1.13 ClaimDialectsOffered Element 44 

3.1.14 AutomaticPseudonyms Element 45 

3.1.15 PassiveRequestorEndpoints Element 45 

3.1.16 TargetScopes Element 46 

3.1.17 ContactInfoAddress Element 47 

3.1.18 [Signature] Property 47 

3.1.19 Example Federation Metadata Document 48 

3.2 Acquiring the Federation Metadata Document 49 

3.2.1 WSDL 50 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 5 of 137 

3.2.2 The Federation Metadata Path 50 

3.2.3 Retrieval Mechanisms 50 

3.2.4 FederatedMetadataHandler Header 51 

3.2.5 Metadata Exchange Dialect 52 

3.2.6 Publishing Federation Metadata Location 53 

3.2.7 Federation Metadata Acquisition Security 54 

4 Sign-Out 55 

4.1 Sign-Out Message 55 

4.2 Federating Sign-Out Messages 57 

5 Attribute Service 59 

6 Pseudonym Service 61 

6.1 Filtering Pseudonyms 62 

6.2 Getting Pseudonyms 63 

6.3 Setting Pseudonyms 65 

6.4 Deleting Pseudonyms 66 

6.5 Creating Pseudonyms 66 

7 Security Tokens and Pseudonyms 68 

7.1 RST and RSTR Extensions 69 

7.2 Usernames and Passwords 69 

7.3 Public Keys 70 

7.4 Symmetric Keys 70 

8 Additional WS-Trust Extensions 71 

8.1 Reference Tokens 71 

8.2 Indicating Federations 72 

8.3 Obtaining Proof Tokens from Validation 72 

8.4 Client-Based Pseudonyms 73 

8.5 Indicating Freshness Requirements 74 

9 Authorization 75 

9.1 Authorization Model 75 

9.2 Indicating Authorization Context 75 

9.3 Common Claim Dialect 77 

9.3.1 Expressing value constraints on claims 79 

9.4 Claims Target 81 

9.5 Authorization Requirements 82 

10 Indicating Specific Policy/Metadata 84 

11 Authentication Types 86 

12 Privacy 87 

12.1 Confidential Tokens 87 

12.2 Parameter Confirmation 88 

12.3 Privacy Statements 89 

13 Web (Passive) Requestors 91 

13.1 Approach 91 

13.1.1 Sign-On 91 

13.1.2 Sign-Out 92 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 6 of 137 

13.1.3 Attributes 93 

13.1.4 Pseudonyms 94 

13.1.5 Artifacts/Cookies 95 

13.1.6 Bearer Tokens and Token References 95 

13.1.7 Freshness 95 

13.2 HTTP Protocol Syntax 96 

13.2.1 Parameters 96 

13.2.2 Requesting Security Tokens 97 

13.2.3 Returning Security Tokens 99 

13.2.4 Sign-Out Request Syntax 100 

13.2.5 Attribute Request Syntax 101 

13.2.6 Pseudonym Request Syntax 102 

13.3 Detailed Example of Web Requester Syntax 102 

13.4 Request and Result References 106 

13.5 Home Realm Discovery 109 

13.5.1 Discovery Service 109 

13.6 Minimum Requirements 109 

13.6.1 Requesting Security Tokens 109 

13.6.2 Returning Security Tokens 110 

13.6.3 Details of the RequestSecurityTokenResponse element 110 

13.6.4 Details of the Returned Security Token Signature 111 

13.6.5 Request and Response References 111 

14 Additional Policy Assertions 112 

14.1 RequireReferenceToken Assertion 112 

14.2 WebBinding Assertion 113 

14.3 Authorization Policy 114 

15 Error Handling 115 

16 Security Considerations 117 

17 Conformance 119 

Appendix A WSDL 120 

Appendix B Sample HTTP Flows for Web Requestor Detailed Example 121 

Appendix C Sample Use Cases 124 

C.1 Single Sign On 124 

C.2 Sign-Out 125 

C.3 Attributes 125 

C.4 Pseudonyms 126 

C.5 Detailed Example 127 

C.6 No Resource STS 128 

C.7 3
rd

-Party STS 129 

C.8 Delegated Resource Access 129 

C.9 Additional Web Examples 130 

No Resource STS 130 

3
rd

-Party STS 131 

Sign-Out 132 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 7 of 137 

Delegated Resource Access 133 

Appendix D SAML Binding of Common Claims 135 

Appendix E Acknowledgements 136 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 8 of 137 

1 Introduction 1 

This specification defines mechanisms to allow different security realms to federate, such that authorized 2 
access to resources managed in one realm can be provided to security principals whose identities are 3 
managed in other realms.  While the final access control decision is enforced strictly by the realm that 4 
controls the resource, federation provides mechanisms that enable the decision to be based on the 5 
declaration (or brokering) of identity, attribute, authentication and authorization assertions between 6 
realms.  The choice of mechanisms, in turn, is dependent upon trust relationships between the realms.  7 
While trust establishment is outside the scope of this document, the use of metadata to help automate the 8 
process is discussed.   9 

A general federation framework must be capable of integrating existing infrastructures into the federation 10 
without requiring major new infrastructure investments.  This means that the types of security tokens and 11 
infrastructures can vary as can the attribute stores and discovery mechanisms.  Additionally, the trust 12 
topologies, relationships, and mechanisms can also vary requiring the federation framework to support 13 
the resource’s approach to trust rather than forcing the resource to change. 14 

The federation framework defined in this specification builds on WS-Security, WS-Trust, and the WS-* 15 
family of specifications providing a rich extensible mechanism for federation.  The WS-Security and WS-16 
Trust specification allow for different types of security tokens, infrastructures, and trust topologies.  This 17 
specification uses these building blocks to define additional federation mechanisms that extend these 18 
specifications and leverage other WS-* specifications. 19 

The mechanisms defined in this specification can be used by Web service (SOAP) requestors as well as 20 
Web browser requestors.  The Web service requestors are assumed to understand the WS-Security and 21 
WS-Trust mechanisms and be capable of interacting directly with Web service providers.  The Web 22 
browser mechanisms describe how the WS-* messages (e.g. WS-Trust’s RST and RSTR) are encoded in 23 
HTTP messages such that they can be passed between resources and Identity Provider (IP)/ Security 24 
Token Service (STS) parties by way of a Web browser client.  This definition allows the full richness of 25 
WS-Trust, WS-Policy, and other WS-* mechanisms to be leveraged in Web browser environments. 26 

It is expected that WS-Policy and WS-SecurityPolicy (as well as extensions in this specification) are used 27 
to describe what aspects of the federation framework are required/supported by federation participants 28 
and that this information is used to determine the appropriate communication options. The assertions 29 
defined within this specification have been designed to work independently of a specific version of WS-30 
Policy. At the time of the publication of this specification the versions of WS-Policy known to correctly 31 
compose with this specification are WS-Policy 1.2 and 1.5. Within this specification the use of the 32 
namespace prefix wsp refers generically to the WS-Policy namespace, not a specific version. 33 

1.1 Document Roadmap 34 

The remainder of this section describes the goals, conventions, namespaces, schema and WSDL 35 
locations, and terminology for this document.   36 

Chapter 2 provides an overview of the federation model.  This includes a discussion of the federation 37 
goals and issues, different trust topologies, identity mapping, and the components of the federation 38 
framework. 39 

Chapter 3 describes the overall federation metadata model and how it is used within the federation 40 
framework.  This includes how it is expressed and obtained within and across federations. 41 

Chapter 4 describes the optional sign-out mechanisms of the federation framework.  This includes how 42 
sign-out messages are managed within and across federations including the details of sign-out 43 
messages. 44 

Chapter 5 describes the role of attribute services in the federation framework.   45 

Chapter 6 defines the pseudonym service within the federation framework.  This includes how 46 
pseudonyms are obtained, mapped, and managed. 47 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 9 of 137 

Chapter 7 presents how pseudonyms can be directly integrated into security token services by extending 48 
the token request and response messages defined in WS-Trust. 49 

Chapter 8 introduces additional extensions to WS-Trust that are designed to facilitate federation and 50 
includes the use of token references, federation selection, extraction of keys for different trust styles, and 51 
different authentication types. 52 

Chapter 9 describes federated authorization including extensions to WS-Trust and minimum 53 
requirements. 54 

Chapter 10 describes how specific policy and metadata can be provided for a specific message pattern 55 
and during normal requestor/recipient interactions. 56 

Chapter 11 describes pre-defined types of authentication for use with WS-Trust. 57 

Chapter 12 describes extensions to WS-Trust for privacy of security token claims and how privacy 58 
statements can be made in federated metadata documents. 59 

Chapter 13 describes how WS-Federation and WS-Trust can be used by web browser requestors and 60 
web applications that do not support direct SOAP messaging. 61 

Chapter 14 describes extensions to WS-SecurityPolicy to allow federation participants to indicate 62 
additional federation requirements. 63 

Chapters 15 and 16 define federation-specific error codes and outline security considerations for 64 
architects, implementers, and administrators of federated systems. 65 

Chapters 17 and 18 acknowledge contributors to the specification and all references made by this 66 
specification to other documents. 67 

Appendix I provides a sample WSDL definition of the services defined in this specifications. 68 

Appendix II provides a detailed example of the messages for a Web browser-based requestor that is 69 
using the federation mechanisms described in chapter 9. 70 

Appendix III describes several additional use cases motivating the federation framework for both SOAP-71 
based and Web browser-based requestors. 72 

1.2 Goals and Requirements 73 

The primary goal of this specification is to enable federation of identity, attribute, authentication, and 74 
authorization information.   75 

1.2.1 Requirements 76 

The following list identifies the key driving requirements for this specification:  77 

 Enable appropriate sharing of identity, authentication, and authorization data using different or like 78 

mechanisms 79 

 Allow federation using different types of security tokens, trust topologies, and security infrastructures 80 

 Facilitate brokering of trust and security token exchange for both SOAP requestors and Web 81 

browsers using common underlying mechanisms and semantics 82 

 Express federation metadata to facilitate communication and interoperability between federation 83 

participants 84 

 Allow identity mapping to occur at either requestor, target service, or any IP/STS 85 

 Provide identity mapping support if target services choose to maintain OPTIONAL local identities, but 86 

do not require local identities 87 

 Allow for different levels of privacy for identity (e.g. different forms and uniqueness of digital identities) 88 

information and attributes 89 

 Allow for authenticated but anonymous federation 90 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 10 of 137 

1.2.2 Non-Goals 91 

The following topics are outside the scope of this document: 92 

 Definition of message security (see WS-Security) 93 

 Trust establishment/verification protocols (see WS-Trust) 94 

 Management of trust or trust relationships 95 

 Specification of new security token formats beyond token references 96 

 Specification of new attribute store interfaces beyond UDDI 97 

 Definition of new security token assertion/claim formats 98 

 Requirement on specific security token formats 99 

 Requirement on specific types of trust relationships 100 

 Requirement on specific types of account linkages 101 

 Requirement on specific types of identity mapping 102 

1.3 Notational Conventions 103 

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 104 
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 105 
in [KEYWORDS]. 106 

This specification uses the following syntax to define outlines for assertions:  107 

 The syntax appears as an XML instance, but values in italics indicate data types instead of literal 108 
values. 109 

 Characters are appended to elements and attributes to indicate cardinality: 110 

o "?" (0 or 1) 111 

o "*" (0 or more) 112 

o "+" (1 or more) 113 

 The character "|" is used to indicate a choice between alternatives. 114 

 The characters "(" and ")" are used to indicate that contained items are to be treated as a group 115 
with respect to cardinality or choice. 116 

 The characters "[" and "]" are used to call out references and property names. 117 

 Ellipses (i.e., "...") indicate points of extensibility. Additional children and/or attributes MAY be 118 
added at the indicated extension points but MUST NOT contradict the semantics of the parent 119 
and/or owner, respectively. By default, if a receiver does not recognize an extension, the receiver 120 
SHOULD ignore the extension; exceptions to this processing rule, if any, are clearly indicated 121 
below. 122 

 XML namespace prefixes (see Table 2) are used to indicate the namespace of the element being 123 
defined. 124 

 125 

Elements and Attributes defined by this specification are referred to in the text of this document using 126 
XPath 1.0 expressions. Extensibility points are referred to using an extended version of this syntax: 127 

 An element extensibility point is referred to using {any} in place of the element name. This 128 
indicates that any element name can be used, from any namespace other than the namespace of 129 
this specification. 130 

 An attribute extensibility point is referred to using @{any} in place of the attribute name. This 131 
indicates that any attribute name can be used, from any namespace other than the namespace of 132 
this specification. 133 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 11 of 137 

Extensibility points in the exemplar may not be described in the corresponding text. 134 

1.4 Namespaces 135 

The following namespaces are used in this document: 136 

Prefix Namespace 

fed http://docs.oasis-open.org/wsfed/federation/200706 

auth http://docs.oasis-open.org/wsfed/authorization/200706 

priv http://docs.oasis-open.org/wsfed/privacy/200706 

mex http://schemas.xmlsoap.org/ws/2004/09/mex  

S11 http://schemas.xmlsoap.org/soap/envelope/ 

S12 http://www.w3.org/2003/05/soap-envelope 

wsa http://www.w3.org/2005/08/addressing 

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-secext-1.0.xsd 

wsse11 http://docs.oasis-open.org/wss/oasis-wss-wsecurity-

secext-1.1.xsd 

wst http://docs.oasis-open.org/ws-sx/ws-trust/200512 

sp http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200512 

wsrt http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer 

wsxf http://schemas.xmlsoap.org/ws/2004/09/transfer 

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-utility-1.0.xsd 

ds http://www.w3.org/2000/09/xmldsig# 

xs http://www.w3.org/2001/XMLSchema 

It should be noted that the versions identified in the above table supersede versions identified in 137 
referenced specifications. 138 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 12 of 137 

1.5 Schema and WSDL Files 139 

The schemas for this specification can be located at: 140 

http://docs.oasis-open.org/wsfed/federation/v1.2/federation.xsd 141 
http://docs.oasis-open.org/wsfed/authorization/v1.2/authorization.xsd 142 
http://docs.oasis-open.org/wsfed/privacy/v1.2/privacy.xsd  143 

The WSDL for this specification can be located at: 144 

http://docs.oasis-open.org/wsfed/federation/v1.2/federation.wsdl 145 

1.6 Terminology 146 

The following definitions establish the terminology and usage in this specification. 147 

Association – The relationship established to uniquely link a principal across trust realms, despite the 148 
principal’s having different identifiers in each trust realm. This is also referred to as “linked accounts” for 149 
the more narrowly scoped definition of associations (or linking). 150 

Attribute Service - An attribute service is a Web service that maintains information (attributes) about 151 
principals within a trust realm or federation.  The term principal, in this context, can be applied to any 152 
system entity, not just a person.   153 

Authorization Service – A specialized type of Security Token Service (STS) that makes authorization 154 

decisions. 155 

Claim – A claim is a declaration made by an entity (e.g. name, identity, key, group, privilege, capability, 156 
attribute, etc). 157 

Digest – A digest is a cryptographic checksum of an octet stream. 158 

Digital Identity – A digital representation of a principal (or group of principals) that is unique to that 159 
principal (or group), and that acts as a reference to that principal (or group). For example, an email 160 
address MAY be treated as a digital identity, just as a machine’s unique IP address MAY also be treated 161 
as a digital identity, or even a generated unique identifier. In the context of this document, the term 162 
identity is often used to refer to a digital identity. A principal MAY have multiple digital identities, 163 

Digital Signature - A digital signature (of data or a message) is a value computed on the data/message 164 
(typically a hash) and protected with a cryptographic function. This has the effect of binding the digital 165 
signature to the data/message in such a way that intended recipients of the data can use the signature to 166 
verify that the data/message has not been altered since it was signed by the signer.   167 

Digital Signature Validation – Digital signature validation is the process of verifying that digitally signed 168 

data/message has not been altered since it was signed. 169 

Direct Brokered Trust – Direct Brokered Trust is when one party trusts a second party who, in turn, 170 

trusts and vouches for, the claims of a third party.   171 

Direct Trust – Direct trust is when a Relying Party accepts as true all (or some subset of) the claims in 172 

the token sent by the requestor. 173 

Federated Context – A group of realms to which a principal has established associations and to which a 174 
principal has presented Security Tokens and obtained session credentials. A federated context is 175 
dynamic, in that a realm is not part of the federated context if the principal has not presented Security 176 
Tokens. A federated context is not persistent, in that it does not exist beyond the principals (Single) Sign-177 
Out actions. 178 

Federation – A federation is a collection of realms that have established a producer-consumer 179 
relationship whereby one realm can provide authorized access to a resource it manages based on an 180 
identity, and possibly associated attributes, that are asserted in another realm.   Federation requires trust 181 
such that a Relying Party can make a well-informed access control decision based on the credibility of 182 
identity and attribute data that is vouched for by another realm. 183 

http://docs.oasis-open.org/wsfed/federation/200706
http://schemas.xmlsoap.org/ws/2006/12/federation/federation.xsd
http://schemas.xmlsoap.org/ws/2006/12/federation/federation.xsd
http://docs.oasis-open.org/wsfed/authorization/200706
http://schemas.xmlsoap.org/ws/2006/12/authorization/authorization.xsd
http://schemas.xmlsoap.org/ws/2006/12/authorization/authorization.xsd
http://docs.oasis-open.org/wsfed/privacy/200706
http://docs.oasis-open.org/wsfed/privacy/v1.2/privacy.xsd
http://docs.oasis-open.org/wsfed/privacy/v1.2/privacy.xsd
http://docs.oasis-open.org/wsfed/federation/v1.2/federation.wsdl


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 13 of 137 

Federate – The process of establishing a federation between realms (partners).  Associations are how 184 

principals create linkages between federated realms. 185 

Identity Mapping – Identity Mapping is a method of creating relationships between digital identities or 186 

attributes associated with an individual principal by different Identity or Service Providers 187 

Identity Provider (IP) – An Identity Provider is an entity that acts as an authentication service to end 188 
requestors and a data origin authentication service to service providers (this is typically an extension of a 189 
Security Token Service).  Identity Providers (IP) are trusted (logical) 3rd parties which need to be trusted 190 
both by the requestor (to maintain the requestor's identity information as the loss of this information can 191 
result in the compromise of the requestors identity) and the service provider which MAY grant access to 192 
valuable resources and information based upon the integrity of the identity information provided by the IP. 193 

Indirect Brokered Trust – Indirect Brokered Trust is a variation on direct brokered trust where the 194 
second party can not immediately validate the claims of the third party to the first party and negotiates 195 
with the third party, or additional parties, to validate the claims and assess the trust of the third party. 196 

IP/STS – The acronym IP/STS is used to indicate a service that is either an Identity Provider (IP) or 197 

Security Token Service (STS). 198 

Metadata – Any data that describes characteristics of a subject.  For example, federation metadata 199 

describes attributes used in the federation process such as those used to identify – and either locate or 200 

determine the relationship to – a particular Identity Provider, Security Token Service or Relying Party 201 

service.   202 

Metadata Endpoint Reference (MEPR) – A location expressed as an endpoint reference that enables a 203 
requestor to obtain all the required metadata for secure communications with a target service.  This 204 
location MAY contain the metadata or a pointer to where it can be obtained. 205 

Principal – An end user, an application, a machine, or any other type of entity that may act as a 206 
requestor. A principal is typically represented with a digital identity and MAY have multiple valid digital 207 
identities 208 

PII – Personally identifying information is any type of information that can be used to distinguish a 209 

specific individual or party, such as your name, address, phone number, or e-mail address. 210 

Proof-of-Possession – Proof-of-possession is authentication data that is provided with a message to 211 
prove that the message was sent and or created by a claimed identity. 212 

Proof-of-Possession Token – A proof-of-possession token is a security token that contains data that a 213 
sending party can use to demonstrate proof-of-possession.  Typically, although not exclusively, the proof-214 
of-possession information is encrypted with a key known only to the sender and recipient. 215 

Pseudonym Service – A pseudonym service is a Web service that maintains alternate identity 216 
information about principals within a trust realm or federation.  The term principal, in this context, can be 217 
applied to any system entity, not just a person.   218 

Realm or Domain – A realm or domain represents a single unit of security administration or trust. 219 

Relying Party – A Web application or service that consumes Security Tokens issued by a Security Token 220 

Service. 221 

Security Token – A security token represents a collection of claims.  222 

Security Token Service (STS) - A Security Token Service is a Web service that provides issuance and 223 

management of security tokens (see [WS-Security] for a description of security tokens).  That is, it 224 

makes security statements or claims often, although not required to be, in cryptographically protected 225 

sets.  These statements are based on the receipt of evidence that it can directly verify, or security tokens 226 

from authorities that it trusts.  To assert trust, a service might prove its right to assert a set of claims by 227 

providing a security token or set of security tokens issued by an STS, or it could issue a security token 228 

with its own trust statement (note that for some security token formats this can just be a re-issuance or 229 

co-signature).  This forms the basis of trust brokering. 230 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 14 of 137 

Sender Authentication – Sender authentication is corroborated authentication evidence possibly across 231 
Web service actors/roles indicating the sender of a Web service message (and its associated data).  Note 232 
that it is possible that a message may have multiple senders if authenticated intermediaries exist. Also 233 
note that it is application-dependent (and out of scope) as to how it is determined who first created the 234 
messages as the message originator might be independent of, or hidden behind an authenticated sender. 235 

Signed Security Token – A signed security token is a security token that is asserted and 236 

cryptographically signed by a specific authority (e.g. an X.509 certificate or a Kerberos ticket) 237 

Sign-Out –The process by which a principal indicates that they will no longer be using their token and 238 
services in the realm in response to which the realm typically destroys their token caches and clear saved 239 
session credentials for the principal. 240 

Single Sign-Out (SSO) – The process of sign-out in a federated context which involves notification to 241 

Security Token Services and Relying Parties to clear saved session credentials and Security Tokens. 242 

SOAP Recipient – A SOAP recipient is an application that is capable of receiving Web services 243 

messages such as those described in WS-Security, WS-Trust, and this specification. 244 

SOAP Requestor – A SOAP requestor is an application (possibly a Web browser) that is capable of 245 
issuing Web services messages such as those described in WS-Security, WS-Trust, and this 246 
specification. 247 

Subset – A subset is a set of restrictions to limit options for interoperability. 248 

Trust - Trust is the characteristic whereby one entity is willing to rely upon a second entity to execute a 249 
set of actions and/or to make a set of assertions about a set of principals and/or digital identities.  In the 250 
general sense, trust derives from some relationship (typically a business or organizational relationship) 251 
between the entities.  With respect to the assertions made by one entity to another, trust is commonly 252 
asserted by binding messages containing those assertions to a specific entity through the use of digital 253 
signatures and/or encryption.   254 

Trust Realm/Domain - A Trust Realm/Domain is an administered security space in which the source and 255 
target of a request can determine and agree whether particular sets of credentials from a source satisfy 256 
the relevant security policies of the target.  The target MAY defer the trust decision to a third party (if this 257 
has been established as part of the agreement) thus including the trusted third party in the Trust 258 
Domain/Realm.  259 

Validation Service - A validation service is a specialized form of a Security Token Service that uses the 260 

WS-Trust mechanisms to validate provided tokens and assess their level of trust (e.g. claims trusted).   261 

Web Browser Requestor – A Web browser requestor is an HTTP browser capable of broadly supported 262 
[HTTP].  If a Web browser is not able to construct a SOAP message then it is often referred to as a 263 
passive requestor. 264 

1.7 Normative References 265 

[HTTP]  R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. 266 
Berners-Lee,  RFC 2616, "Hypertext Transfer Protocol -- HTTP/1.1". 267 
June 1999. 268 

http://ietf.org/rfc/rfc2616.txt   269 

[HTTPS]  IETF Standard, "The TLS Protocol", January 1999. 270 

http://www.ietf.org/rfc/rfc2246.txt  271 

[KEYWORDS] S. Bradner, "Key words for use in RFCs to Indicate Requirement 272 
Levels", RFC 2119, Harvard University, March 1997. 273 

http://www.ietf.org/rfc/rfc2119.txt.  274 

[SOAP]  W3C Note, "SOAP: Simple Object Access Protocol 1.1", 08 May 2000. 275 

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ 276 

http://ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 15 of 137 

[SOAP12] W3C Recommendation, "SOAP 1.2 Part 1: Messaging Framework 277 
(Second Edition)", 27 April 2007. 278 

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/ 279 

[URI]  T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers 280 
(URI): Generic Syntax", RFC 3986, MIT/LCS, Day Software, Adobe 281 
Systems, January 2005. 282 

http://www.ietf.org/rfc/rfc3986.txt  283 

[WS-Addressing] W3C Recommendation, "Web Services Addressing (WS-Addressing)", 284 
9 May 2006. 285 

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509 286 

[WS-Eventing] W3C Member Submission, "Web Services Eventing (WS-Eventing)”, 287 
15 March 2006 288 
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/  289 

[WS-MetadataExchange] Web Services Metadata Exchange (WS-MetadataExchange), August 290 
2006 291 

http://schemas.xmlsoap.org/ws/2004/09/mex/ 292 

[WS-Policy] W3C Member Submission "Web Services Policy 1.2 - Framework", 25 293 
April 2006. 294 

http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/ 295 

W3C Recommendation “Web Services Policy 1.5 – Framework”, 04 296 
September 2007 297 

http://www.w3.org/TR/2007/REC-ws-policy-20070904/ 298 

[WS-PolicyAttachment] W3C Member Submission "Web Services Policy 1.2 - Attachment", 25 299 
April 2006. 300 

http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-301 
20060425/ 302 

W3C Recommendation “Web Services Policy 1.5 – Attachment”, 04 303 
September 2007 304 

http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/ 305 

[WS-SecurityPolicy] OASIS Standard, "WS-SecurityPolicy 1.2", July 2007 306 

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702  307 

[WS-Security] OASIS Standard, "OASIS Web Services Security: SOAP Message 308 
Security 1.0 (WS-Security 2004)", March 2004. 309 

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-310 
message-security-1.0.pdf 311 

 OASIS Standard, "OASIS Web Services Security: SOAP Message 312 
Security 1.1 (WS-Security 2004)", February 2006. 313 

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-314 
spec-os-SOAPMessageSecurity.pdf  315 

[WSS:UsernameToken] OASIS Standard, "Web Services Security: UsernameToken Profile", 316 
March 2004 317 

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-318 
token-profile-1.0.pdf   319 

OASIS Standard, "Web Services Security: UsernameToken Profile 320 
1.1", February 2006 321 

http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
http://www.w3.org/Submission/2006/SUBM-WS-Eventing-20060315/
http://schemas.xmlsoap.org/ws/2004/09/mex/
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/
http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/
http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 16 of 137 

http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-322 
spec-os-UsernameTokenProfile.pdf      323 

[WSS:X509Token] OASIS Standard, "Web Services Security X.509 Certificate Token 324 
Profile", March 2004 325 

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-326 
profile-1.0.pdf    327 

OASIS Standard, "Web Services Security X.509 Certificate Token 328 
Profile", February 2006 329 

http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-330 
spec-os-x509TokenProfile.pdf    331 

[WSS:KerberosToken] OASIS Standard, “Web Services Security Kerberos Token Profile 1.1”, 332 
February 2006 333 

http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-334 
spec-os-KerberosTokenProfile.pdf   335 

[WSS:SAMLTokenProfile] OASIS Standard, “Web Services Security: SAML Token Profile”, 336 
December 2004 337 

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf 338 

OASIS Standard, “Web Services Security: SAML Token Profile 1.1”, 339 
February 2006 340 

http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-341 
spec-os-SAMLTokenProfile.pdf     342 

[WS-ResourceTransfer]  "Web Services Resource Transfer (WS-ResourceTransfer)”, August 343 
2006 344 

http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/  345 

[WS-Transfer] W3C Member Submission, "Web Services Transfer (WS-Transfer)", 27 346 
September 2006 347 
http://www.w3.org/Submission/2006/SUBM-WS-Transfer-20060927/   348 

[WS-Trust] OASIS Standard, "WS-Trust 1.3", March 2007 349 

http://docs.oasis-open.org/ws-sx/ws-trust/200512 350 

[ISO8601] ISO Standard 8601:2004(E), "Data elements and interchange formats 351 
– Information interchange - Representation of dates and times", Third 352 
edition, December 2004 353 

http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func354 
=doc.Fetch&nodeid=4021199 355 

[DNS-SRV-RR]  Gulbrandsen, et al, RFC 2782, "DNS SRV RR", February 2000. 356 

http://ietf.org/rfc/rfc2782.txt  357 

[XML-Schema1]  W3C Recommendation, "XML Schema Part 1: Structures Second 358 
Edition", 28 October 2004. 359 

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/  360 

[XML-Schema2]  W3C Recommendation, "XML Schema Part 2: Datatypes Second 361 
Edition", 28 October 2004. 362 

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 363 

[XML-C14N]  W3C Recommendation, "Canonical XML Version 1.0", 15 March 2001 364 

http://www.w3.org/TR/2001/REC-xml-c14n-20010315  365 

http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/
http://www.w3.org/Submission/2006/SUBM-WS-Transfer-20060927/
http://schemas.xmlsoap.org/ws/2004/04/trust
http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func=doc.Fetch&nodeid=4021199
http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func=doc.Fetch&nodeid=4021199
http://ietf.org/rfc/rfc2782.txt
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 17 of 137 

[XML-Signature]  W3C Recommendation, "XML-Signature Syntax and Processing", 12 366 
February 2002 367 

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/  368 

[WSDL 1.1] W3C Note, "Web Services Description Language (WSDL 1.1)," 15 369 
March 2001. 370 

http://www.w3.org/TR/2001/NOTE-wsdl-2001031  371 

[XPATH] W3C Recommendation "XML Path Language (XPath) Version 1.0", 16 372 
November 1999. 373 

http://www.w3.org/TR/1999/REC-xpath-19991116 374 

[RFC 4648] S. Josefsson, et. al, RFC 4648 "The Base16, Base32, and Base64 375 
Data Encodings" October 2006 376 

http://www.ietf.org/rfc/rfc4648.txt  377 

1.8 Non-Normative References 378 

 379 

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2001/NOTE-wsdl-2001031
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.ietf.org/rfc/rfc4648.txt


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 18 of 137 

2 Model 380 

This chapter describes the overall model for federation building on the foundations specified in [WS-381 
Security], [WS-SecurityPolicy], and [WS-Trust]. 382 

2.1 Federation Basics 383 

The goal of federation is to allow security principal identities and attributes to be shared across trust 384 

boundaries according to established policies.  The policies dictate, among other things, formats and 385 

options, as well as trusts and privacy/sharing requirements. 386 

In the context of web services the goal is to allow these identities and attributes to be brokered from 387 

identity and security token issuers to services and other relying parties without requiring user intervention 388 

(unless specified by the underlying policies).  This process involves the sharing of federation metadata 389 

which describes information about federated services, policies describing common communication 390 

requirements, and brokering of trust and tokens via security token exchange (issuances, validation, etc.). 391 

Federations must support a wide variety of configurations and environments.  This framework leverages 392 

the WS-* specifications to create an evolutionary federation path allowing services to use only what they 393 

need and leverage existing infrastructures and investments. 394 

Federations can exist within organizations and companies as well as across organizations and 395 

companies.  They can also be ad-hoc collections of principals that choose to participate in a community.  396 

The figure below illustrates a few sample federations: 397 

 398 

Requestor

Identity

Provider
Resource

Company A

Requestor

Identity

Provider
Resource

Company A Company B

Requestor

Identity

Provider

Company A

Requestor

Identity

Provider

Company B

Requestor

Identity

Provider

Company C

(a) (b) (c)  399 

Figures 1a, 1b, 1c: Sample Federation Scenarios 400 

As a consequence, federations MAY exist within one or multiple administrative domains, span multiple 401 

security domains, and MAY be explicit (requestor knows federation is occurring) or implicit (federation is 402 

hidden such as in a portal) as illustrated in the figure below: 403 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 19 of 137 

  

Requestor

Identity

Provider
Resource

Company A

Requestor

Identity

Provider
Resource

Company A Company B

Requestor

Identity

Provider

Company A Company B

Resource

Internet

Requestor

Identity

Provider
Resource

Company A Company B

(a) (b)

(c) (d)
 404 

Figures 2a, 2b, 2c, 2d: Sample Administrative Domains 405 

Two points of differentiation for these models are the degree to which the Resource Provider and Identity 406 

Provider services can communicate and the levels of trust between the parties.  For example, in cross-407 

domain scenarios, the requestor’s Identity Provider MAY be directly trusted and accessible or it MAY 408 

have a certificate from a trusted source and be hidden behind a firewall making it unreachable as 409 

illustrated in the Figure below: 410 

   411 

Figures 3a, 3b: Accessibility of Identity Provider 412 

In the federation process some level of information is shared.  The amount of information shared is 413 

governed by policy and often dictated by contract.  This is because the information shared is often of a 414 

personal or confidential nature.  For example, this may indicate name, personal identification numbers, 415 

Requestor 

Identity 

Provider 
Resource 

Company A Company B 

Requestor 

Identity 

Provider 
Resource 

Company A Company B 

( a ) ( b ) 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 20 of 137 

addresses, etc.  In some cases the only information that is exchanged is an authentication statement (e.g. 416 

employee of company “A”) allowing the actual requestor to be anonymous as in the example below: 417 

Requestor

Identity

Provider
Resource

Company A Company B

U/P

ID

ID

“A”

“A”

 418 

Figure 4: Sample Anonymous Access 419 

To establish a federation context for a principal either the principal’s identity is universally accepted (so 420 

that its association is “pre-established” across trust realms within a federation context), or it must be 421 

brokered into a trusted identity relevant to each trust realm within the federation context.  The latter case 422 

requires the process of identity mapping – that is, the conversion of a digital identity from one realm to a 423 

digital identity valid in another realm by a party that trusts the starting realm and has the rights to speak 424 

for (make assertions to) the ending realm, or make assertions that the ending realm trusts.  Identity 425 

mapping (this brokering) is typically implemented by an IP/STS when initially obtaining tokens for a 426 

service or when exchanging tokens at a service’s IP/STS. 427 

A principal’s digital identity can be represented in different forms requiring different types of mappings.  428 

For example, if a digital identity is fixed (immutable across realms within a federation), it may only need to 429 

be mapped if a local identity is needed.  Fixed identities make service tracking (e.g. personalization) easy 430 

but this can also be a privacy concern (service collusion).  This concern is lessened if the principal has 431 

multiple identities and chooses which to apply to which service, but collusion is still possible. Note that in 432 

some environments, collusion is desirable in that it can (for example) provide a principal with a better 433 

experience.   434 

Another approach to identity mapping is pair-wise mapping where a unique digital identity is used for 435 

each principal at each target service.  This simplifies service tracking (since the service is given a unique 436 

ID for each requestor) and prevents cross-service collusion by identity (if performed by a trusted service).  437 

While addressing collusion, this requires the principal’s IP/STS to drive identity mapping. 438 

A third approach is to require the service to be responsible for the identity mapping.  That is, the service is 439 

given an opaque handle which it must then have mapped into an identity it understands – assuming it 440 

cannot directly process the opaque handle.  More specifically, the requestor’s IP/STS generates a digital 441 

identity that cannot be reliably used by the target service as a key for local identity mapping (e.g. the 442 

marker is known to be random or the marker’s randomness is not known.  The target service then uses 443 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 21 of 137 

the requestor’s mapping service (called a pseudonym service) to map the given (potentially random) 444 

digital identity into a constant service-specific digital identity which it has registered with the requestor’s 445 

mapping service.  This also addresses the collusion issue but pushes the mapping burden onto the 446 

service (but keeps the privacy of all information in the requestor’s control).  447 

The following sections describe how the WS-* specifications are used and extended to create a 448 

federation framework to support these concepts. 449 

2.2 Metadata Model 450 

As discussed in the previous section, federations can be loosely coupled.  As well, even within tightly 451 
coupled federations there is a need to discover the metadata and policies of the participants within the 452 
federation with whom a requestor is going to communicate. 453 

This discovery process begins with the target service, that is, the service to which the requester wishes to 454 
ultimately communicate.  Given the metadata endpoint reference (MEPR) for the target service allows the 455 
requestor to obtain all requirement metadata about the service (e.g. federation metadata, communication 456 
policies, WSDL, etc.).   457 

This section describes the model where the MEPR points to an endpoint where the metadata can be 458 
obtain, which is, in turn, used to locate the actual service.  An equally valid approach is to have a MEPR 459 
that points to the actual service and also contains all of the associated metadata (as described in [WS-460 
MetadataExchange]) and thereby not requiring the extra discovery steps. 461 

Federation metadata describes settings and information about how a service is used within a federation 462 
and how it participates in the federation.  Federation metadata is only one component of the overall 463 
metadata for a service – there is also communication policy that describes the requirements for web 464 
service messages sent to the service and a WSDL description of the organization of the service, 465 
endpoints, and messages.   466 

It should be noted that federation metadata, like communication policy, can be scoped to services, 467 
endpoints, or even to messages.  As well, the kinds of information described are likely to vary depending 468 
on a services role within the federation (e.g. target service, security token service …). 469 

Using the target service’s metadata a requestor can discover the MEPRs of any related services that it 470 
needs to use if it is to fully engage with the target service.  The discovery process is repeated for each of 471 
the related services to discover the full set of requirements to communicate with the target service.  This 472 
is illustrated in the figure below: 473 

 

Target Service

MEPR

Target

Service

Requestor

Related Service

MEPR

Related

Service

Related Service

MEPR

Related

Service

Related Service

Related 

Service

 474 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 22 of 137 

Figure 5a: Obtaining Federation Metadata (not embedded in EPR) 475 

The discovery of metadata can be done statically or dynamically.  Note that if it is obtained statically, 476 
there is a possibility of the data becoming stale resulting in communication failures. 477 

As previously noted the MEPR MAY contain the metadata and refer to the actual service.  That is, the 478 
EPR for the actual service MAY be within the metadata pointed to by the EPR (Figure 5a).  As well, the 479 
EPR for the actual service MAY also contain (embed) the metadata (Figure 5b).   An alternate view of 480 
Figure 5a in this style is presented in Figure 5b: 481 

Target Service

MEPR

Target

Service

Requestor

Related Service

MEPR

Related

Service

Related Service

MEPR

Related

Service

Related Service

Related 

Service

 482 

Figure 5b: Obtaining Federation Metadata (embedded) 483 

Figures 5a and 5b illustrate homogenous use of MEPRs, but a mix is allowed.  That is, some MEPRs 484 
might point at metadata endpoints where the metadata can be obtained (which contains the actual 485 
service endpoints) and some may contain actual service references with the service’s metadata 486 
embedded within the EPR. 487 

In some cases there is a need to refer to services by a name, thereby allowing a level of indirection to 488 
occur.  This can be handled directly by the application if there are a set of well-known application-specific 489 
logical names or using some external mechanism or directory.  In such cases the mapping of logical 490 
endpoints to physical endpoints is handled directly and such mappings are outside the scope of this 491 
specification.  The following example illustrates the use of logical service names: 492 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 23 of 137 

  493 

Figure 6: Example of Logical Service Names 494 

To simplify metadata access, and to allow different kinds of metadata to be scoped to different levels of 495 
the services, both communication policies (defined in [WS-Policy]) and federation metadata (described in 496 
next chapter) can be embedded within WSDL using the mechanisms described in [WS-PolicyAttachment]. 497 

In some scenarios a service MAY be part of multiple federations.  In such cases there is a need to make 498 
all federation metadata available, but there is often a desire to minimize what needs to be downloaded.  499 
For this reason federation metadata can reference metadata sections located elsewhere as well as 500 
having the metadata directly in the document.  For example, this approach allows, a service to have a 501 
metadata document that has the metadata for the two most common federations in which the service 502 
participates and pointers (MEPR) to the metadata documents for the other federations.  This is illustrated 503 
in the figure below: 504 

      Federaton

       Metadata

Federation1

     … 

     … 

     …

Federation2

     … 

     … 

     …

Federation3

Federation4

...

      Federaton

       Metadata

Federation3

     … 

     … 

     …

      Federaton

       Metadata

Federation4

     … 

     … 

     …

 505 

Figure 7: Federation Metadata Document 506 

This section started by assuming knowledge of the MEPR for the target service.  In some cases this is not 507 
known and a discovery process (described in section 3) is needed to obtain the federation metadata in 508 
order to bootstrap the process described in this section (e.g. using DNS or well-known addresses). 509 

Target Service 

MEPR 

Target 

Service 

Requestor 

Related Service 

MEPR 

Related 

Service 

Related Service “X” 

“X” 

MEPR 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 24 of 137 

2.3 Security Model 510 

As described in [WS-Trust], a web service MAY require a set of claims, codified in security tokens and 511 
related message elements, to process an incoming request.  Upon evaluating the policy and metadata, if 512 
the requester does not have the necessary security token(s) to prove its right to assert the required 513 
claims, it MAY use the mechanisms described in [WS-Trust] (using security tokens or secrets it has 514 
already) to acquire additional security tokens. 515 

This process of exchanging security tokens is typically bootstrapped by a requestor authenticating to an 516 
IP/STS to obtain initial security tokens using mechanisms defined in [WS-Trust].  Additional mechanisms 517 
defined in this specification along with [WS-MetadataExchange] can be used to enable the requestor to 518 
discover applicable policy, WSDL and schema about a service endpoint, which can in turn be used to 519 
determine the metadata, security tokens, claims, and communication requirements that are needed to 520 
obtain access to a resource (recall that federation metadata was discussed in the previous section).  521 

These initial security tokens MAY be accepted by various Web services or exchanged at Security Token 522 
Services (STS) / Identity Providers (IP) for additional security tokens subject to established trust 523 
relationships and trust policies as described in WS-Trust.  This exchange can be used to create a local 524 
access token or to map to a local identity. 525 

This specification also describes an Attribute/Pseudonym service that can be used to provide 526 
mechanisms for restricted sharing of principal information and principal identity mapping (when different 527 
identities are used at different resources). The metadata mechanisms described in this document are 528 
used to enable a requestor to discover the location of various Attribute/Pseudonym services.  529 

Finally, it should be noted that just as a resource MAY act as its own IP/STS or have an embedded 530 
IP/STS.  Similarly, a requestor MAY also act as its own IP/STS or have an embedded IP/STS. 531 

2.4 Trust Topologies and Security Token Issuance 532 

The models defined in [WS-Security], [WS-Trust], and [WS-Policy] provides the basis for federated trust.  533 
This specification extends this foundation by describing how these models are combined to enable richer 534 
trust realm mechanisms across and within federations.  This section describes different trust topologies 535 
and how token exchange (or mapping) can be used to broker the trust for each scenario.  Many of the 536 
scenarios described in section 2.1 are illustrated here in terms of their trust topologies and illustrate 537 
possible token issuance patterns for those scenarios. 538 

Requestor

IP/STS

Resource

Security

Token(s)

Policy

Security

Token(s)

Policy

Security

Token(s)

Policy

IP/STS

Security

Token(s)

Policy

TRUST

1
2

3

T
R

U
S

T

T
R

U
S

T

 539 

         Figure 8: Federation and Trust Model 540 

Figure 8 above illustrates one way the WS-Trust model may be applied to simple federation scenarios.  541 

Here security tokens (1) from the requestor’s trust realm are used to acquire security tokens from the 542 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 25 of 137 

resource’s trust realm (2) These tokens are then presented to the resource/service’s realm (3) to access 543 

the resource/service .  That is, a token from one STS is exchanged for another at a second STS or 544 

possibly stamped or cross-certified by a second STS (note that this process can be repeated allowing for 545 

trust chains of different lengths).  546 

Note that in the figure above the trust of the requestor to its IP/STS and the resource to its IP/STS are 547 

illustrated.  These are omitted from subsequent diagrams to make the diagrams for legible. 548 

Figure 9 below illustrates another approach where the resource/service acts as a validation service. In 549 

this scenario, the requestor presents the token provided by the requestor’s STS (1, 2) to the resource 550 

provider, where the resource provider uses its security token service to understand and validate this 551 

security token(s) (3). In this case information on the validity of the presented token should be returned by 552 

the resource provider’s token service.   553 

  554 

Figure 9: Alternate Federation and Trust Model 555 

Note that the model above also allows for different IP/STS services within the same trust realm (e.g. 556 

authentication and authorization services). 557 

In both of the above examples, a trust relationship has been established between the security token 558 

services.  Alternatively, as illustrated in Figure 10, there may not be a direct trust relationship, but an 559 

indirect trust relationship that relies on a third-party to establish and confirm separate direct trust 560 

relationships.   561 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 26 of 137 

  562 

Figure 10: Indirect Trust 563 

In practice, a requestor is likely to interact with multiple resources/services which are part of multiple trust 564 
realms as illustrated in the figure below: 565 

 566 

Figure 11: Multiple Trust Domains 567 

Similarly, in response to a request a resource/service may need to access other resources/service on 568 
behalf of the requestor as illustrated in figure 12: 569 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 27 of 137 

  570 

Figure 12: Trust between Requestor-Resource and Resource-Delegate Resource 571 

In such cases (as illustrated in Figure 12) the first resource, in its capacity as a second requestor on 572 
behalf of the original requestor, provides security tokens to allow/indicate proof of (ability for) delegation.  573 
It should be noted that there are a number of variations on this scenario.   For example, the security token 574 
service for the final resource may only have a trust relationship with the token service from the original 575 
requestor (illustrated below), as opposed to the figure above where the trust doesn’t exist with the original 576 
requestor’s STS. 577 

  578 

Figure 13: No Trust Relationship between Resource Providers 579 

Specifically, in Figure 13 the resource or resource's security token service initiates a request for a security 580 
token that delegates the required claims.  For more details on how to format such requests, refer to WS-581 

Trust.  These options are specified as part of the <wst:RequestSecurityToken> request.   582 

It should be noted that delegation tokens, as well as the identity token of the delegation target, might 583 
need to be presented to the final service to ensure proper authorization. 584 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 28 of 137 

In all cases, the original requestor indicates the degree of delegation it is willing to support.  Security 585 
token services SHOULD NOT allow any delegation or disclosure not specifically authorized by the original 586 
requestor, or by the service's policy. 587 

Another form of federation involves ad hoc networks of peer trust.  That is, there MAY be direct trust 588 
relationships that are not based on certificate chains.  In such cases an identity’s chain is irrelevant or 589 
may even be self-signed.  Such trusts MAY be enforced at an IP/STS or at a Relying Party directly. 590 

2.5 Identity Providers 591 

A Security Token Service (STS) is a generic service that issues/exchanges security tokens using a 592 
common model and set of messages.  As such, any Web service can, itself, be an STS simply by 593 
supporting the [WS-Trust] specification.  Consequently, there are different types of security token services 594 
which provide different types of functions.  For example, an STS might simply verify credentials for 595 
entrance to a realm or evaluate the trust of supplied security tokens. 596 

One possible function of a security token service is to provide digital identities – an Identity Provider (IP).  597 
This is a special type of security token service that, at a minimum, performs authentication and can make 598 
identity (or origin) claims in issued security tokens.   599 

In many cases IP and STS services are interchangeable and many references within this document 600 
identify both.   601 

The following example illustrates a possible combination of an Identity Provider (IP) and STS.  In Figure 602 
14, a requestor obtains an identity security token from its Identity Provider (1) and then presents/proves 603 
this to the STS for the desired resource.  If successful (2), and if trust exists and authorization is 604 
approved, the STS returns an access token to the requestor.  The requestor then uses the access token 605 
on requests to the resource or Web service (3).  Note that it is assumed that there is a trust relationship 606 
between the STS and the identity provider. 607 

 

Requestor

STS

Resource

Identity

Provider

1. Obtain identity

security token
2. Present/prove identity and 

obtain access token

3. Present/prove 

access on messages

TRUST

 608 

Figure 14: Role of IP/STS in Basic Federation Model 609 

2.6 Attributes and Pseudonyms 610 

Attributes are typically used when applications need additional information about the requestor that has 611 
not already been provided or cached, or is not appropriate to be sent in every request or saved in security 612 
tokens.  Attributes are also used when ad hoc information is needed that cannot be known at the time the 613 
requests or token issuance. 614 

Protecting privacy in a federated environment often requires additional controls and mechanisms.  One 615 
such example is detailed access control for any information that may be considered personal or subject to 616 
privacy governances.  Another example is obfuscation of identity information from identity providers (and 617 
security token services) to prevent unwanted correlation or mapping of separately managed identities. 618 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 29 of 137 

When requestors interact with resources in different trust realms (or different parts of a federation), there 619 
is often a need to know additional information about the requestor in order to authorize, process, or 620 
personalize the experience. A service, known as an Attribute Service MAY be available within a realm or 621 
federation. As such, an attribute service is used to provide the attributes about a requestor that are 622 
relevant to the completion of a request, given that the service is authorized to obtain this information.  623 
This approach allows the sharing of data between authorized entities.   624 

To facilitate single sign-on where multiple identities need to be automatically mapped and the privacy of 625 
the principal needs to be maintained, there MAY also be a pseudonym service.  A pseudonym service 626 
allows a principal to have different aliases at different resources/services or in different realms, and to 627 
optionally have the pseudonym change per-service or per-login. While some scenarios support identities 628 
that are trusted as presented, pseudonyms services allow those cases where identity mapping needs to 629 
occur between an identity and a pseudonym on behalf of the principal.  630 

There are different approaches to identity mapping.  For example, the mapping can be performed by the 631 
IP/STS when requesting a token for the target service.  Alternatively, target services can register their 632 
own mappings.  This latter approach is needed when the digital identity cannot be reliability used as a key 633 
for local identity mapping (e.g. when a random digital identity is used not a constant or pair-wise digital 634 
identity). 635 

Figure 15 illustrates the general model for Attribute & Pseudonym Services (note that there are different 636 
variations which are discussed later in this specification).  This figure illustrates two realms with 637 
associated attribute/pseudonym services and some of the possible interactions.  Note that it is assumed 638 
that there is a trust relationship between the realms. 639 

 

Trust

Requestor

IP/STS

Attribute &

Pseudonym

Service

Resource

IP/STS

1c

4

2

3

5

1a

1b

 640 

Figure 15: Attributes & Pseudonyms 641 

With respect to Figure 15, in an initial (bootstrap) case, a requestor has knowledge of the policies of a 642 
resource, including its IP/STS. The requestor obtains its identity token from its IP/STS (1a) and 643 
communicates with the resource's IP/STS (2) to obtain an access token for the resource. In this example 644 
the resource IP/STS has registered a pseudonym with the requestor's pseudonym service (3) possibly for 645 
sign-out notification or for service-driven mappings.  The requestor accesses the resource using the 646 
pseudonym token (4).  The resource can obtain additional information (5) from the requestor's attribute 647 
service if authorized based on its identity token (1c).  It should be noted that trust relationships will need 648 
to exist in order for the resource or its IP/STS to access the requestor's attribute or pseudonym service.  649 
In subsequent interactions, the requestor's IP/STS may automatically obtain pseudonym credentials for 650 
the resource (1b) if they are available.  In such cases, steps 2 and 3 are omitted.  Another possible 651 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 30 of 137 

scenario is that the requestor registers the tokens from step 2 with its pseudonym service directly (not 652 
illustrated).  Note that if the mapping occurs at the IP/STS then a service-consumable identity is returned 653 
in step 1a. 654 

Pseudonym services could be integrated with identity providers and security token services.  Similarly, a 655 

pseudonym service could be integrated with an attribute service as a specialized form of attribute. 656 

Pseudonyms are an OPTIONAL mechanism that can be used by authorized cooperating services to 657 
federate identities and securely and safely access profile attribute information, while protecting the 658 
principal’s privacy.  This is done by allowing services to issue pseudonyms for authenticated identities 659 
and letting authorized services query for profile attributes which they are allowed to access, including 660 
pseudonyms specific to the requesting service.  The need for service-driven mapping is typically known 661 
up-front or indicated in metadata. 662 

While pseudonyms are helpful for principals who want to keep from having their activities tracked 663 
between the various sites they visit, they may add a level of complexity as the principal must typically 664 
manage the authorization and privacy of each pseudonym.   For principals who find this difficult to 665 
coordinate, or don't have requirements that would necessitate pseudonyms, identity providers MAY offer 666 
a constant identifier for that principal. 667 

For example, a requestor authenticates with Business456.com with their primary identity "Fred.Jones".  668 
However, when the requestor interacts with Fabrikam123.com, he uses the pseudonym "Freddo".   669 

Some identity providers issue a constant digital identity such as a name or ID at a particular realm.  670 
However, there is often a desire to prevent identity collusion between service providers.  This 671 
specification provides two possible countermeasures. The first approach is to have identity providers 672 
issue random (or pseudo-random, pair wise, etc.) IDs each time a requestor signs in.  This means that the 673 
resulting identity token contains a unique (or relatively unique) identifier, typically random, that hides their 674 
identity.  As such, it cannot be used (by itself) as a digital identity (e.g. for personalization).  The identity 675 
needs to be mapped into a service-specific digital identity.  This can be done by the requestor ahead of 676 
time when requesting a service-specific token or by the service when processing the request.  The 677 
following example illustrate mapping by the service. 678 

In this example the unique identity returned is "ABC123@Business456.com". The requestor then visits 679 
Fabrikam123.com.  The Web service at Fabrikam123.com can request information about the requestor 680 
"ABC123@Business456.com" from the pseudonym/attribute service for Business456.com. If the 681 
requester has authorized it, the information will be provided by the identity service.   682 

A variation on this first approach is the use of randomly generated pseudonyms; the requestor may 683 
indicate that they are "Freddo" to the Web service at Fabrikam123.com through some sort of mapping.  684 
Fabrikam123.com can now inform the pseudonym service for Business456.com that 685 
"ABC123@Business456.com" is known as "Freddo@Fabrikam123.com" (if authorized and allowed by the 686 
principal's privacy policy).  This is illustrated below: 687 

 688 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 31 of 137 

Figure 16: Pseudonym 689 

Note that the attribute, pseudonym, and Identity Provider services could be combined or separated in 690 
many different configurations.  Figure 16 illustrates a configuration where the IP is separate from the 691 
pseudonym service.  In such a case there is shared information or specialized trust to allow the 692 
pseudonym service to perform the mapping or to make calls to the IP to facilitate the mapping.  Different 693 
environments will have different configurations based on their needs, security policies, technologies used, 694 
and existing infrastructure.  695 

The next time the requestor signs in to Business456.com Identity Provider, it might return a new identifier, 696 
like XYZ321@Business456.com, in the token to be presented to Fabrikam in step 3.  The Web service at 697 
Fabrikam123.com can now request a local pseudonym for XYZ321@Business456.com and be told 698 
"Freddo@Fabrikam123.com" This is possible because the Business456 pseudonym service interacts with 699 
the Business456 IP and is authorized and allowed under the principal's privacy policy to reverse map 700 
"XYZ321@Business456.com" into a known identity at Business456.com which has associated with it 701 
pseudonyms for different realms. (Note that later in this section a mechanism for directly returning the 702 
pseudonym by the IP is discussed).  Figure 17 below illustrates this scenario: 703 

  704 

Figure 17: Pseudonym - local id 705 

Now the Fabrikam web service can complete the request using the local name to obtain data stored 706 
within the local realm on behalf of the requestor as illustrated below: 707 

 708 

Figure 18: Pseudonym - local realm 709 

Another variation of the first approach is to have the requestor map the identity, by creating pseudonyms 710 
for specific services.  In this case the Identity Provider (or STS) can operate hand-in-hand with the 711 
pseudonym service.  That is, the requestor asks its Identity Provider (or STS) for a token to a specified 712 
trust realm or resource/service.  The STS looks for pseudonyms and issues a token which can be used at 713 
the specified resource/service as illustrated in figure 19 below: 714 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 32 of 137 

  715 

Figure 19: Pseudonym – token acceptance 716 

The second approach is to create static identities for each service (or a group of services).  That is, 717 
principle A at service X is given the digital identity 12, principle A at service Y is given the digital identity 718 
75, principle B at service X is given the digital identity 46, and so on.  Operationally this approach is much 719 
like the last variation from the first approach.  That is, the requestor must map its identity to an identity for 720 
the service (or service group) via a token request from its IP/STS (or using the pseudonym service 721 
directly).  Consequently requestor mapping from random identities and pair-wise mapping are functionally 722 
equivalent. 723 

2.7 Attributes, Pseudonyms, and IP/STS Services 724 

This specification extends the WS-Trust model to allow attributes and pseudonyms to be integrated into 725 
the token issuance mechanism to provide federated identity mapping and attribute retrieval mechanisms, 726 
while protecting a principals’ privacy. Any attribute, including pseudonyms, MAY be provided by an 727 
attribute or pseudonym service using the WS-Trust Security Token Service interface and token issuance 728 
protocol.  Additional protocols or interfaces, especially for managing attributes and pseudonyms may 729 
MAY be supported; however, that is outside the scope of this specification. Figure 20 below illustrates the 730 
key aspects of this extended model: 731 

  

IP/STS
Pseudonym

Services

Token 

requests

Sign

Out

Federated

Sign out

Messages

Account

Management

Get/Set/Delete 

Psuedonyms

Attribute

Services

Principal

Attribute

Management

Custom 

Attribute

Interfaces  732 

Figure 20: Pseudonyms, Attributes and Token Issuance 733 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 33 of 137 

As shown above, Principals request security tokens from Identity Providers and security token services.  734 
As well, Principals MAY send sign-out requests (either explicitly as described later or implicitly by 735 
cancelling tokens) indicating that cached or state information can be flushed immediately.  Principals 736 
request tokens for resources/service using the mechanisms described in WS-Trust and the issued tokens 737 
may either represent the principals' primary identity or some pseudonym appropriate for the scope.  The 738 
Identity Provider (or STS) MAY send OPTIONAL sign-out notifications to subscribers (as described later).  739 
Principals are associated with the attribute/pseudonym services and attributes and pseudonyms are 740 
added and used. 741 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 34 of 137 

3 Federation Metadata 742 

Once two parties have made the decision to federate their computing systems, it is usually necessary to 743 

configure their respective systems to enable federated operation.  For example, the officers of a company 744 

such as contoso.com might reach a business arrangement where they choose to provide a set of services 745 

to someone who can present identity credentials (in the form of security tokens) issued by fabrikam.com.  746 

In this example, it may be necessary for contoso.com administrator to update a local database with the 747 

public key that fabrikam.com uses to sign its security tokens.  In addition to the signing key, it may be 748 

necessary for an organization to make available other types of information pertinent to a federated 749 

relationship. Depending on the arrangement between the organizations, in some cases it is desirable to 750 

help automate this configuration process. 751 

This section defines a XML document format for federation metadata that can be made available by an 752 

organization to make it easier for partners to federate with that organization.  Furthermore, this section 753 

defines a process by which this document can be obtained securely. 754 

It should be noted that a service may be part of multiple federations and be capable of receiving 755 

messages at the same endpoint in the context of all, or some subset of these federations.  Consequently 756 

the federation metadata document allows for statements to be made about each federation. 757 

The metadata document can take different forms.  The following list identifies a few common forms: 758 

• A document describing the metadata for a single federation 759 

• A document with separate sections for each federation, when a service is part of multiple 760 

federations 761 

• A document with references to metadata documents  762 

• A document for a single service identifying multiple issuance MEPRs that are offered by the 763 

service (the MEPRs can be used to obtain issuer-specific metadata) 764 

• A document embedded inside of a WSDL description (described below) 765 

Federation metadata documents may be obtained in a variety of ways as described in section 3.2.  It 766 

should be noted that services MAY return different federation metadata documents based on the identity 767 

and claims presented by a requestor. 768 

3.1 Federation Metadata Document 769 

The federation metadata document is a container that organizations can fill to proffer information that may 770 

be useful to partners for establishing a federation.  This section defines the overall document format and 771 

several OPTIONAL elements that MAY be included in the federation metadata document. 772 

The federation metadata document MUST be of the following form: 773 

<?xml version="1.0" encoding="..." ?> 774 
<fed:FederationMetadata xmlns:fed="..." ...> 775 
  <fed:Federation [FederationID="..."] ...> + 776 
    [Federation Metadata] 777 
  </fed:Federation> 778 
 [Signature] 779 
</fed:FederationMetadata> 780 

The document consists of one or more federation sections which describe the metadata for the endpoint 781 

within a federation.  The federation section MAY specify an URI indicating an identifier for the federation 782 

using the FederationID attribute, or it MAY omit this identifier indicating the “default federation”.  A 783 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 35 of 137 

federation metadata document MUST NOT contain more than one default federation, that is, , only one 784 

section may omit the FederationID attribute if multiple sections are provided. 785 

The [Federation Metadata] property of the metadata document represents a set of one or more 786 

OPTIONAL XML elements within a federation scope that the federation metadata provider wants to 787 

supply to its partners.  The [Signature] property provides a digital signature (typically using XML Digital 788 

Signature [XML-Signature]) over the federation metadata document to ensure data integrity and provide 789 

data origin authentication. The recipient of a federation metadata document SHOULD ignore any 790 

metadata elements that it does not understand or know how to process. 791 

Participants in a federation have different roles.  Consequently not all metadata statements apply to all 792 

roles.  There are three general roles: requestors who make web service requests, security token services 793 

who issues federated tokens, and service provides who rely on tokens from token providers. 794 

The following table outlines the common roles and associated metadata statements: 795 

Role Applicable Metadata Statements 

Any participant mex:MetadataReference, 

fed:AttributeServiceEndpoint 

Security Token Service fed:TokenSigningKeyInfo, 

fed:PseudonymServiceEndpoint, 

fed:SingleSignOutSubscriptionEndpoint, 

fed:TokenTypesOffered, 

fed:ClaimTypesOffered, 

fed:AutomaticPseudonyms 

fed:IssuerNamesOffered 

Service provider / Relying Party  

(includes Security Token Service) 

fed:TokenIssuerName, 

fed:TokenIssuerEndpoint  

fed:TokenKeyTransferKeyInfo, 

fed:SingleSignoutNotificationEndpoint 

The contents of the federated metadata are extensible so services can add new elements.  Each 796 

federated metadata statement MUST define if it is optional or required for specific roles.  When 797 

processing a federated metadata document, unknown elements SHOULD be ignored.   798 

The following sections detail referencing federation metadata documents, the predefined elements, 799 

signing metadata documents, and provide a sample federation metadata document. 800 

3.1.1 Referencing Other Metadata Documents 801 

An endpoint MAY choose not to provide the statements about each federation to which it belongs.  802 

Instead it MAY provide an endpoint reference to which a request for federation metadata can be sent to 803 

retrieve the metadata for that specific federation.  This is indicated by placing a 804 

<mex:MetadataReference> element inside the <fed:Federation> for the federation.  In such 805 

cases the reference MUST identify a document containing only federation metadata sections.  Retrieval 806 

of the referenced federation metadata documents is done using the mechanisms defined in [WS-807 

MetadataExchange].  The content MUST match the reference context.  That is, if the reference is from 808 

the default <fed:Federation> then the target MUST contain a <fed:FederationMetadata> 809 

document with a default <fed:Federation>.  If the reference is from a <fed:Federation> element 810 

with a FederationID then the target MUST contain a <fed:FederationMetadata> document with a 811 

<fed:Federation> element that has the same FederationID as the source  <fed:Federation> 812 

element. 813 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 36 of 137 

It should be noted that an endpoint MAY choose to only report a subset of federations to which it belongs 814 

to requestors.   815 

The following pseudo-example illustrates a federation metadata document that identifies participation in 816 

three federations. The metadata for the default federation is specified in-line within the document itself, 817 

whereas metadata references are specified for details on the other two federations. 818 

<?xml version="1.0" encoding="utf-8" ?> 819 
<fed:FederationMetadata xmlns:fed="..." 820 
    xmlns:mex="..." 821 
    xmlns:wsa="..." 822 
    xmlns:wsse="..." 823 
                        xmlns:ds="..."> 824 
  <fed:Federation> 825 
    <fed:TokenSigningKeyInfo> 826 
      <wsse:SecurityTokenReference> 827 
        <ds:X509Data>    828 
         <ds:X509Certificate>  829 
            ... 830 
         </ds:X509Certificate> 831 
       </ds:X509Data>    832 
      </wsse:SecurityTokenReference> 833 
    </fed:TokenSigningKeyInfo> 834 
    ... 835 
  </fed:Federation> 836 
  <fed:Federation FederationID="http://example.com/federation35532"> 837 
    <mex:MetadataReference> 838 
      <wsa:Address>http://example.com/federation35332/FedMD 839 
      </wsa:Address> 840 
    </mex:MetadataReference> 841 
  </fed:Federation> 842 
  <fed:Federation FederationID="http://example.com/federation54478"> 843 
    <mex:MetadataReference> 844 
      <wsa:Address>http://example.com/federation54478/FedMD 845 
      </wsa:Address> 846 
    </mex:MetadataReference> 847 
  </fed:Federation> 848 
</fed:FederationMetadata> 849 

Federation metadata documents can also be named with a URI and referenced to allow sharing of 850 

content (e.g. at different endpoints in a WSDL file).  To share content between two <fed:Federation> 851 

elements the <fed:FederationInclude> element is used.  When placed inside a 852 

<fed:Federation> element the <fed:FederationInclude> element indicates that the identified 853 

federation’s metadata statements are effectively copied into the containing <fed:Federation> 854 

element.   855 

For example, the following examples are functionally equivalent: 856 

<?xml version="1.0" encoding="utf-8" ?> 857 
<fed:FederationMetadata  xmlns:fed="..." xmlns:wsse="..." xmlns:ds="..."> 858 
  <fed:Federation FederationID="http://example.com/f1"> 859 
    <fed:TokenSigningKeyInfo> 860 
      <wsse:SecurityTokenReference> 861 
        <ds:X509Data>    862 
         <ds:X509Certificate>  863 
            ... 864 
          </ds:X509Certificate> 865 
        </ds:X509Data>    866 
      </wsse:SecurityTokenReference> 867 
    </fed:TokenSigningKeyInfo> 868 
  </fed:Federation> 869 
  <fed:Federation FederationID="http://example.com/federation35532"> 870 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 37 of 137 

    <fed:TokenSigningKeyInfo> 871 
      <wsse:SecurityTokenReference> 872 
        <ds:X509Data>    873 
         <ds:X509Certificate>  874 
            ... 875 
          </ds:X509Certificate> 876 
        </ds:X509Data>    877 
      </wsse:SecurityTokenReference> 878 
    </fed:TokenSigningKeyInfo> 879 
  </fed:Federation> 880 
</fed:FederationMetadata> 881 

and 882 

<?xml version="1.0" encoding="utf-8" ?> 883 
<fed:FederationMetadata  xmlns:fed="..." xmlns:wsse="..." xmlns:ds="..."> 884 
  <fed:Federation FederationID="http://example.com/f1"> 885 
    <fed:TokenSigningKeyInfo> 886 
      <wsse:SecurityTokenReference> 887 
        <ds:X509Data>    888 
         <ds:X509Certificate>  889 
            ... 890 
          </ds:X509Certificate> 891 
        </ds:X509Data>    892 
      </wsse:SecurityTokenReference> 893 
    </fed:TokenSigningKeyInfo> 894 
  </fed:Federation> 895 
  <fed:Federation FederationID="http://example.com/federation35532"> 896 
    <fed:FederationInclude>http://example.com/f1</fed:FederationInclude> 897 
  </fed:Federation> 898 
</fed:FederationMetadata> 899 

Typically a <fed:FederationInclude> reference identifies a <fed:Federation> element 900 

elsewhere in the document.  However, the URI MAY represent a “well-known” metadata document that is 901 

known to the processor. The mechanism by which a processor “knows” such URIs is undefined and 902 

outside the scope of this specification.   903 

When referencing or including other metadata documents the contents are logically combined.  As such it 904 

is possible for some elements to be repeated.  While the semantics of this is defined by each element, 905 

typically it indicates a union of the information.  That is, both elements apply. 906 

The mechanisms defined in this section allow creation of composite federation metadata documents.  For 907 

example, if there is metadata common to multiple federations it can be described separately and then 908 

referenced from the definitions of each federation which can then include additional (non-conflicting) 909 

metadata specific to the federation. 910 

3.1.2 TokenSigningKeyInfo Element 911 

The OPTIONAL <fed:TokenSigningKeyInfo> element allows a federation metadata provider to 912 

specify what key will be used by it to sign security tokens issued by it.  This is only specified by token 913 

issuers and security token services.  This is typically a service-level statement but can be an endpoint-914 

level statement.  This element populates the [Federation Metadata] property.  The signing key can be 915 

specified using any of the mechanisms supported by the <wsse:SecurityTokenReference> element 916 

defined in [WS-Security] as shown below. 917 

<fed:TokenSigningKeyInfo ...>   918 
  <wsse:SecurityTokenReference>  919 
    ... 920 
  </wsse:SecurityTokenReference>  921 
</fed:TokenSigningKeyInfo> 922 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 38 of 137 

 923 

This element allows attributes to be added. Use of this extensibility point MUST NOTalter the 924 

semantics defined in this specification. 925 

For example, the token signing key can be carried inside an X.509 certificate and specified using the 926 

ds:KeyInfo element (as per [XMLDSIG]) as follows. 927 

<fed:TokenSigningKeyInfo> 928 
  <wsse:SecurityTokenReference>    929 
   <ds:keyInfo> 930 
    <ds:X509Data>    931 
      <ds:X509Certificate>  932 
MIIBsTCCAV+gAwIBAgIQz9jmro9+5ahJyMQzgtSAvzAJBgUrDgMCHQUAMBYxFDASBgNVBAMTC1Jvb3933 
QgQWdlbmN5MB4XDTA1MDkwMTExNTUzNFoXDTM5MTIzMTIzNTk1OVowFDESMBAGA1UEAxMJbG9jYWxo934 
b3N0MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCnK1hCowhf6K3YrKoKuB87j6rdCrSHrnexzk935 
Peg1YDwp6GquI3DVaD+VNRySREnI1yrqjDWyprp4FiJesPgs94PJRE6wz6Y5Z1CfhMUslh2t+XhBtJ936 
ycvmLEZX+3Lt2y6PCf49qlwfX/TqReCiMKYM9h+OVN32sFPQnz6dMUfH4QIDAQABo0swSTBHBgNVHQ937 
EEQDA+gBAS5AktBh0dTwCNYSHcFmRjoRgwFjEUMBIGA1UEAxMLUm9vdCBBZ2VuY3mCEAY3bACqAGSK938 
Ec+41KpcNfQwCQYFKw4DAh0FAANBAFLLkisG9ojZ2QtIfwjVJUdrsNzBO8JZOrLl8lZd9I//hZ6643939 
L4sblBFB8ttbJjT4rdt5sKjpezRn3ZVIcvbQE= 940 
      </ds:X509Certificate> 941 
    </ds:X509Data>    942 
   </ds:keyInfo> 943 
  </wsse:SecurityTokenReference>    944 
</fed:TokenSigningKeyInfo> 945 

Note that an X.509 certificate chain can also be specified using this mechanism since the ds:X509Data 946 

element supports specifying a chain.  There are no requirements that the signing key be a leaf certificate 947 

– it can be anywhere in a certificate chain. 948 

As another example, the token signing key can be specified as a raw RSA key as follows. 949 

<fed:TokenSigningKeyInfo> 950 
  <wsse:SecurityTokenReference>    951 
    <ds:RSAKeyValue>    952 
      <ds:Modulus> 953 
A7SEU+e0yQH5rm9kbCDN9o3aPIo7HbP7tX6WOocLZAtNfyxSZDU16ksL6WjubafOqNEpcwR3RdFsT7954 
bCqnXPBe5ELh5u4VEy19MzxkXRgrMvavzyBpVRgBUwUlV5foK5hhmbktQhyNdy/6LpQRhDUDsTvK+g955 
9Ucj47es9AQJ3U= 956 
      </ds:Modulus> 957 
      <ds:Exponent>AQAB</ds:Exponent> 958 
    </ds:RSAKeyValue>    959 
  </wsse:SecurityTokenReference>    960 
</fed:TokenSigningKeyInfo> 961 

3.1.3 TokenKeyTransferKeyInfo Element 962 

The OPTIONAL <fed:TokenKeyTransferKeyInfo> element allows a federation metadata provider, a 963 

security token service or Relying Party in this case, to specify what key should be used to encrypt keys 964 

and key material targeted for the service.  This is typically a service-level statement but can be an 965 

endpoint-level statement.  This element populates the [Federation Metadata] property.  The key transfer 966 

key can be specified using any of the mechanisms supported by the 967 

<wsse:SecurityTokenReference> element defined in [WS-Security] as shown below. 968 

<fed:TokenKeyTransferKeyInfo ...>   969 
  <wsse:SecurityTokenReference>  970 
    ... 971 
  </wsse:SecurityTokenReference>  972 
</fed:TokenKeyTransferKeyInfo> 973 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 39 of 137 

Any top-level element legally allowed as a child of the ds:KeyInfo element (as per [XML-Signature]) 974 

can appear as a child of the <wsse:SecurityTokenReference> element.  975 

This element allows attributes to be added. Use of this extensibility point MUST NOTalter the 976 

semantics defined in this specification. 977 

For example, the key transfer key can be carried inside an X.509 certificate and specified as follows. 978 

<fed:TokenKeyTransferKeyInfo> 979 
  <wsse:SecurityTokenReference>    980 
    <ds:X509Data>    981 
      <ds:X509Certificate>  982 
MIIBsTCCAV+gAwIBAgIQz9jmro9+5ahJyMQzgtSAvzAJBgUrDgMCHQUAMBYxFDASBgNVBAMTC1Jvb3983 
QgQWdlbmN5MB4XDTA1MDkwMTExNTUzNFoXDTM5MTIzMTIzNTk1OVowFDESMBAGA1UEAxMJbG9jYWxo984 
b3N0MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCnK1hCowhf6K3YrKoKuB87j6rdCrSHrnexzk985 
Peg1YDwp6GquI3DVaD+VNRySREnI1yrqjDWyprp4FiJesPgs94PJRE6wz6Y5Z1CfhMUslh2t+XhBtJ986 
ycvmLEZX+3Lt2y6PCf49qlwfX/TqReCiMKYM9h+OVN32sFPQnz6dMUfH4QIDAQABo0swSTBHBgNVHQ987 
EEQDA+gBAS5AktBh0dTwCNYSHcFmRjoRgwFjEUMBIGA1UEAxMLUm9vdCBBZ2VuY3mCEAY3bACqAGSK988 
Ec+41KpcNfQwCQYFKw4DAh0FAANBAFLLkisG9ojZ2QtIfwjVJUdrsNzBO8JZOrLl8lZd9I//hZ6643989 
L4sblBFB8ttbJjT4rdt5sKjpezRn3ZVIcvbQE= 990 
      </ds:X509Certificate> 991 
    </ds:X509Data>    992 
  </wsse:SecurityTokenReference>    993 
</fed:TokenSigningKeyInfo> 994 

Note that if this element isn’t specified, and the signing key doesn’t prohibit key transfer, it MAY be used 995 

as the key transfer key. 996 

3.1.4 IssuerNamesOffered Element 997 

In some scenarios token issuers are referred to be a logical name representing an equivalence class of 998 

issuers.  For example, a Relying Party may not care what specific bank issues a token so long as the 999 

issuance is associated with a specific credit card program.  To facilitate this, federated metadata provides 1000 

the  <sp:TokenIssuerName> element (described in [WS-SecurityPolicy]) to indicate that a Relying Party 1001 

needs a token from a specific class of issuer. 1002 

As stated, the OPTIONAL <fed:IssuerNamesOffered> element allows a federation metadata 1003 

provider, specifically a token service in this case, to specify a set of “logical names” that are associated 1004 

with the provider.  That is, when a Relying Party indicates a logical name for a token issuer using the 1005 

<sp:TokenIssuerName> element in a token assertion the <fed:IssuerNamesOffered> element 1006 

this element can be used as a correlation mechanism by clients. This element populates the [Federation 1007 

Metadata] property.  This is typically a service-level statement but can be an endpoint-level statement. 1008 

The schema for this optional element is shown below. 1009 

<fed:IssuerNamesOffered ...> 1010 
  <fed:IssuerName Uri="xs:anyURI" .../> + 1011 
</fed:IssuerNamesOffered> 1012 

The following example illustrates using this optional element to specify a logical name of the federating 1013 
organization as a token issuer. 1014 

<fed:IssuerNamesOffered> 1015 
  <fed:IssuerName Uri="http://fabrikam.com/federation/corporate" /> 1016 
</fed:IssuerNamesOffered> 1017 

3.1.5 TokenIssuerEndpoints Element 1018 

The OPTIONAL <fed:TokenIssuerEndpoints> element allows a federation metadata provider to 1019 

specify the endpoint address of a trusted STS (or addresses of functionally equivalent STSs) which can 1020 

http://fabrikam.com/federation/corporate


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 40 of 137 

be referenced by federated partners when requesting tokens from it. . This element populates the 1021 

[Federation Metadata] property.  This is specified by token issuers and security token services.  This is 1022 

typically a service-level statement but can be an endpoint-level statement.  The schema for this optional 1023 

element is shown below. 1024 

<fed:TokenIssuerEndpoints> 1025 
  wsa:EndpointReferenceType + 1026 
</fed:TokenIssuerEndpoints> 1027 

The content of this element is one, or more, endpoint references as defined by [WS-Addressing]  1028 

providing a transport address for the issuer STS(or functionally equivalent STS endpoints). Each  1029 

endpoint reference MAY (and SHOULD if there is no expectation that the policy is known a priori) include 1030 

metadata for the STS endpoint or a reference to an endpoint from where such metadata can be retrieved 1031 

by a token requestor (see [WS-Addressing] and [WS-MetadataExchange] for additional details). 1032 

This element allows attributes to be added. Use of this extensibility point MUST NOTalter the 1033 

semantics defined in this specification. 1034 

It should be noted that this element MAY occur multiple times indicating distinct services with different 1035 

capabilities. Service providers MUST include functionally equivalent endpoints – different endpoint 1036 

references for a single service, or for a set of logically equivalent services – in a single 1037 

<fed:TokenIssuerEndpoints> element. 1038 

The following example illustrates using this optional element to specify an endpoint address for the token 1039 

issuing STS of the federating organization. 1040 

<fed:TokenIssuerEndpoints> 1041 
  <wsa:Address> http://fabrkam.com/federation/STS </wsa:Address> 1042 
</fed:TokenIssuerEndpoints> 1043 

 1044 

3.1.6 TokenIssuerMetadata Element 1045 

The optional <fed:TokenIssuerMetadata> element allows a federation metadata provider to specify the 1046 
metadata corresponding to its token issuing service (or addresses for functionally equivalent security 1047 
token services) which can be referenced by federated partners when requesting tokens from it. This 1048 
element populates the [Federation Metadata] property. This is specified by token issuers and security 1049 
token services. This is a service-level statement.  1050 

The schema for this optional element is shown below.  1051 

<fed:TokenIssuerMetadata> 1052 
  <mex:Metadata> ... </mex:metadata> 1053 
</fed:TokenIssuerMetadata> 1054 

The content of this element is Metadata element as defined by [WS-MetadataExchange] providing a 1055 
representation of the metadata for the issuer STS (or functionally equivalent STS endpoints).  1056 

This element allows attributes to be added so long as they do not alter the semantics defined in this 1057 
specification. 1058 

The following example illustrates using this optional element to specify a metadata address for the token 1059 
issuing STS of an organization. This address may be used to look up the endpoint address for the STS.  1060 

<fed:TokenIssuerMetadata> 1061 
  <mex:Metadata> 1062 
    <mex:MetadataSection Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex"> 1063 
      <wsx:MetadataReference> 1064 
        <wsa:Address>  1065 
           https://fabrikam.com/identityserver/trust/mex 1066 
        </wsa:Address> 1067 
      </wsx:MetadataReference>  1068 

https://fabrikam.com/identityserver/trust/mex


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 41 of 137 

    </mex:MetadataSection> 1069 
  </mex:Metadata> 1070 
</fed:TokenIssuerMetadata> 1071 

 1072 

3.1.7 PseudonymServiceEndpoints Element 1073 

The OPTIONAL <fed:PseudonymServiceEndpoints> element allows a federation metadata provider 1074 

to specify the endpoint address of its pseudonym service (or addresses for functionally equivalent 1075 

pseudonym services) which can be referenced by federated partners when requesting tokens from it. 1076 

When present, this indicates that services SHOULD use the pseudonym service to map identities to local 1077 

names as the identities MAY vary across invocations.  This element populates the [Federation Metadata] 1078 

property.  This is typically specified by token issuers and security token services.  This is typically a 1079 

service-level statement but can be an endpoint-level statement. 1080 

The schema for this optional element is shown below. 1081 

<fed:PseudonymServiceEndpoints> 1082 
  wsa:EndpointReferenceType + 1083 
</fed:PseudonymServiceEndpoints> 1084 

The content of this element is one, or more, endpoint references as defined by [WS-Addressing] providing 1085 

a transport address for an STS interface to the pseudonym service (or functionally equivalent pseudonym 1086 

service endpoints).  Eachendpoint reference MAY (and SHOULD if there is no expectation that the policy 1087 

is known a priori) include metadata for the STS endpoint or a reference to an endpoint from where such 1088 

metadata can be retrieved by a token requestor (see [WS-Addressing] and [WS-MetadataExchange] for 1089 

additional details). 1090 

This element allows attributes to be added.  Use of this extensibility point MUST NOTalter the 1091 

semantics defined in this specification. 1092 

It should be noted that this element MAY occur multiple times indicating distinct services with different 1093 

capabilities. Service providers MUST include equivalent endpoints – different endpoint references for a 1094 

single service, or for a set of logically equivalent services – in a single 1095 

<fed:PseudonymServiceEndpoints> element. 1096 

The following example illustrates using this optional element to specify an endpoint address for the 1097 

pseudonym service of the federating organization. 1098 

<fed:PseudonymServiceEndpoints> 1099 
  <wsa:Address> http://fabrkam.com/federation/Pseudo </wsa:Address> 1100 
</fed:PseudonymServiceEndpoints> 1101 

3.1.8 AttributeServiceEndpoints Element 1102 

The OPTIONAL <fed:AttributeServiceEndpoints> element allows a federation metadata 1103 

provider to specify the endpoint address of its attribute service (or addresses for functionally equivalent 1104 

attribute services) which can be referenced by federated partners when requesting tokens from it. This 1105 

element populates the [Federation Metadata] property.  This is typically specified by requestors and is a 1106 

service-level statement. 1107 

The schema for this optional element is shown below. 1108 

<fed:AttributeServiceEndpoints> 1109 
  wsa:EndpointReferenceType + 1110 
</fed:AttributeServiceEndpoints> 1111 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 42 of 137 

The content of this element is one, or more, endpoint references as defined by [WS-Addressing] providing 1112 

a transport address for an STS interface to the service (or functionally equivalent attribute service 1113 

endpoints).  Each endpoint reference MAY (and SHOULD if there is no expectation that the policy is 1114 

known a priori) include metadata for the STS endpoint or a reference to an endpoint from where such 1115 

metadata can be retrieved by a token requestor (see [WS-Addressing] and [WS-MetadataExchange] for 1116 

additional details). 1117 

This element allows attributes to be added.  Use of this extensibility point MUST NOTalter the 1118 

semantics defined in this specification. 1119 

It should be noted that this element MAY occur multiple times indicating distinct services with different 1120 

capabilities. Service providers MUST include equivalent endpoints – different endpoint references for a 1121 

single service, or for a set of logically equivalent services – in a single <fed:AttributeServiceEndpoints> 1122 

element. 1123 

The following example illustrates using this optional element to specify an endpoint address for the 1124 

attribute service of the federating organization. 1125 

<fed:AttributeServiceEndpoints> 1126 
  <wsa:Address> http://fabrkam.com/federation/Attr </wsa:Address> 1127 
</fed:AttributeServiceEndpoints> 1128 

3.1.9 SingleSignOutSubscripionEndpoints Element 1129 

The OPTIONAL <fed:SingleSignOutSubscriptionEndpoints> element allows a federation 1130 

metadata provider to specify the endpoint address of its subscription service (or addresses for functionally 1131 

equivalent subscription services) which can be used to subscribe to federated sign-out messages. This 1132 

element populates the [Federation Metadata] property.  This is typically specified by token issuers and 1133 

security token services.  This is typically a service-level statement but can be an endpoint-level statement. 1134 

The schema for this optional element is shown below. 1135 

<fed:SingleSignOutSubscriptionEndpoints> 1136 
  wsa:EndpointReferenceType + 1137 
</fed:SingleSignOutSubscriptionEndpoints> 1138 

The content of this element is one, or more, endpoint references as defined by [WS-Addressing] providing 1139 

a transport address for the subscription manager (or functionally equivalent subscription services).  1140 

This element allows attributes to be added.  Use of this extensibility point MUST NOTalter the 1141 

semantics defined in this specification. 1142 

3.1.10 SingleSignOutNotificationEndpoints Element 1143 

Services MAY subscribe for sign-out notifications however clients MAY also push notifications to services.  1144 

The OPTIONAL <fed:SingleSignOutNotificationEndpoints> element allows a federation 1145 

metadata provider to specify the endpoint address (or functionally equivalent addresses) to which push 1146 

notifications of sign-out are to be sent. This element populates the [Federation Metadata] property.  This 1147 

is typically specified by service providers and security token services.  This is typically a service-level 1148 

statement but can be an endpoint-level statement. 1149 

The schema for this optional element is shown below. 1150 

<fed:SingleSignOutNotificationEndpoints> 1151 
  wsa:EndpointReferenceType + 1152 
</fed:SingleSignOutNotificationEndpoints> 1153 

The content of this element is one, or more, endpoint references as defined by [WS-Addressing] providing 1154 

a transport address for the notification service (or functionally equivalent notification service endpoints) .  1155 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 43 of 137 

This element allows attributes to be added.  Use of this extensibility point MUST NOT alter the 1156 

semantics defined in this specification. 1157 

3.1.11 TokenTypesOffered Element 1158 

The OPTIONAL <fed:TokenTypesOffered> element allows a federation metadata provider to specify 1159 

the list of offered security token types that can be issued by its STS. A federated partner can use the 1160 

offered token types to decide what token type to ask for when requesting tokens from it. This element 1161 

populates the [Federation Metadata] property.  This is typically specified by token issuers and security 1162 

token services.  This is typically a service-level statement but can be an endpoint-level statement. 1163 

The schema for this optional element is shown below. 1164 

<fed:TokenTypesOffered ...> 1165 
  <fed:TokenType Uri="xs:anyURI" ...>  1166 
    ... 1167 
  </fed:TokenType> +   1168 
  ... 1169 
</fed:TokenTypesOffered> 1170 

The following describes the elements listed in the schema outlined above: 1171 

/fed: TokenTypesOffered 1172 

This element is used to express the list of token types that the federating STS is capable of 1173 
issuing. 1174 

/fed:TokenTypesOffered/fed:TokenType 1175 

This element indicates an individual token type that the STS can issue. 1176 

/fed:TokenTypesOffered/fed:TokenType/@Uri 1177 

This attribute provides the unique identifier (URI) of the individual token type that the STS can 1178 
issue. 1179 

/fed:TokenTypesOffered/fed:TokenType/{any} 1180 

The semantics of any content for this element are undefined.  Any extensibility or use of sub-1181 
elements MUST NOT alter the semantics defined in this specification. 1182 

/fed:TokenTypesOffered/fed:TokenType/@{any} 1183 

This extensibility mechanism allows attributes to be added. Use of this extensibility mechanism 1184 
MUST NOT  violate or alter the semantics defined in this specification. 1185 

/fed:TokenTypesOffered/@{any} 1186 

This extensibility mechanism allows attributes to be added.  Use of this extensibility mechanism 1187 
MUST NOT violate or alter the semantics defined in this specification. 1188 

/fed:TokenTypesOffered/{any} 1189 

The semantics of any content for this element are undefined.  Any extensibility or use of sub-1190 
elements MUST NOT alter the semantics defined in this specification. 1191 

The following example illustrates using this optional element to specify that the issuing STS of the 1192 

federating organization can issue both SAML 1.1 and SAML 2.0 tokens [WSS:SAMLTokenProfile]. 1193 

<fed:TokenTypesOffered> 1194 
  <fed:TokenType Uri="urn:oasis:names:tc:SAML:1.1" /> 1195 
  <fed:TokenType Uri="urn:oasis:names:tc:SAML:2.0" /> 1196 
</fed:TokenTypesOffered> 1197 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 44 of 137 

3.1.12 ClaimTypesOffered Element 1198 

The OPTIONAL <fed:ClaimTypesOffered> element allows a federation metadata provider such as 1199 

an IdP to specify the list of publicly offered claim types, named using  the schema provided by the 1200 

common claims dialect defined in this specification, that can be asserted in security tokens issued by its 1201 

STS.  It is out of scope of this specification whether or not a URI used to name a claim type resolves. 1202 

Note that issuers MAY support additional claims and that not all claims may be available for all token 1203 

types.  If other means of describing/identifying claims are used in the future, then corresponding XML 1204 

elements can be introduced to publish the new claim types. A federated partner can use the offered claim 1205 

types to decide which claims to ask for when requesting tokens from it. This specification places no 1206 

requirements on the syntax used to describe the claims.  This element populates the [Federation 1207 

Metadata] property.  This is typically specified by token issuers and security token services.  This is 1208 

typically a service-level statement but can be an endpoint-level statement. 1209 

The schema for this optional element is shown below. 1210 

<fed:ClaimTypesOffered ...> 1211 
  <auth:ClaimType ...> ... </auth:ClaimType> + 1212 
</fed:ClaimTypesOffered> 1213 

The following describes the elements listed in the schema outlined above: 1214 

/fed:ClaimTypesOffered 1215 

This element is used to express the list of claim types that the STS is capable of issuing. 1216 

/fed:ClaimTypesOffered/@{any} 1217 

This extensibility point allows attributes to be added.  Use of this extensibility mechanism MUST 1218 
NOT alter the semantics defined in this specification. 1219 

The following example illustrates using this optional element to specify that the issuing STS of the 1220 

federating organization can assert two claim types named using the common claims format. 1221 

<fed:ClaimTypesOffered> 1222 
  <auth:ClaimType Uri="http://.../claims/EmailAddr" > 1223 
    <auth:DisplayName>Email Address</auth:DisplayName> 1224 
  </auth:ClaimType> 1225 
  <auth:ClaimType Uri="http://.../claims/IsMember" > 1226 
    <auth:DisplayName>Is a Member (yes/no)</auth:DisplayName> 1227 
    <auth:Description>If a person is a member of this club</auth:Description> 1228 
  </auth:ClaimType> 1229 
</fed:ClaimTypesOffered> 1230 

 1231 

3.1.13 ClaimDialectsOffered Element 1232 

The OPTIONAL fed:ClaimDialectsOffered element allows a federation metadata provider to specify the 1233 
list of dialects, named using URIs, that are accepted by its STS in token requests to express the claims 1234 
requirement. A federated partner can use is list to decide which dialect to use to express its desired 1235 
claims when requesting tokens from it. This specification defines one standard claims dialect in the 1236 
subsequent section 9.3, but other claim dialects MAY be defined elsewhere for use in other scenarios. 1237 
This element populates the [Federation Metadata] property. This is typically specified by token issuers 1238 
and security token services. This is typically a service-level statement but can be an endpoint-level 1239 
statement. 1240 

The schema for this optional element is shown below. 1241 

<fed:ClaimDialectsOffered> 1242 
  <fed:ClaimDialect Uri="xs:anyURI" /> + 1243 
</fed:ClaimDialectsOffered> 1244 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 45 of 137 

The following describes the elements listed in the schema outlined above: 1245 

/fed:ClaimDialectsOffered 1246 

This element is used to express the list of claim dialects that the federating STS can understand 1247 
and accept. 1248 

/fed:ClaimDialectsOffered/fed:ClaimDialect 1249 

This element indicates an individual claim dialect that the STS can understand. 1250 

/fed:ClaimDialectsOffered/fed:ClaimDialect/@Uri 1251 

This attribute provides the unique identifier (URI) of the individual claim dialect that the STS can 1252 
understand. 1253 

/fed:ClaimDialectsOffered/fed:ClaimDialect/… 1254 

The semantics of any content for this element are undefined. Any extensibility or use of sub-1255 
elements MUST NOT alter the semantics defined in this specification. 1256 

/fed:ClaimDialectsOffered/fed:ClaimDialect/@{any} 1257 

This extensibility mechanism allows attributes to be added. Use of this extensibility mechanism 1258 
MUST NOT  violate or alter the semantics defined in this specification. 1259 

/fed:ClaimDialectsOffered/@{any} 1260 

This extensibility mechanism allows attributes to be added.  Use of this extensibility mechanism 1261 
MUST NOT violate or alter the semantics defined in this specification. 1262 

The following example illustrates using this optional element to specify that the issuing STS of the 1263 
federating organization can accept the one standard claims dialect defined in this specification. 1264 

 1265 

<fed:ClaimDialectsOffered> 1266 
  <fed:ClaimDialect Uri="http://schemas.xmlsoap.org/ws/2005/05/fedclaims" /> 1267 
</fed:ClaimDialectsOffered> 1268 

3.1.14 AutomaticPseudonyms Element 1269 

The OPTIONAL <fed:AutomaticPseudonyms> element allows a federation metadata provider to 1270 

indicate if it automatically maps pseudonyms or applies some form of identity mapping.  This element 1271 

populates the [Federation Metadata] property.  This is typically specified by token issuers and security 1272 

token services.  This is typically a service-level statement but can be an endpoint-level statement.  If not 1273 

specified, requestors SHOULD assume that the service does not perform automatic mapping (although it 1274 

MAY). 1275 

The schema for this optional element is shown below. 1276 

<fed:AutomaticPseudonyms> 1277 
  xs:boolean 1278 
</fed:AutomaticPseudonyms> 1279 

3.1.15 PassiveRequestorEndpoints Element 1280 

The optional <fed:PassiveRequestorEndpoints> element allows a federation metadata provider, 1281 

security token service, or relying party to specify the endpoint address that supports the Web (Passive) 1282 

Requestor protocol described below in section 13. This element populates the [Federation Metadata] 1283 

property. This is an endpoint-level statement.  1284 

The schema for this optional element is shown below.  1285 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 46 of 137 

<fed:PassiveRequestorEndpoints> 1286 
  <wsa:EndpointReference> ... </wsa:EndpointReference>+ 1287 
</fed:PassiveRequestorEndpoints> 1288 

The content of this element is an endpoint reference element as defined by [WS-Addressing] that 1289 
identifies an endpoint address that supports receiving the Web (Passive) Requestor protocol messages 1290 
described below in section 13.  1291 
This element allows attributes to be added so long as they do not alter the semantics defined in this 1292 
specification. 1293 

It should be noted that this element MAY occur multiple times indicating distinct endpoints with different 1294 
capabilities. Service providers MUST include functionally equivalent endpoints in a single 1295 
<fed:PassiveRequestorEndpoints> element. 1296 

The following example illustrates using this optional element to specify the endpoint address that supports 1297 
the Web (Passive) Requestor protocol described in section 13 for the token issuing STS of the federating 1298 
organization.  1299 

<fed:PassiveRequestorEndpoints> 1300 

  <wsa:EndpointReference>  1301 

    <wsa:Address> http://fabrikam.com/federation/STS/Passive </wsa:Address> 1302 

  </wsa:EndpointReference> 1303 

</fed:PassiveRequestorEndpoints> 1304 

 1305 

3.1.16 TargetScopes Element 1306 

The [WS-Trust] protocol allows a token requester to indicate the target where the issued token will be 1307 
used (i.e., token scope) by using the optional element wsp:AppliesTo in the RST message. To 1308 
communicate the supported wsp:AppliesTo (wtrealm values in passive requestor scenarios) for a realm, 1309 
federated metadata provides the <fed:TargetScopes> element to indicate the EPRs that are associated 1310 
with token scopes of the relying party or STS. Note that an RP or STS MAY be capable of supporting 1311 
other wsp:AppliesTo values. This element populates the [Federation Metadata] property. This is typically 1312 
a service-level statement. 1313 

The schema for this optional element is shown below.  1314 

<fed:TargetScopes ...> 1315 
  <wsa:EndpointReference> 1316 
    ... 1317 
  </wsa:endpointReference> +  1318 
</fed:TargetScopes> 1319 

The following example illustrates using this optional element to specify a logical name of the federating 1320 
organization as a token issuer.  1321 

<fed:TargetScopes > 1322 
  <wsa:EndpointReference> 1323 
    <wsa:Address> http://fabrikam.com/federation/corporate </wsa:Address> 1324 
  </wsa:endpointReference>  1325 
</fed:TargetScopes > 1326 

 1327 

http://fabrikam.com/federation/STS/Passive
http://fabrikam.com/federation/corporate


ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 47 of 137 

3.1.17 ContactInfoAddress Element 1328 

The OPTIONAL <fed:ContactInfoAddresses> element allows a federation metadata provider to specify 1329 
the endpoint addresses to be used for contacting the metadata provider for further details on the services 1330 
and capabilities described in the metadata. This element populates the [Federation Metadata] property.  1331 

The schema for this optional element is shown below.  1332 

 1333 

<fed:ContactInfoAddresses> 1334 
( <fed:WebPage> xs:anyURI </fed:WebPage> *  1335 
<fed:Email> xs:anyURI </fed:Email> * ) + 1336 
... 1337 
</fed:ContactInfoAddresses> ? 1338 

 1339 

/fed:ContactInfoAddresses  1340 

The content of this OPTIONAL element is one or more elements that provide references to web 1341 
pages with contact info about the federation services and/or an email address to use as a contact 1342 
point.  1343 

This element allows other attributes to be added so long as they do not alter the semantics 1344 
defined in this specification. 1345 

/fed: ContactInfoAddresses/fed:WebPage  1346 

This element of type xs:anyURI MAY appear 0 or more times, it’s content should be a valid 1347 
[HTTP] scheme URI that resolves to a web page with contact information regarding the federation 1348 
services and/or metadata document. 1349 

/fed: ContactInfoAddresses/fed:Email  1350 

This element of type xs:anyURI MAY appear 0 or more times, it’s content should be a valid 1351 
[mailto] scheme URI regarding the federation services and/or metadata document. 1352 

3.1.18 [Signature] Property 1353 

The OPTIONAL [Signature] property provides a digital signature over the federation metadata document 1354 

to ensure data integrity and provide data origin authentication. The provider of a federation metadata 1355 

document SHOULD include a digital signature over the metadata document, and consumers of the 1356 

metadata document SHOULD perform signature verification if a signature is present. 1357 

The token used to sign this document MUST speak for the endpoint.  If the metadata is for a token issuer 1358 

then the key used to sign issued tokens SHOULD be used to sign this document.  This means that if a 1359 

<fed:TokenSigningKey> is specified, it SHOULD be used to sign this document. 1360 

This section describes the use of [XML-Signature] to sign the federation metadata document, but other 1361 

forms of digital signatures MAY be used for the [Signature] property.  XML Signature is the 1362 

RECOMMENDED signing mechanism.  The [Signature] property (in the case of XML Signature this is 1363 

represented by the <ds:Signature> element) provides the ability for a federation metadata provider 1364 

organization to sign the metadata document such that a partner organization consuming the metadata 1365 

can authenticate its origin.   1366 

The signature over the federation metadata document MUST be signed using an enveloped signature 1367 

format as defined by the [XML-Signature] specification.  In such cases the root of the signature envelope 1368 

MUST be the <fed:FederationMetadata> element as shown in the following example. If the 1369 

metadata document is included inside another XML document, such as a SOAP message, the root of the 1370 

signature envelope MUST remain the same.  Additionally, XML Exclusive Canonicalization [XML-C14N] 1371 

MUST be used when signing with [XML-Signature]. 1372 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 48 of 137 

(01) [<?xml version='1.0' encoding=... > ] 1373 
(02) <fed:FederationMetadata   1374 
(03)   xmlns:fed="..." xmlns:ds="..." 1375 
(04)   wsu:Id="_fedMetadata"> 1376 
(05)   ... 1377 
(06)   <ds:Signature xmlns:ds="..."> 1378 
(07)     <ds:SignedInfo> 1379 
(08)      <ds:CanonicalizationMethod Algorithm="..." /> 1380 
(09)      <ds:SignatureMethod Algorithm="..." /> 1381 
(10)      <ds:Reference URI="_fedMetadata"> 1382 
(11)       <ds:Transforms> 1383 
(12)        <ds:Transform Algorithm=".../xmldsig#enveloped-signature" /> 1384 
(13)        <ds:Transform Algorithm=".../xml-exc-c14n#" /> 1385 
(14)       </ds:Transforms> 1386 
(15)       <ds:DigestMethod Algorithm="..." /> 1387 
(16)       <ds:DigestValue>xdJRPBPERvaZD9gTt4e6Mg==</ds:DigestValue> 1388 
(17)      </ds:Reference> 1389 
(18)     </ds:SignedInfo> 1390 
(19)     <ds:SignatureValue> mpcFEK6JuUFBPoJQ8VBW2Q==</ds:SignatureValue> 1391 
(20)     <ds:KeyInfo> 1392 
(21)     ... 1393 
(22)     </ds:KeyInfo> 1394 
(23)    </ds:Signature> 1395 
(24) </fed:FederationMetadata> 1396 

Note that the enveloped signature contains a single ds:Reference element (line 10) containing a URI 1397 

reference to the <fed:FederationMetadata> root element (line 04) of the metadata document. 1398 

 1399 

3.1.19 Example Federation Metadata Document 1400 

The following example illustrates a signed federation metadata document that uses the OPTIONAL 1401 

metadata elements described above and an enveloped [XML Signature] to sign the document. 1402 

<?xml version="1.0" encoding="utf-8" ?> 1403 
<fed:FederationMetadata wsu:Id="_fedMetadata"  1404 
 xmlns:fed="..."  xmlns:wsu="..." xmlns:wsse="..." xmlns:ds="..."  1405 
 xmlns:wsa="..."> 1406 
 <fed:Federation> 1407 
  <fed:TokenSigningKeyInfo> 1408 
    <wsse:SecurityTokenReference> 1409 
      <ds:X509Data>    1410 
        <ds:X509Certificate>  1411 
          MIIBsTCCAV+g...zRn3ZVIcvbQE= 1412 
        </ds:X509Certificate> 1413 
      </ds:X509Data>    1414 
    </wsse:SecurityTokenReference> 1415 
  </fed:TokenSigningKeyInfo> 1416 
  <fed:TokenIssuerName> 1417 
    http://fabrikam.com/federation/corporate 1418 
  </fed:TokenIssuerName> 1419 
  <fed:TokenIssuerEndpoint> 1420 
    <wsa:Address> http://fabrkam.com/federation/STS </wsa:Address> 1421 
  </fed:TokenIssuerEndpoint> 1422 
  <fed:TokenTypesOffered> 1423 
    <fed:TokenType Uri="urn:oasis:names:tc:SAML:1.1" /> 1424 
    <fed:TokenType Uri="urn:oasis:names:tc:SAML:2.0" /> 1425 
  </fed:TokenTypesOffered> 1426 
 1427 
  <fed:ClaimTypesOffered> 1428 
    <auth:ClaimType Uri="http://.../claims/EmailAddr" > 1429 
     <auth:DisplayName>Email Address</auth:DisplayName> 1430 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 49 of 137 

    </auth:ClaimType> 1431 
    <auth:ClaimType Uri="http://.../claims/IsMember" > 1432 
     <auth:DisplayName>Is a Member (yes/no)</auth:DisplayName> 1433 
     <auth:Description>If a person is a member of this club</auth:Description> 1434 
    </auth:ClaimType> 1435 
  </fed:ClaimTypesOffered> </fed:Federation>   1436 
 1437 
 <ds:Signature xmlns:ds="..."> 1438 
    <ds:SignedInfo> 1439 
      <ds:CanonicalizationMethod Algorithm="..." /> 1440 
      <ds:SignatureMethod Algorithm="..." /> 1441 
      <ds:Reference URI="_fedMetadata"> 1442 
        <ds:Transforms> 1443 
          <ds:Transform Algorithm=".../xmldsig#enveloped-signature" /> 1444 
          <ds:Transform Algorithm=".../xml-exc-c14n#" /> 1445 
        </ds:Transforms> 1446 
        <ds:DigestMethod Algorithm="..." /> 1447 
        <ds:DigestValue>xdJRPBPERvaZD9gTt4e6Mg==</ds:DigestValue> 1448 
      </ds:Reference> 1449 
    </ds:SignedInfo> 1450 
    <ds:SignatureValue>mpcFEK6JuUFBPoJQ8VBW2Q==</ds:SignatureValue> 1451 
    <ds:KeyInfo> 1452 
      ... 1453 
    </ds:KeyInfo> 1454 
  </ds:Signature> 1455 
</fed:FederationMetadata> 1456 

3.2 Acquiring the Federation Metadata Document 1457 

This section provides specific details and restrictions on how a party may securely obtain the federation 1458 

metadata document for a target domain representing a target organization it wishes to federate with. It 1459 

should be noted that some providers of federation metadata documents MAY require authentication of 1460 

requestors or MAY provide different (subset) documents if requestors are not authenticated. 1461 

It is assumed that the target domain is expressed as a fully-qualified domain name (FQDN). In other 1462 

words, it is expressed as the DNS domain name of the target organization, e.g., fabrikam.com. 1463 

It should be noted that compliant services are NOT REQUIRED to support all of the mechanisms defined 1464 

in this section.  If a client only has a DNS host name and wants to obtain the federation metadata, the 1465 

following order is the RECOMMENDED bootstrap search order: 1466 

1. Use the well-known HTTPS address with the federation ID 1467 

2. Use the well-known HTTPS address for the default federation 1468 

3. Use the well-known HTTP address with the federation ID 1469 

4. Use the well-known HTTP address for the default federation 1470 

5. Look for any DNS SRV records indicating federation metadata locations 1471 

If multiple locations are available and no additional prioritization is specified, the following order is the 1472 

RECOMMENDED download processing order: 1473 

1. HTTPS 1474 

2. WS-Transfer/WS-ResourceTransfer 1475 

3. HTTP 1476 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 50 of 137 

3.2.1 WSDL 1477 

The metadata document MAY be included within a WSDL document using the extensibility mechanisms 1478 

of WSDL.  Specifically the <fed:FederationMetadata> element can be placed inside of WSDL 1479 

documents in the same manner as policy documents are as specified in WS-PolicyAttachment. 1480 

The metadata document can appear in WSDL for a service, port, or binding.   1481 

3.2.2 The Federation Metadata Path 1482 

A default path MAY be supported to provide federation metadata.  The path for obtaining the federation 1483 

metadata document for the default federation for a target domain denoted by target-DNS-domain 1484 

SHOULD be constructed as follows: 1485 

http://server-name/FederationMetadata/spec-version/FederationMetadata.xml 1486 

or 1487 

https://server-name/FederationMetadata/spec-version/FederationMetadata.xml 1488 

where 1489 

server-name is the host name (DNS name) of a server providing the federation metadata document. It 1490 

SHOULD be obtained by doing a DNS query of SRV records for target-DNS-domain as 1491 

described in Section 3.2.6. If no DNS record is found, then the target DNS domain name MUST 1492 

BE used as the default value of the server name as well.  1493 

spec-version is the version of the federation metadata specification supported by the acquiring party.  For 1494 

this version of the specification the spec-version MUST BE the string "2007-06". 1495 

Implementations MAY choose to use a short form of the target DNS domain name, such as the primary 1496 

domain and suffix, but this choice is implementation specific. 1497 

The following subsections describe the mechanisms through which the federation metadata document for 1498 

a target domain may be acquired by a federating party. The target domain MUST support at least one of 1499 

the mechanisms described below, but MAY choose to support more than one mechanism. 1500 

It is RECOMMENDED that a target domain (or organization) that makes federation metadata available for 1501 

acquisition by partners SHOULD publish DNS SRV resource records to allow an acquiring party to locate 1502 

the servers where the metadata is available. The type and format of the SRV resource records to be 1503 

published in DNS is described in Section 3.2.6.  These records correspond to each metadata acquisition 1504 

mechanism specified in the following subsections. 1505 

If a specific federation context is known, the following URLs SHOULD be checked prior to checking for 1506 

the default federation context. 1507 

http://server-name/FederationMetadata/spec-version/fed-id/FederationMetadata.xml 1508 

or 1509 

https://server-name/FederationMetadata/spec-version/fed-id/FederationMetadata.xml 1510 

where 1511 

fed-id is the FederationID value described previously for identifying a specific federation.  1512 

3.2.3 Retrieval Mechanisms 1513 

The following OPTIONAL retrieval mechanisms are defined: 1514 

Using HTTP 1515 

The federation metadata document may be obtained from the following URL using HTTP GET 1516 

mechanism: 1517 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 51 of 137 

http:path 1518 

where path is constructed as described in Section 3.2.2. 1519 

Metadata signatures are RECOMMENDED when using HTTP download. 1520 

Using HTTPS 1521 

The federation metadata document MAY be obtained from the following URL using HTTPS GET 1522 

mechanism: 1523 

https:path 1524 

where path is constructed as described in Section 3.2.2. 1525 

There is no requirement that the HTTPS server key be related to the signing key identified in the 1526 

metadata document, but it is RECOMMENDED that requestors verify that both keys can speak for the 1527 

target service. 1528 

Using WS-Transfer/WS-ResourceTransfer 1529 

The federation metadata document can be obtained by sending the [WS-Transfer] "Get" operation to an 1530 

endpoint that serves that metadata as described in [WS-MetadataExchange] (see also section 3.2.5).  1531 

Note that the [WS-ResourceTransfer] extensions MAY be used to filter the metadata information returned. 1532 

The use of [WS-Security] with [WS-Transfer/WS-ResourceTransfer] is RECOMMENDED to authenticate 1533 

the sender and protect the integrity of the message. 1534 

3.2.4 FederatedMetadataHandler Header 1535 

If an endpoint reference for metadata obtained via SOAP requests is not already available to a requester 1536 

(e.g. when only a URL is know), the requestor SHOULD include the 1537 

<fed:FederationMetadataHandler> header to allow metadata requests to be quickly identified.  1538 

The syntax is as follows: 1539 

<fed:FederationMetadataHandler .../> 1540 

The<fed:FederationMetadataHandler> header SHOULD NOT use a S:mustUnderstand='1' 1541 

attribute.  Inclusion of this header allows a front-end service to know that federation metadata is being 1542 

requested and perform header-based routing.  1543 

The following example illustrates a [WS-Transfer] with [WS-ResourceTransfer] extensions request 1544 

message to obtain the federation metadata document for an organization with contoso.com as its domain 1545 

name. 1546 

(01) <s12:Envelope 1547 
(02)     xmlns:s12="..." 1548 
(03)     xmlns:wsa="..." 1549 
(04)     xmlns:wsxf="..."  1550 
(05)     xmlns:fed="..."> 1551 
(06)   <s12:Header> 1552 
(07)     <wsa:Action> 1553 
(08)       http://schemas.xmlsoap.org/ws/2004/09/transfer/Get 1554 
(09)     </wsa:Action> 1555 
(10)     <wsa:MessageID> 1556 
(11)         uuid:73d7edfd-5c3d-b949-46ba-02decaee433f 1557 
(12)     </wsa:MessageID> 1558 
(13)     <wsa:ReplyTo> 1559 
(14)       <wsa:Address>http://fabrikam.com/Endpoint</wsa:Address> 1560 
(15)     </wsa:ReplyTo> 1561 
(16)     <wsa:To> 1562 
(17)      http://contoso.com/FederationMetadata/2007-06/FederationMetadata.xml 1563 
(18)     </wsa:To> 1564 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 52 of 137 

(19)     <fed:FederatedMetadataHandler /> 1565 
(20)   </s12:Header> 1566 
(21)   <s12:Body /> 1567 
(22) </s12:Envelope> 1568 

The response to the [WS-Transfer] with [WS-ResourceTransfer] extensions request message is illustrated 1569 

below. 1570 

(01) <s12:Envelope 1571 
(02)     xmlns:s12="..." 1572 
(03)     xmlns:wsa="..." 1573 
(04)     xmlns:wsxf="..."  1574 
(05)     xmlns:fed="..."> 1575 
(06)   <s12:Header> 1576 
(07)     <wsa:To>http://fabrikam.com/Endpoint</wsa:To> 1577 
(08)     <wsa:Action> 1578 
(09)       http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse 1579 
(10)     </wsa:Action> 1580 
(11)     <wsa:MessageID> 1581 
(12)       uuid:86d7eac5-6e3d-b869-64bc-35edacee743d 1582 
(13)     </wsa:MessageID> 1583 
(14)     <wsa:RelatesTo> 1584 
(15)       uuid:73d7edfd-5c3d-b949-46ba-02decaee433f 1585 
(16)     </wsa:RelatesTo> 1586 
(17)   </s12:Header> 1587 
(18)   <s12:Body> 1588 
(19)     <fed:FederationMetadata   1589 
(20)         xmlns:fed="..."> 1590 
(21)       ... 1591 
(22)     </fed:FederationMetadata> 1592 
(21)  </s12:Body> 1593 
(22) </s12:Envelope> 1594 

3.2.5 Metadata Exchange Dialect 1595 

The federation metadata document MAY be included as a metadata unit within a Web service 1596 

<mex:Metadata> element, which is a collection of metadata units, using the metadata unit inclusion 1597 

mechanisms described in [WS-MetadataExchange]. This can be done by including a 1598 

<mex:MetadataSection> element that contains the federation metadata document in-line or by 1599 

reference. To facilitate inclusion of the federation metadata as a particular type of metadata unit, the 1600 

following metadata dialect URI is defined in this specification that MUST be used as the value of the 1601 

<mex:MetadataSection/@Dialect> XML attribute: 1602 

       http://docs.oasis-open.org/wsfed/federation/200706 1603 

No identifiers for federation metadata units, as specified by the value of the OPTIONAL 1604 

<mex:MetadataSection/@Identifier> XML attribute, are defined in this specification. 1605 

For example, a federation metadata unit specified in-line within a <mex:Metadata> element is shown 1606 

below: 1607 

<mex:Metadata> 1608 

  <mex:MetadataSection  1609 

            Dialect='http://docs.oasis-open.org/wsfed/federation/200706'> 1610 

    <fed:FederationMetadata ...> 1611 

      ... 1612 

    </fed:FederationMetadata> 1613 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 53 of 137 

  <mex:MetadataSection> 1614 

<mex:Metadata> 1615 

3.2.6 Publishing Federation Metadata Location 1616 

A target domain (or organization) that makes federation metadata available for acquisition by partners 1617 

SHOULD publish SRV resource records in the DNS database to allow an acquiring party to locate the 1618 

servers where the metadata is available. The specific format and content of the SRV resource records to 1619 

be published is described here. 1620 

The SRV record is used to map the name of a service (in this case the federation metadata service) to 1621 

the DNS hostname of a server that offers the service. For more information about SRV resource records, 1622 

see [DNS-SRV-RR]. The general form of the owner name of a SRV record to be published is as follows: 1623 

_Service.Protocol.TargetDnsDomain 1624 

In this case, a target domain offers the “federation metadata” service over one or more of the protocol 1625 

mechanisms described earlier (namely, HTTP, HTTPS or WS-Transfer/WS-ResourceTransfer). For each 1626 

protocol mechanism supported by a target domain, a corresponding SRV record SHOULD published in 1627 

DNS as follows. 1628 

If acquisition of the federation metadata document using HTTP GET (Section 3.2.3) is supported, then the 1629 

owner name of the published SRV record MUST be of the form below: 1630 

_fedMetadata._http.TargetDnsDomain 1631 

If acquisition of the federation metadata document using HTTPS GET (Section 3.2.3) is supported, then 1632 

the owner name of the published SRV record MUST be of the form below: 1633 

_fedMetadata._https.TargetDnsDomain 1634 

If acquisition of the federation metadata document using [WS-Transfer/WS-ResourceTransfer] (Section 1635 

3.2.3) is supported, then the owner name of the published SRV record MUST be of the form below: 1636 

_fedMetadata._wsxfr._http.TargetDnsDomain 1637 

The remaining information included in the SRV record content is as follows: 1638 

Priority The priority of the server.  Clients attempt to contact the server with the lowest priority and 

move to higher values if servers are unavailable (or not desired). 

Weight A load-balancing mechanism that is used when selecting a target server from those that 

have the same priority. Clients can randomly choose a server with probability proportional 

to the weight. 

Port The port where the server is listening for the service. 

Target The fully-qualified domain name of the host server. 

Note that if multiple protocols are specified with the same priority, the requestor MAY use any protocol or 1639 

process in any order it chooses. 1640 

The following example illustrates the complete SRV records published by the organization with domain 1641 

name “contoso.com” that makes its federation metadata available over all three mechanisms discussed 1642 

earlier. 1643 

 1644 

server1.contoso.com  IN  A  128.128.128.0 1645 
server2.contoso.com  IN  A  128.128.128.1 1646 
_fedMetadata._http.contoso.com  IN  SRV 0 0 80 server1.contoso.com 1647 
_fedMetadata._https.contoso.com  IN  SRV 0 0 443 server1.contoso.com 1648 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 54 of 137 

_fedMetadata._wsxfr.contoso.com  IN  SRV 0 0 80 server2.contoso.com 1649 

A client attempting to acquire the federation metadata for a target domain using any selected protocol 1650 

mechanism SHOULD query DNS for SRV records using one of the appropriate owner name forms 1651 

described above. 1652 

3.2.7 Federation Metadata Acquisition Security 1653 

It is RECOMMENDED that a target domain publishing federation metadata SHOULD include a signature 1654 

in the metadata document using a key that is authorized to "speak for" the target domain. If the metadata 1655 

contains a <fed:TokenSigningKey> element then this key SHOULD be used for the signature.  If 1656 

there are multiple Federation elements specified then the default scope’s signing key SHOULD be 1657 

used.  If there is no default scope then the choice is up to the signer.  Recipients of federation metadata 1658 

SHOULD validate that signature to authenticate the metadata publisher and verify the integrity of the 1659 

data. Specifically, a recipient SHOULD verify that the key used to sign the document has the right to 1660 

"speak for" the target domain (see target-DNS-domain in Section 3.2.2) with which the recipient is trying 1661 

to federate. See also the security considerations at the end of this document. 1662 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 55 of 137 

4 Sign-Out 1663 

The purpose of a federated sign-out is to clean up any cached state and security tokens that may exist 1664 
within the federation, but which are no longer required.  In typical usage, sign-out notification serves as a 1665 
hint – upon termination of a principal’s session – that it is OK to flush cached data (such as security 1666 
tokens) or state information for that specific principal.  It should be noted that a sign-out message is a 1667 
one-way message. No "sign-out-complete" reply message can be required since the Sign-Out operation 1668 
cannot be guaranteed to complete.  Further, sign-out requests might be processed in batch, causing a 1669 
time delay that is too long for the request and response to be meaningfully correlated.  In addition, 1670 
requiring a Web browser requestor to wait for a successful completion response could introduce arbitrary 1671 
and lengthy delays in the user experience.   The processing implication of sign-out messages can vary 1672 
depending on the type of application that is being used to sign-out.  For example, the implication of sign-1673 
out on currently active transactions is undefined and is resource-specific. 1674 

In some cases, formal sign-out is implicit or not required.  This section defines messages that MAY be 1675 
used by profiles for explicit sign-out. 1676 

In general, sign-out messages are unreliable and correct operation must be ensured in their absence (i.e., 1677 
the messages serve as hints only).  Consequently, these messages MUST also be treated as idempotent 1678 
since multiple deliveries could occur. 1679 

When sign-out is supported, it is typically provided as part of the IP/STS as it is usually the central 1680 
processing point. 1681 

Sign-out is separate from token cancellation as it applies to all tokens and all target sites for the principal 1682 
within the domain/realm. 1683 

4.1 Sign-Out Message 1684 

The sign-out mechanism allows requestors to send a message to its IP/STS indicating that the requester 1685 
is initiating a termination of the SSO.  That is, cached information or state information can safely be 1686 
flushed.  This specification defines OPTIONAL sign-out messages that MAY be used.  It should be noted, 1687 
however, that the typical usage pattern is that only token issuance and message security are used and 1688 
sign-out messages are only for special scenarios.  Sign-out messages, whether from the client to the 1689 
IP/STS, from the IP/STS to a subscriber, or from the client to a service provider, all use the same 1690 
message form described in this section. 1691 

For SOAP, the action of this message is as follows: 1692 

http://docs.oasis-open.org/wsfed/federation/200706/SignOut 1693 

The following represents an overview of the syntax of the <fed:SignOut> element: 1694 

<fed:SignOut wsu:Id="..." ...> 1695 
    <fed:Realm>xs:anyURI</fed:Realm> ? 1696 
    <fed:SignOutBasis ...>...<fed:SignOutBasis> 1697 
    ... 1698 
</fed:SignOut> 1699 

The following describes elements and attributes used in a <fed:SignOut> element. 1700 

/fed:SignOut 1701 

This element represents a sign-out message. 1702 

/fed:SignOut/fed:Realm 1703 

This OPTIONAL element specifies the "realm" to which the sign-out applies and is specified as a 1704 
URI.  If no realm is specified, then it is assumed that the recipient understands and uses a 1705 
fixed/default realm. 1706 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 56 of 137 

/fed:SignOut/fed:SignOutBasis 1707 

The contents of this REQUIRED element indicate the principal that is signing out.  Note that any 1708 
security token or security token reference MAY be used here and multiple tokens MAY be 1709 

specified.  That said, it is expected that the <UsernameToken> will be the most common.  Note 1710 

that a security token or security token reference MUST be specified.   1711 

/fed:SignOut/fed:SignOutBasis/@{any} 1712 

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added 1713 
to the element. Use of this extensibility mechanism MUST NOT alter the semantics of this 1714 
specification. 1715 

/fed:SignOut/fed:SignOutBasis/{any} 1716 

This is an extensibility mechanism to allow the inclusion of the relevant security token reference 1717 
or security token(s). 1718 

/fed:SignOut/@wsu:Id 1719 

This OPTIONAL attribute specifies a string label for this element. 1720 

/fed:SignOut/@{any} 1721 

This is an extensibility mechanism to allow additional attributes, based on schemas, to be added 1722 
to the element. Use of this extensibility mechanism MUST NOT  alter the semantics of this 1723 
specification. 1724 

/fed:SignOut/{any} 1725 

 This is an extensibility mechanism to allow additional elements to be used.  For example, an STS 1726 
might use extensibility to further qualify the sign-out basis. Use of this extensibility mechanism 1727 
MUST NOT alter the semantics of this specification. 1728 

 1729 

The <fed:SignOut> message SHOULD be signed by the requestor to prevent tampering and to 1730 

prevent unauthorized sign-out messages (i.e., Alice sending a sign-out message for Bob without Bob's 1731 
knowledge or permission).  The signature SHOULD contain a timestamp to prevent replay attacks (see 1732 
WS-Security for further discussion on this). It should be noted, however, that a principal MAY delegate 1733 
the right to issue such messages on their behalf. The following represents an example of the 1734 

<fed:SignOut> message: 1735 

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..."  1736 
 xmlns:wsu="..." xmlns:wsse="...">     1737 
    <S:Header> 1738 
        ... 1739 
        <wsu:Timestamp wsu:Id="ts"> 1740 
            ... 1741 
        </wsu:Timestamp> 1742 
        <wsse:Security> 1743 
            <!-- Signature referecing IDs "ts" & "so" --> 1744 
            ... 1745 
        </wsse:Security> 1746 
    </S:Header> 1747 
    <S:Body> 1748 
        <fed:SignOut wsu:Id="so"> 1749 
          <fed:SignOutBasis> 1750 
            <wsse:UsernameToken> 1751 
                <wsse:Username>NNK</wsse:Username> 1752 
            </wsse:UsernameToken> 1753 
          </fed:SignOutBasis> 1754 
        </fed:SignOut> 1755 
    </S:Body> 1756 
</S:Envelope> 1757 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 57 of 137 

4.2 Federating Sign-Out Messages 1758 

In many environments there is a need to take the messages indicating sign-out and distribute them 1759 

across the federation, subject to authorization and privacy rules.  Consequently, these messages result 1760 

from when an explicit message is sent to the IP/STS (by either the principal or a delegate such as an 1761 

IP/STS), or implicitly from an IP/STS as a result of some other action (such as a token request).   1762 

In the typical use case, federated sign-out messages will be generated by the principal terminating a 1763 

session, either at the “primary STS” (the IP/STS that manages the principal’s identity) or at one of the 1764 

resource providers (or its STS) accessed during the session.  There are two primary flows for these 1765 

messages.  In one case they are effectively chained through all the STSs involved in the session; that is, 1766 

a mechanism is used (if available) by the “primary STS” to send sign-out messages to all the other STSs 1767 

in a sequential manner by causing each message to cause the next message to occur in sequence 1768 

resulting in a message back to itself either on completion or at each step to orchestrate the process.  The 1769 

second approach is to require the “primary STS” to send sign-out messages to all the other token 1770 

services and target services in parallel (those that it knows about). 1771 

The chained (sequential) approach has been found to be fragile.  If one of the message fails to complete 1772 

its local processing and does not pass the sign-out message on – or the network partitions – the sign-out 1773 

notification does not reach all the involved parties.  For this reason, compliant implementations SHOULD 1774 

employ the parallel approach.  If the session is terminated at a resource provider, it SHOULD clean up 1775 

any local state and then send a sign-out message to the “primary STS”.  The latter SHOULD send parallel 1776 

sign-out messages to all the other STSs. 1777 

Sessions MAY involve secondary branches (between token services at different resources) of which the 1778 

“primary STS” has no knowledge.  In these cases, the appropriate resource token services SHOULD 1779 

perform the role of “primary STS” for sign-out of these branches. 1780 

It should be noted that clients MAY also push (send) sign-out messages directly to other services such as 1781 

secondary IP/STSs or service providers.   1782 

Sign-out could potentially be applied to one of two different scopes for the principal’s session.  Sign-out 1783 

initiated at the “primary STS” SHOULD have global scope and apply to all resource STSs and all 1784 

branches of the session.  Sign-out initiated at a resource STS could also have global scope as described 1785 

above.  However, it could also be considered as a request to clean up only the session state related to 1786 

that particular resource provider.  Thus implementations MAY provide a mechanism to restrict the scope 1787 

of federated sign-out requests that originate at a resource STS to its particular branch of the principal’s 1788 

session.  This SHOULD result in cleaning up all state at (or centered upon) that STS.  It SHOULD involve 1789 

a request to be sent to the “primary STS” to clean up session state only for that particular STS or 1790 

resource provider. 1791 

Federated sign-out request processing could involve providing status messages to the user.  This 1792 

behavior is implementation specific and out-of-scope of this specification. 1793 

The result of a successful request is that all compliant SSO messages generated implicitly or explicitly are 1794 
sent to the requesting endpoints if allowed by the authorization/privacy rules.   1795 

SSO messages MAY be obtained by subscribing to the subscription endpoint using the mechanisms 1796 
described in [WS-Eventing].  The subscription endpoint, if available, is described in the federation 1797 
metadata document. 1798 

The [WS-Eventing] mechanisms allow for subscriptions to be created, renewed, and cancelled.  SSO 1799 
subscriptions  MAY be filtered using the XPath filter defined in [WS-Eventing] or using the SSO filter 1800 
specified by the following URI: 1801 

http://docs.oasis-open.org/wsfed/federation/200706/ssoevt 1802 

This filter allows the specification of a realm and security tokens to restrict the SSO messages.  The 1803 
syntax is as follows: 1804 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 58 of 137 

<wse:Subscribe ...> 1805 
  ... 1806 
  <wse:Filter Dialect=".../federation/ssoevt"> 1807 
    <fed:Realm>...</fed:Realm> ? 1808 
    ...security tokens... 1809 
  </wse:Filter> 1810 
  ... 1811 
</wse:Subscribe> 1812 

The following describes elements and attributes illustrated above: 1813 

/wse:Filter/fed:Realm 1814 

This OPTIONAL element specifies the "realm" to which the sign-out applies.  At most one 1815 

<fed:Realm> can be specified.  The contents of this element are the same type and usage as in 1816 

the fed:Signout/fed:Realm described above.  If this element is not specified it is assumed 1817 

that either the subscription service knows how to infer the correct realm and uses a single 1818 
service-determined realm or the request fails.  Note that if multiple realms are desired then 1819 
multiple subscriptions are needed. 1820 

/wse:Filter/… security tokens(s) … 1821 

The contents of these OPTIONAL elements restrict messages to only the specified identities.  1822 
Note that any security token or security token reference MAY be used here and multiple tokens 1823 

MAY be specified.  That said, it is expected that the <wsse:UsernameToken> will be the most 1824 

common.  Note that if multiple tokens are specified they represent a logical OR – that is, 1825 
messages that match any of the tokens for the corresponding realm are reported.   1826 

This filter dialect does not allow any contents other than those described above.  If no filter is specified 1827 
then the subscription service MAY fail or MAY choose a default filter for the subscription. 1828 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 59 of 137 

5 Attribute Service 1829 

Web services often need to be able to obtain additional data related to service requestors to provide the 1830 
requestor with a richer (e.g. personalized) experience. This MAY be addressed by having an attribute 1831 
service that requesters and services MAY use to access this additional information. In many cases, the 1832 
release of this information about a service requestor is subject to authorization and privacy rules and 1833 
access to this data (or the separate service that has data available for such purposes) is only granted to 1834 
authorized services for any given attribute. 1835 

Attribute stores most likely exist in some form already in service environments using service-specific 1836 
protocols (e.g. such as LDAP). An attribute service provides the interface to this attribute store.   1837 

Figure 21 below illustrates the conceptual namespace of an attribute service. 1838 

An attribute service MAY leverage existing repositories and may MAY provide some level of organization 1839 
or context.  That is, this specification makes no proposals or requirements on the organization of the data, 1840 
just that if a principal exists, any corresponding attribute data should be addressable using the 1841 
mechanisms described here. 1842 

Principals represent any kind of resource, not just people.  Consequently, the attribute mechanisms MAY 1843 
be used to associate attributes with any resource, not just with identities.  Said another way, principal 1844 
identities represent just one class of resource that can be used by this specification. 1845 

Principals and resources MAY have specific policies that are required when accessing and managing 1846 
their attributes.  Such policies use the [WS-Policy] framework.  As well, these principals (and resources) 1847 
MAY be specified as domain expressions to scope policy assertions as described in [WS-1848 
PolicyAttachment]. 1849 

 1850 

Figure 21 Attribute Service 1851 

It is expected that separate attributes MAY be shared differently and MAY require different degrees of 1852 
privacy and protection.  Consequently, each attribute expression SHOULD be capable of expressing its 1853 
own access control and privacy policy.  As well, the access control and privacy policy SHOULD take into 1854 
account the associated scope(s) and principals that can speak for the scope(s). 1855 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 60 of 137 

Different services MAY support different types of attribute services which MAY be identified via policy by 1856 
definition of new policy assertions indicating the attribute service supported.   1857 

Each attribute store MAY support different subsets of the functionality as described above.  The store's 1858 
policy indicates what functionality it supports. 1859 

This specification does not require a specific attribute service definition or interface. However, as 1860 
indicated in sections 2.7 and 3.1.8, the WS-Trust Security Token Service interface and token issuance 1861 
protocol MAY be used as the interface to an attribute service.  Reusing an established service model and 1862 
protocol could simplify threat analysis and implementation of attribute services. 1863 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 61 of 137 

6 Pseudonym Service 1864 

The OPTIONAL pseudonym service is a special type of attribute service which maintains alternate identity 1865 
information (and optionally associated tokens) for principals. 1866 

Pseudonym services MAY exist in some form already in service environments using service-specific 1867 
protocols.  This specification defines an additional, generic, interface to these services for interoperability 1868 
with Web services.   1869 

The figure below illustrates the conceptual namespace of a pseudonym service: 1870 

 1871 

Figure 22 Pseudonym Service 1872 

The service MAY provide some level of organization or context.  That is, this specification makes no 1873 
proposals or requirements on the organization of the data, just that a principal exist and be addressable 1874 
using the mechanisms described here.   1875 

Within the namespace principals are associated and a set of zero or more pseudonyms defined.  Each 1876 
pseudonym MAY be scoped, that is, each pseudonym may have a scope to which it applies (possibly 1877 
more than one resource/service).  1878 

A pseudonym MAY have zero or more associated security tokens.  This is an important aspect because it 1879 
allows an IP to directly return the appropriate token for specified scopes.  For example, when Fred.Jones 1880 
requested a token for Fabrikam123.com, his IP could have returned the Freddo identity directly allowing 1881 
the requestor to pass this to Fabrikam123.  This approach is more efficient and allows for greater privacy 1882 
options. 1883 

It is expected that pseudonyms MAY have different access control and privacy policies and that these can 1884 
vary by principal or by scope within principal.  Consequently, each pseudonym SHOULD be capable of 1885 
expressing its own access control and privacy policy.  As well, the access control and privacy policy 1886 
SHOULD take into account the associated scope(s) and principals that can speak for the scope(s). 1887 

Pseudonym services MUST support the interfaces defined in this section for getting, setting, and deleting 1888 
pseudonyms. 1889 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 62 of 137 

6.1 Filtering Pseudonyms 1890 

When performing operations on a pseudonym store it is RECOMMENDED to filter the scope of the 1891 
operation.  This is done using the following dialect with the [WS-ResourceTransfer] extensions to [WS-1892 
Transfer]: 1893 

http://docs.oasis-open.org/wsfed/federation/200706/pseudonymdialect 1894 

Alternatively, the <fed:FilterPseudonyms> header MAY be specified with WS-Transfer to allow 1895 

filtering to be specified as part of an endpoint reference (EPR). 1896 

The syntax for the <fed:FilterPseudonyms> element is as follows: 1897 

<fed:FilterPseudonyms ...> 1898 
    <fed:PseudonymBasis ...>...</fed:PseudonymBasis> ? 1899 
    <fed:RelativeTo ...>...</fed:RelativeTo> ? 1900 
    ... 1901 
</fed:FilterPseudonyms> 1902 

The following describes elements and attributes used in a <fed:FilterPseudonyms> element. 1903 

/fed:FilterPseudonyms 1904 

This element indicates a request to filter a pseudonym operation based on given identity 1905 
information and applicability scope. 1906 

/fed:FilterPseudonyms/fed:PseudonymBasis 1907 

This element specifies a security token or security token reference identifying the known identity 1908 
information.  This element is typically required to identify the basis but MAY be omitted if the 1909 
context is known.  This specification places no requirements on what information (claims) are 1910 
required to be a pseudonym basis – that can vary by service. 1911 

/fed:FilterPseudonyms/fed:PseudonymBasis/@{any} 1912 

This is an extensibility point allowing attributes to be specified.  Use of this extensibility 1913 
mechanism MUST NOT alter semantics defined in this specification. 1914 

/fed:FilterPseudonyms/fed:PseudonymBasis/{any} 1915 

This is an extensibility mechanism to allow the inclusion of the relevant security token reference 1916 
or security token. 1917 

/fed:FilterPseudonyms/fed:RelativeTo 1918 

This RECOMMENDED element indicates the scope for which the pseudonym is requested.  This 1919 

element has the same type as <wsp:AppliesTo>. 1920 

/fed:FilterPseudonyms/fed:RelativeTo/@{any} 1921 

This is an extensibility point allowing attributes to be specified.   1922 

Use of this extensibility mechanism MUST NOT  alter the semantics of this specification. 1923 

alter semantics defined in this specification. 1924 

/fed:FilterPseudonyms/@{any} 1925 

This is an extensibility point allowing attributes to be specified.  Use of this extensibility 1926 
mechanism MUST NOT  . alter semantics defined in this specification. 1927 

/fed:FilterPseudonyms/{any} 1928 

This is an extensibility point allowing content elements to be specified.   1929 

Use of this extensibility mechanism MUST NOT alter semantics defined in this specification. 1930 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 63 of 137 

As noted above, in some circumstances it MAY be desirable to include a filter as part of an EPR.  To 1931 

accommodate this, <fed:FilterPseudonyms> element MAY be specified as a SOAP header.  It is 1932 

RECOMMENDED that the SOAP mustUnderstand attribute be specified as true whenever this is used as 1933 

a header.  If a <fed:FilterPseudonyms> header is specified, the message MUST NOT contain 1934 

additional filtering. 1935 

6.2 Getting Pseudonyms 1936 

Pseudonyms are requested from a pseudonym service using the [WS-Transfer] “GET” method with the 1937 

[WS-ResourceTransfer] extensions.  The dialect defined in 6.1 (or the <fed:FilterPseudonyms> 1938 

header) is used to restrict the pseudonyms that are returned. 1939 

Pseudonyms are returned in the body of the GET response message in a <fed:Pseudonym> element 1940 

as follows: 1941 

<fed:Pseudonym ...> 1942 
  <fed:PseudonymBasis ...>...</fed:PseudonymBasis> 1943 
  <fed:RelativeTo ...>...</fed:RelativeTo> 1944 
  <wsu:Expires>...</wsu:Expires> 1945 
  <fed:SecurityToken ...>...</fed:SecurityToken> * 1946 
  <fed:ProofToken ...>...</fed:ProofToken> * 1947 
  ... 1948 
</fed:Pseudonym>  1949 

The following describes elements and attributes described above:   1950 

/fed:Pseudonym 1951 

This element represents a pseudonym for a principal. 1952 

/fed:Pseudonym/fed:PseudonymBasis 1953 

This element specifies a security token or security token reference identifying the known identity 1954 
information (see [WS-Security]).  Often this is equivalent to the basis in the request although if 1955 
multiple pseudonyms are returned that value may be different. 1956 

/fed:Pseudonym/fed:PseudonymBasis/@{any} 1957 

This is an extensibility point allowing attributes to be specified.   1958 

Use of this extensibility mechanism MUST NOTalter semantics defined in this specification. 1959 

/fed:Pseudonym/fed:PseudonymBasis/{any} 1960 

This is an extensibility mechanism to allow the inclusion of the relevant security token reference 1961 
or security token. Use of this extensibility mechanism MUST NOT alter semantics defined in this 1962 
specification. 1963 

/fed:Pseudonym/fed:RelativeTo 1964 

This  REQUIRED element indicates the scope for which the pseudonym is requested.  This 1965 

element has the same type as <wsp:AppliesTo>. 1966 

/fed:Pseudonym/fed:RelativeTo/@{any} 1967 

This is an extensibility point allowing attributes to be specified.  Use of this extensibility 1968 
mechanism MUST NOT alter semantics defined in this specification. 1969 

/fed:Pseudonym/wsu:Expires 1970 

This OPTIONAL element indicates the expiration of the pseudonym. 1971 

/fed:Pseudonym/fed:SecurityToken 1972 

This OPTIONAL element indicates a security token for the scope.  Note that multiple tokens MAY 1973 
be specified. 1974 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 64 of 137 

/fed:Pseudonym/fed:SecurityToken/@{any} 1975 

This is an extensibility point allowing attributes to be specified.  Use of this extensibility 1976 
mechanism MUST NOT alter semantic defined in this specification. 1977 

/fed:Pseudonym/fed:SecurityToken/{any} 1978 

This is an extensibility mechanism to allow the inclusion of the relevant security token(s). Use of 1979 
this extensibility mechanism MUST NOT alter semantics defined in this specification 1980 

/fed:Pseudonym/fed:ProofToken 1981 

This OPTIONAL element indicates a proof token for the scope.  Note that multiple tokens MAY be 1982 
specified. 1983 

/fed:Pseudonym/fed:ProofToken/@{any} 1984 

This is an extensibility point allowing attributes to be specified.  Use of this extensibility 1985 
mechanism MUST NOT alter semantics defined in this specification. 1986 

/fed:Pseudonym/fed:ProofToken/{any} 1987 

This is an extensibility mechanism to allow the inclusion of the relevant security token(s).  Use of 1988 
this extensibility mechanism MUST NOT alter semantics defined in this specification. 1989 

/fed:Pseudonym/@{any} 1990 

This is an extensibility point allowing attributes to be specified.  Use of this extensibility 1991 
mechanism MUST NOT alter semantics defined in this specification. 1992 

/fed:Pseudonym/{any} 1993 

This is an extensibility point allowing content elements to be specified.   Use of this extensibility 1994 
mechanism MUST NOT alter semantics defined in this specification. 1995 

For example, the following example obtains the local pseudonym associated with the identity (indicated 1996 
binary security token) for the locality (target scope) indicated by the URI 1997 
http://www.fabrikam123.com/NNK. 1998 

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..."  1999 
 xmlns:wsu="..." xmlns:wsse="..." xmlns:wsrt="..."> 2000 
  <S:Body> 2001 
    <wsrt:Get  2002 
     Dialect="http://docs.oasis-open.org/wsfed/federation/200706/pseudonymdialect"> 2003 
     <wsrt:Expression> 2004 
      <fed:FilterPseudonyms> 2005 
          <fed:PseudonymBasis> 2006 
              <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2007 
          </fed:PseudonymBasis> 2008 
          <fed:RelativeTo> 2009 
            <wsa:Address> 2010 
                  http://www.fabrikam123.com/NNK 2011 
            </wsa:Address> 2012 
          </fed:RelativeTo> 2013 
      </fed:FilterPseudonyms> 2014 
     </wsrt:Expression> 2015 
    </wsrt:Get> 2016 
  </S:Body> 2017 
</S:Envelope> 2018 

A sample response might be as follows: 2019 

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..."  2020 
 xmlns:wsu="..." xmlns:wsse="..." xmlns:wsrt="...">   2021 
  <S:Body> 2022 
   <wsrt:GetResponse> 2023 
    <wsrt:Result> 2024 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 65 of 137 

        <fed:Pseudonym> 2025 
          <fed:RelativeTo> 2026 
            <wsa:Address> 2027 
              http://www.fabrikam123.com/NNK 2028 
            </wsa:Address> 2029 
          </fed:RelativeTo> 2030 
          <wsu:Expires>2003-12-10T09:00Z</wsu:Expires> 2031 
          <fed:SecurityToken>...</fed:SecurityToken> 2032 
          <fed:ProofToken>...</fed:ProofToken> 2033 
        </fed:Pseudonym> 2034 
    </wsrt:Result> 2035 
   </wsrt:GetResponse> 2036 
  </S:Body> 2037 
</S:Envelope> 2038 

6.3 Setting Pseudonyms 2039 

Pseudonyms are updated in a pseudonym service using the [WS-Transfer] “PUT” operation with the [WS-2040 

ResourceTransfer] extensions using the dialect defined in 6.1 (or the <fed:FilterPseudonyms> 2041 

header).  This allows one or more pseudonyms to be added.  If a filter is not specified, then the PUT 2042 
impacts the full pseudonym set.  It is RECOMMENDED that filters be used. 2043 

The following example sets pseudonym associated with the identity (indicated binary security token) for 2044 
the locality (target scope) indicated by the URI http://www.fabrikam123.com/NNK. 2045 

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..."  2046 
 xmlns:wsu="..." xmlns:wsse="..." xmlns:wsrt="..."> 2047 
  <S:Body> 2048 
   <wsrt:Put  2049 
 Dialect="http://docs.oasis-open.org/wsfed/federation/200706/pseudonymdialect"> 2050 
    <wsrt:Fragment Mode="Inset"> 2051 
     <wsrt:Expression> 2052 
      <fed:FilterPseudonyms> 2053 
          <fed:PseudonymBasis> 2054 
              <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2055 
          </fed:PseudonymBasis> 2056 
          <fed:RelativeTo> 2057 
            <wsa:Address> 2058 
                  http://www.fabrikam123.com/NNK 2059 
            </wsa:Address> 2060 
          </fed:RelativeTo> 2061 
      </fed:FilterPseudonyms> 2062 
     </wsrt:Expression> 2063 
     <wsrt:Value> 2064 
        <fed:Pseudonym> 2065 
          <fed:PseudonymBasis> 2066 
            <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2067 
          </fed:PseudonymBasis> 2068 
          <fed:RelativeTo> 2069 
            <wsa:Address> 2070 
                http://www.fabrikam123.com/NNK 2071 
            </wsa:Address> 2072 
          </fed:RelativeTo> 2073 
          <fed:SecurityToken> 2074 
              <wsse:UsernameToken> 2075 
                  <wsse:Username> "Nick" </wsse:Username> 2076 
              </wsse:UsernameToken> 2077 
          </fed:SecurityToken> 2078 
          <fed:ProofToken>...</fed:ProofToken> 2079 
        </fed:Pseudonym> 2080 
     </wsrt:Value> 2081 
    </wsrt:Fragment> 2082 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 66 of 137 

    </wsrt:Put> 2083 
  </S:Body> 2084 
</S:Envelope>  2085 

6.4 Deleting Pseudonyms 2086 

Pseudonyms are deleted in a pseudonym service using the [WS-Transfer] “PUT” operation with the [WS-2087 

ResourceTransfer] extensions.  The dialect defined in 6.1 (or the <fed:FilterPseudonyms> header) is 2088 

used to restrict the scope of the “PUT” to only remove pseudonym information corresponding to the filter.  2089 
If a filter is not specified, then the PUT impacts the full pseudonym set.  It is RECOMMENDED that filters 2090 
be used. 2091 

The following example deletes the pseudonym associated with the identity (indicated binary security 2092 
token) for the locality (target scope) indicated by the URI http://www.fabrikam123.com/NNK.  2093 

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..."  2094 
 xmlns:wsu="..." xmlns:wsse="..." xmlns:wsrt="..."> 2095 
  <S:Body> 2096 
   <wsrt:Put  2097 
 Dialect="http://docs.oasis-open.org/wsfed/federation/200706/pseudonymdialect"> 2098 
    <wsrt:Fragment Mode="Remove"> 2099 
     <wsrt:Expression> 2100 
      <fed:FilterPseudonyms> 2101 
          <fed:PseudonymBasis> 2102 
              <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2103 
          </fed:PseudonymBasis> 2104 
          <fed:RelativeTo> 2105 
            <wsa:Address> 2106 
                  http://www.fabrikam123.com/NNK 2107 
            </wsa:Address> 2108 
          </fed:RelativeTo> 2109 
      </fed:FilterPseudonyms> 2110 
     </wsrt:Expression> 2111 
    </wsrt:Fragment> 2112 
   </wsrt:Put> 2113 
  </S:Body> 2114 
</S:Envelope>  2115 

6.5 Creating Pseudonyms 2116 

Pseudonyms are created in a pseudonym service using the WS-Resource “CREATE” operation with the 2117 
[WS-ResourceTransfer] extensions.  This allows one or more pseudonyms to be added.  The dialect 2118 

defined in 6.1 (or the <fed:FilterPseudonyms> header) is specified on the CREATE to only create 2119 

pseudonym information corresponding to the filter.  If a filter is not specified, then the CREATE impacts 2120 
the full pseudonym set.  It is RECOMMENDED that filters be used. 2121 

The following example creates pseudonym associated with the identity (indicated binary security token) 2122 
for the locality (target scope) indicated by the URI http://www.fabrikam123.com/NNK. 2123 

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmlns:wsxf="..." xmlns:fed="..."  2124 
 xmlns:wsu="..." xmlns:wsse="..." xmlns:wsrt="..."> 2125 
  <S:Body> 2126 
   <wsrt:Create 2127 
    Dialect="http://docs.oasis-open.org/wsfed/federation/200706/pseudonymdialect"> 2128 
    <wsrt:Fragment> 2129 
     <wsrt:Expression> 2130 
      <fed:FilterPseudonyms> 2131 
          <fed:PseudonymBasis> 2132 
              <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2133 
          </fed:PseudonymBasis> 2134 
          <fed:RelativeTo> 2135 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 67 of 137 

            <wsa:Address> 2136 
                  http://www.fabrikam123.com/NNK 2137 
            </wsa:Address> 2138 
          </fed:RelativeTo> 2139 
      </fed:FilterPseudonyms> 2140 
     </wsrt:Expression> 2141 
     <wsrt:Value> 2142 
        <fed:Pseudonym> 2143 
          <fed:PseudonymBasis> 2144 
            <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 2145 
          </fed:PseudonymBasis> 2146 
          <fed:RelativeTo> 2147 
            <wsa:Address> 2148 
                http://www.fabrikam123.com/NNK 2149 
            </wsa:Address> 2150 
          </fed:RelativeTo> 2151 
          <fed:SecurityToken> 2152 
              <wsse:UsernameToken> 2153 
                  <wsse:Username> "Nick" </wsse:Userename> 2154 
              </wsse:UsernameToken> 2155 
          </fed:SecurityToken> 2156 
          <fed:ProofToken>...</fed:ProofToken> 2157 
        </fed:Pseudonym> 2158 
     </wsrt:Value> 2159 
    </wsrt:Fragment> 2160 
   </wsrt:Create> 2161 
  </S:Body> 2162 
</S:Envelope>  2163 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 68 of 137 

7 Security Tokens and Pseudonyms 2164 

As previously mentioned, the pseudonym service MAY also be used to store tokens associated with the 2165 
pseudonym.  Cooperating Identity Providers and security token services can then be used to 2166 
automatically obtain the pseudonyms and tokens based on security token requests for scopes associated 2167 
with the pseudonyms. 2168 

Figure 23 below illustrates two examples of how security tokens are associated with resources/services.  2169 
In the figure on the left, the requestor first obtains the security token(s) from the IP/STS for the 2170 
resource/service (1) and then saves them in the pseudonym service (2).  The pseudonyms can be 2171 
obtained from the pseudonym service prior to subsequent communication with the resource removing the 2172 
need for the resource's IP/STS to communicate with the requestor's pseudonym service (3).  The figure 2173 
on the right illustrates the scenario where IP/STS for the resource/service associates the security token(s) 2174 
for the requestor as needed and looks them up (as illustrated in previous sections). 2175 

 

Requestor

IP/STS

Resource

Attr/Pseudo

Service

2. Associate token

with Resource
1. Get token

for Resource

Requestor

IP/STS

Resource

Attr/Pseudo

Service

4. Associate token

with Resource

3. Get token

for Resource

 2176 

Figure 23: Attribute & Pseudonym Services Relationships to IP/STS Services 2177 

 2178 

However when the requestor requests tokens for a resource/service, using a WS-Trust 2179 

<RequestSecurityToken> whose scope has an associated pseudonym/token, it is returned as 2180 

illustrated below in the <RequestSecurityTokenResponse> which can then be used when 2181 

communicating with the resource: 2182 

  2183 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 69 of 137 

Figure 24: Attribute & Pseudonym Service Fronted by IP/STS 2184 

The pseudonym service SHOULD be self-maintained with respect to valid security tokens.  That is, 2185 
security tokens that have expired or are otherwise not valid for any reason MAY be automatically 2186 
discarded by the service. 2187 

This approach is an alternative to having the pseudonym service directly return the security token 2188 
issuance.  Both approaches SHOULD be supported in order to address different scenarios and 2189 
requirements. 2190 

The following sub-sections describe how token issuance works for different types of keys. 2191 

7.1 RST and RSTR Extensions 2192 

With the addition of pseudonyms and the integration of an IP/STS with a pseudonym service, an IP/STS 2193 
MAY automatically map pseudonyms based on the target service.  If it doesn’t, the following additional 2194 

options MAY be included in the security token requests using the <wst:RequestSecurityToken> 2195 

request to explicitly request a mapping or to clarify the type of mapping desired.   2196 

The following syntax illustrates the RST extension to support these new options: 2197 

<fed:RequestPseudonym SingleUse="xs:boolean" ? Lookup="xs:boolean" ? ...> 2198 
   ... 2199 
</fed:RequestPseudonym> 2200 

/fed:RequestPseudonym 2201 

This OPTIONAL element MAY be specified in a <wst:RequestSecurityToken> request to 2202 

indicate how pseudonyms are to be processed for the requested token. 2203 

/fed:RequestPseudonym/@SingleUse 2204 

This optional OPTIONAL attribute indicates if a single-use pseudonym is returned (true), or if the 2205 
service uses a constant identifier (false – the default). 2206 

/fed:RequestPseudonym/@Lookup 2207 

This OPTIONAL attribute indicates if an associated pseudonym for the specified scope is used 2208 
(true – the default) or if the primary identity is used even if an appropriate pseudonym is 2209 
associated (false). 2210 

/fed:RequestPseudonym/{any} 2211 

This is an extensibility mechanism to allow additional information to be specified.  Use of this 2212 
extensibility mechanism MUST NOT alter the semantics defined in this specification. 2213 

/fed:RequestPseudonym/@{any} 2214 

This is an extensibility mechanism to allow additional attributes to be specified.  Use of this 2215 
extensibility mechanism MUST NOT alter the semantics defined in this specification. 2216 

If the <RequestPseudonym> isn't present, pseudonym usage/lookup and single use is at the discretion 2217 

of the IP/STS.  Note that if present, as with all RST parameters, processing is at the discretion of the STS 2218 

and it MAY choose to use its own policy instead of honoring the requestor’s parameters. 2219 

Note that the above MAY be echoed in a RSTR response confirming the value used by the STS. 2220 

7.2 Usernames and Passwords 2221 

If an IP/STS returns a security token based on a username, then the token can be stored in the 2222 
pseudonym service.   2223 

If a corresponding password is issued (or if the requestor specified one), then it too MAY be stored with 2224 
the pseudonym and security token so that it can be returned as the proof-of-possession token in the 2225 
RSTR response. 2226 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 70 of 137 

If a pseudonym is present, but no security token is specified, then the IP/STS MAY return a 2227 

<UsernameToken> in the RSTR response to indicate the pseudonym.   2228 

7.3 Public Keys 2229 

Generally, when an IP/STS issues a new security token with public key credentials, the public key in the 2230 
new security token is the same as the key in the provided input security token thereby allowing the same 2231 
proof (private key) to be used with the new token since the public key is the same.  In such cases, the 2232 
new token can be saved directly. 2233 

If, however, the IP/STS issues a new public key (and corresponding private key), then the private key 2234 
MAY be stored with the pseudonym as a proof token so that it can be subsequently returned as the proof-2235 
of-possession token in the RSTR response. 2236 

7.4 Symmetric Keys 2237 

If an IP/STS returns a token based on a symmetric key (and the corresponding proof information), then 2238 
the proof information MAY be stored with the pseudonym and token so that it can be used to construct a 2239 
proof-of-possession token in the RSTR response. 2240 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 71 of 137 

8 Additional WS-Trust Extensions 2241 

The following sub-sections define additional extensions to [WS-Trust] to facilitate federation. 2242 

8.1 Reference Tokens 2243 

Tokens are exchanged using the mechanisms described in [WS-Trust].  In some cases, however, it is 2244 
more efficient to not return the token, but return a handle to the token along with the proof information.  2245 
Requestors can then send messages to services secured with the proof token but only passing the token 2246 
reference.  The recipient is then responsible for obtaining the actual token.   2247 

To support this scenario, a reference token MAY be returned in a RSTR response message instead of the 2248 
actual token.  This is a security token and can be used in any way a security token is used; it is just that 2249 
its contents need to be fetched before they can be processed.  Specifically, this token can then be used 2250 
with [WS-Security] (referenced by ID only) to associate a token with the message.  Note that the proof key 2251 
corresponding to the token referenced is used to sign messages. The actual token can later be obtained 2252 
from the issuing party (or its delegate) using the reference provided.   2253 

The following URI is defined to identify a reference token within [WS-Security]: 2254 

http://docs.oasis-open.org/wsfed/federation/200706/reftoken 2255 

The following syntax defines a reference token that can be used in compliance with this specification: 2256 

<fed:ReferenceToken ...> 2257 
  <fed:ReferenceEPR>wsa:EndpointReferenceType</fed:ReferenceEPR> + 2258 
  <fed:ReferenceDigest ...>xs:base64Binary</fed:ReferenceDigest> ? 2259 
  <fed:ReferenceType ...>xs:anyURI</fed:ReferenceType> ? 2260 
  <fed:SerialNo ...>...</fed:SerialNo> ? 2261 
  ... 2262 
</fed:ReferenceToken> 2263 

/fed:ReferenceToken 2264 

This specifies a reference token indicating the EPR to which a [WS-Transfer] (with OPTIONAL 2265 
[WS-ResourceTransfer] extensions) GET request can be made to obtain the token. 2266 

/fed:ReferenceToken/fed:ReferenceEPR 2267 

The actual EPR to which the [WS-Transfer/WS-ResourceTransfer] GET request is directed.  At 2268 
least one EPR MUST be specified. 2269 

/fed:ReferenceToken/fed:ReferenceDigest 2270 

An OPTIONAL SHA1 digest of token to be returned.  The value is the base64 encoding of the 2271 
SHA1 digest.  If the returned token is a binary token, the SHA1 is computed over the raw octets.  2272 
If the returned token is XML, the SHA1 is computed over the Exclusive XML Canonicalized [XML-2273 
C14N] form of the token. 2274 

/fed:ReferenceToken/fed:ReferenceDigest/@{any} 2275 

This extensibility mechanism allows additional attributes to be specified.   Use of this extensibility 2276 
mechanism MUST NOT alter the semantics defined in this specification. 2277 

/fed:ReferenceToken/fed:ReferenceType 2278 

An OPTIONAL URI value that indicates the type of token that is being referenced.  It is 2279 
RECOMMENDED that this be provided to allow processors to determine acceptance without 2280 
having to fetch the token, but in some circumstances this is difficult so it is not required. 2281 

/fed:ReferenceToken/fed:ReferenceType/@{any} 2282 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 72 of 137 

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2283 
mechanism MUST NOT alter the semantics defined in this specification. 2284 

/fed:ReferenceToken/fed:SerialNo 2285 

An OPTIONAL URI value that uniquely identifies the reference token. 2286 

/fed:ReferenceToken/fed:SerialNo/@{any} 2287 

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2288 
mechanism MUST NOT alter the semantics defined in this specification. 2289 

/fed:ReferenceToken/{any} 2290 

This extensibility mechanism allows additional informative elements to be specified Use of this 2291 
extensibility mechanism MUST NOT alter the semantics defined in this specification. 2292 

/fed:ReferenceToken/@{any} 2293 

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2294 
mechanism MUST NOT alter the semantics defined in this specification. 2295 

There are no requirements on the security associated with the handle or dereferencing it.  If the resulting 2296 
token is secured or does not contain sensitive information the STS MAY just make it openly accessible. 2297 

Alternatively, the STS MAY use the <wsp:AppliesTo> information from the RST to secure the token 2298 

such that only requestors that can speak for that address can obtain the token. 2299 

8.2 Indicating Federations 2300 

In some scenarios an STS, resource provider, or service provider MAY be part of multiple federations and 2301 
allow token requests at a single endpoint that could be processed in the context of any of the federations 2302 
(so long as the requestor is authorized).  In such cases, there may be a need for the requestor to identify 2303 
the federation context in which it would like the token request to be processed.   2304 

The following <fed:FederationID> element can be included in a RST (as well as an RSTR): 2305 

<fed:FederationID ...>xs:anyURI</fed:FederationID> 2306 

/fed:FederationID 2307 

This element identifies the federation context as a URI value in which the token request is made 2308 
(or was processed). 2309 

/fed:FederationID/@{any} 2310 

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2311 
mechanism MUST NOT alter the semantics defined in this specification. 2312 

Note that if a FederationID is not specified, the default federation is assumed. 2313 

8.3 Obtaining Proof Tokens from Validation 2314 

A requestor may obtain a token for a federation for which the recipient service doesn’t actually have the 2315 
rights to use and extract the session key.  For example, when a requestor’s IP/STS and the recipient’s 2316 
IP/STS have an arrangement and share keys but the requestor and recipient only describe federation 2317 
between themselves.  In such cases, the requestor and the recipient MUST obtain the session keys 2318 
(proof tokens) from their respective IP/STS.  For the requestor this is returned in the proof token of its 2319 
request. 2320 

For the recipient, it must pass the message to its IP/STS to have it validated.  As part of the validation 2321 
process, the proof token MAY be requested by including the parameter below in the RST.  When this 2322 

element is received by an IP/STS, it indicates a desire to have a <wst:RequestedProofToken> 2323 

returned with the session key so that the recipient does not have to submit subsequent messages for 2324 
validation. 2325 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 73 of 137 

The syntax of the <fed:RequestProofToken> is as follows: 2326 

<fed:RequestProofToken ...> 2327 
  ... 2328 
</fed:RequestProofToken> 2329 

/fed:RequestProofToken 2330 

When used with a Validate request this indicates that the requestor would like the STS to return a 2331 
proof token so that subsequent messages using the same token/key can be processed by the 2332 
recipient directly. 2333 

/fed:RequestProofToken/@{any} 2334 

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2335 
mechanism MUST NOT alter the semantics defined in this specification. 2336 

/fed:RequestProofToken/{any} 2337 

This contents of this element are undefined and MAY be extended.  Use of this extensibility 2338 
mechanism MUST NOT alter the semantics defined in this specification. 2339 

 2340 

8.4 Client-Based Pseudonyms 2341 

Previous sections have discussed requesting pseudonyms based on registered identities.  In some cases 2342 
a requestor desires a pseudonym to be issued using ad hoc data that is specifies as an extension to the 2343 
RST request.  As with all WS-Trust parameters, the IP/STS is NOT REQUIRED to honor the parameter, 2344 
but if it does, it SHOULD echo the parameter in the RSTR. 2345 

A requestor MAY specify the <fed:ClientPseudonym> element to indicate pseudonym information it 2346 

would like used in the issued token.  The STS MUST accept all of the information or none of it.  That is, it 2347 
MUST NOT use some pseudonym information but not other pseudonym information. 2348 

The syntax of the <fed:ClientPseudonym> element is as follows: 2349 

<fed:ClientPseudonym ...> 2350 
  <fed:PPID ...>xs:string</fed:PPID> ? 2351 
  <fed:DisplayName ...>xs:string</fed:DisplayName> ? 2352 
  <fed:Email ...>xs:string</fed:EMail> ? 2353 
  ... 2354 
</fed:ClientPseudonym> 2355 

/fed:ClientPseudonym 2356 

This indicates a request to use specific identity information in resulting security tokens. 2357 

/fed:ClientPseudonym/fed:PPID 2358 

If the resulting security token contains any form of private personal identifier, this string value is to 2359 
be used as the basis.  The issuer MAY use this value as the input (a seed) to a custom function 2360 
and the result used in the issued token. 2361 

/fed:ClientPseudonym/fed:PPID/@{any} 2362 

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2363 
mechanism MUST NOT alter the semantics defined in this specification. 2364 

/fed:ClientPseudonym/fed:DisplayName 2365 

If the resulting security token contains any form of display or subject name, this string value is to 2366 
be used. 2367 

/fed:ClientPseudonym/fed:DisplayName/@{any} 2368 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 74 of 137 

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2369 
mechanism MUST NOT alter the semantics defined in this specification. 2370 

/fed:ClientPseudonym/fed:EMail 2371 

If the resulting security token contains any form electronic mail address, this string value is to be 2372 
used. 2373 

/fed:ClientPseudonym/fed:Email/@{any} 2374 

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2375 
mechanism MUST NOT alter the semantics defined in this specification. 2376 

/fed:ClientPseudonym/{any} 2377 

This extensibility point allows other pseudonym information to be specified.  If the STS does not 2378 

understand any element it MUST either ignore the entire <fed:ClientPseudonym> or Fault. 2379 

/fed:ClientPseudonym/@{any} 2380 

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2381 
mechanism MUST NOT alter the semantics defined in this specification. 2382 

8.5 Indicating Freshness Requirements 2383 

There are times when a token requestor desires to limit the age of the credentials used to authenticate.  2384 
The parameter MAY be specified in a RST to indicate the desired upper bound on credential age.  As well 2385 
this parameter is used to indicate if the requestor is willing to allow issuance based on cached 2386 
credentials. 2387 

The syntax of the <fed:Freshness> element is as follow: 2388 

<fed:Freshness AllowCache="xs:boolean" ...> 2389 
  xs:unsignedInt 2390 
</fed:Freshness> 2391 

/fed:Freshness 2392 

This indicates a desire to limit the age of authentication credentials. This REQUIRED unsigned 2393 
integer value indicates the upper bound on credential age specified in minutes only.  A value of 2394 
zero (0) indicates that the STS is to immediately verify identity if possible or use the minimum age 2395 

credentials possible if immediate (e.g. interactive) verification is not possible.  If the AllowCache 2396 

attribute is specified, then the cached credentials SHOULD meet the freshness time window. 2397 

/fed:Freshness/@{any} 2398 

This extensibility mechanism allows additional attributes to be specified. Use of this extensibility 2399 
mechanism MUST NOT alter the semantics defined in this specification. 2400 

/fed:Freshness/@AllowCache 2401 

This OPTIONAL Boolean qualifier indicates if cached credentials are allowed.  The default value 2402 
is true indicating that cached information MAY be used.  If false the STS SHOULD NOT use 2403 
cached credentials in processing the request. 2404 

If the credentials provided are valid but do not meet the freshness requirements, then the 2405 

fed:NeedFresherCredentials fault MUST be returned informing the requestor that they need to 2406 

obtain fresher credentials in order to process their request. 2407 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 75 of 137 

9 Authorization 2408 

An authorization service is a specific instance of a security token service (STS).  To ensure consistent 2409 

processing and interoperability, this specification defines a common model for authorization services, a 2410 

set of extensions enabling rich authorization, and a common profile of [WS-Trust] to facilitate 2411 

interoperability with authorization services. 2412 

This section describes a model and two extensions specific to rich authorization.  The first allows 2413 

additional context information to be provided in authorization requests.  The second allows services to 2414 

indicate that additional claims are required to successfully process specific requests. 2415 

9.1 Authorization Model 2416 

An authorization service is an STS that operates in a decision brokering process.  That is, it receives a 2417 

request (either directly or on behalf of another party) for a token (or set of tokens) to access another 2418 

service.  Such a service MAY be separate from the target service or it MAY be co-located.  The 2419 

authorization service determines if the requested party can access the indicated service and, if it can, 2420 

issues a token (or set of tokens) with the allowed rights at the specified service.  These two aspects are 2421 

distinct and could be performed by different collaborating services. 2422 

In order to make the authorization decision, the authorization service MUST ensure that the requestor has 2423 

presented and proven the claims required to access the target service (or resource) indicated in the 2424 

request (e.g. in the <wsp:AppliesTo> parameter).  Logically, the authorization service constructs a 2425 

table of name/value pairs representing the claims required by the target service. The logical requirement 2426 

table is constructed from the following sources and may MAY be supplemented by additional service 2427 

resources: 2428 

• The address of the EPR for the target service 2429 

• The reference properties from the EPR of the target service 2430 

• Parameters of the RST 2431 

• External access control policies 2432 

Similarly, the claim table is a logical table representing the claims and information available for the 2433 

requestor that the authorization service uses as the basis for its decisions.  This logical table is 2434 

constructed from the following sources: 2435 

• Proven claims that are bound to the RST request (both primary and supporting) 2436 

• Supplemental authorization context information provided in the request 2437 

• External authorization policies 2438 

9.2 Indicating Authorization Context 2439 

In the [WS-Trust] protocol, the requestor of a token conveys the desired properties of the required token 2440 

(such as the token type, key type, claims needed, etc.) in the token request represented by the RST 2441 

element. Each such property is represented by a child element of the RST, and is typically specified by 2442 

the Relying Party that will consume the issued token in its security policy assertion as defined by [WS-2443 

SecurityPolicy]. The token properties specified in a token request (RST) generally translate into some 2444 

aspect of the content of the token that is issued by a STS. However, in many scenarios, there is a need to 2445 

be able to convey additional contextual data in the token request that influences the processing and token 2446 

issuance behavior at the STS. The supplied data MAY (but need not) directly translate into some aspect 2447 

of the actual token content.  2448 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 76 of 137 

To enable this a new element, <auth:AdditionalContext>, is defined to provide additional context 2449 

information.  This MAY be specified in RST requests and MAY be included in RSTR responses.   2450 

The syntax is as follows: 2451 

<wst:RequestSecurityToken> 2452 
  ... 2453 
  <auth:AdditionalContext> 2454 
    <auth:ContextItem Name="xs:anyURI" Scope="xs:anyURI" ? ...> 2455 
      (<auth:Value>xs:string</auth:Value> | 2456 
       xs:any ) ? 2457 
    </auth:ContextItem> * 2458 
    ... 2459 
  </auth:AdditionalContext>  2460 
  ... 2461 
</wst:RequestSecurityToken> 2462 

The following describes the above syntax: 2463 

/auth:AdditionalContext 2464 

This OPTIONAL element provides additional context for the authorization decision (which 2465 
determines token issuance). 2466 

/auth:AdditionalContext/ContextItem 2467 

This element is provides additional authorization context as simple name/value pairs.  Note that 2468 

this is the only fed:AdditionalContext element defined in this specification.  2469 

/auth:AdditionalContext/ContextItem/@Name 2470 

This REQUIRED URI attribute specifies the kind of the context item being provided. There are no 2471 
pre-defined context names. 2472 

/auth:AdditionalContext/ContextItem/@Scope 2473 

This OPTIONAL URI attribute specifies the scope of the context item.  That is, the subject of the 2474 
context item.  If this is not specified, then the scope is undefined. 2475 

The following scopes a pre-defined but others MAY be added: 2476 

URI Description 

http://docs.oasis-

open.org/wsfed/authorization/200706/ctx/requestor 

The context item applies to the requestor 

of the token (or the OnBehalfOf) 

http://docs.oasis-

open.org/wsfed/authorization/200706/ctx/target 

The context item applies to the intended 

target  (AppliesTo)  of the token 

http://docs.oasis-

open.org/wsfed/authorization/200706/ctx/action 

The context item applies to the intended 

action at the intended target (AppliesTo)  

of the token 

/auth:AdditionalContext/ContextItem/Value 2477 

This OPTIONAL string element specifies the simple string value of the context item. 2478 

/auth:AdditionalContext/ContextItem/{any} 2479 

This OPTIONAL element allows a custom context value to be associated with the context item.  2480 
This MUST NOT be specified along with the Value element (there can only be a single value). 2481 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 77 of 137 

/auth:AdditionalContext/ContextItem/@{any} 2482 

This extensibility point allows additional attributes to be specified. Use of this extensibility 2483 
mechanism MUST NOT violate any semantics defined in this document. 2484 

/auth:AdditionalContext/@{any} 2485 

This extensibility point allows additional attributes. Use of this extensibility mechanism MUST 2486 
NOT violate any semantics defined in this document. 2487 

/auth:AdditionalContext/{any} 2488 

This element has an open content model allowing different types of context to be specified.  That 2489 
is, custom elements can be defined and included so long as all involved parties understand the 2490 
elements. 2491 

An example of an RST token request where this element is used to specify additional context data is 2492 

given below.  Note that this example specifies claims using a custom dialect. 2493 

<wst:RequestSecurityToken> 2494 
  <wst:TokenType> 2495 
      urn:oasis:names:tc:SAML:1.0:assertion 2496 
  </wst:TokenType> 2497 
  <wst:RequestType> 2498 
    http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue    2499 
  </wst:RequestType> 2500 
  <wst:Claims Dialect="..."> 2501 
    ... 2502 

</wst:Claims> 2503 
... 2504 
<auth:AdditionalContext> 2505 
  <auth:ContextItem Name="urn:...:PurchaseAmount"> 2506 
    <auth:Value>125.00</auth:Value> 2507 
  </auth:ContextItem> 2508 
  <auth:ContextItem Name="urn:...:MerchantId"> 2509 
    <auth:Value>FABRIKAM 92305645883256</auth:Value> 2510 
  </auth:ContextItem> 2511 

  </auth:AdditionalContext> 2512 
</wst:RequestSecurityToken> 2513 

9.3 Common Claim Dialect 2514 

There are different claim representations that are used across different Web Service implementations 2515 

making it difficult to express claims in a common interoperable way.  To facilitate interoperability, this 2516 

section defines a simple dialect for expressing claims in a format-neutral way.  This new dialect uses the 2517 

<auth:ClaimType> element for representing a claim, and the dialect is identified by the following URI: 2518 

http://docs.oasis-open.org/wsfed/authorization/200706/authclaims 2519 

This dialect MAY be used within the <wst:Claims> element when making token requests or in 2520 

responses.  This dialect MAY also be used in describing a service’s security requirements using [WS-2521 

SecurityPolicy]. Note that the xml:lang attribute MAY be used where allowed via attribute extensibility to 2522 

specify a language of localized elements and attributes using the language codes specified in [RFC 2523 

3066]. 2524 

The syntax for the <auth:ClaimType> element for representing a claim is as follows: 2525 

<auth:ClaimType Uri="xs:anyURI" Optional="xs:boolean"> 2526 
  <auth:DisplayName  ...> xs:string </auth:DisplayName> ? 2527 
  <auth:Description  ...> xs:string </auth:Description> ? 2528 
  <auth:DisplayValue ...> xs:string </auth:DisplaValue> ? 2529 
  (<auth:Value>...</auth:Value> |  2530 
   <auth:StructuredValue ...>...</auth:StructuredValue> | 2531 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 78 of 137 

   (<auth:EncryptedValue @DecryptionCondition="xs:anyURI"> 2532 
      <xenc:EncryptedData>...</xenc:EncryptedData> 2533 
    <auth:EncryptedValue>) | 2534 
   <auth:ConstrainedValue>...</auth:ConstrainedValue>) ? 2535 
   ... 2536 
</auth:ClaimType> 2537 

The following describes the above syntax: 2538 

/auth:ClaimType 2539 

This element represents a specific claim. 2540 

/auth:ClaimType/@Uri 2541 

This REQUIRED URI attribute specifies the kind of the claim being indicated.  The following claim 2542 
type is pre-defined, but other types MAY be defined: 2543 

URI Description 

http://docs.oasis-

open.org/wsfed/authorization/200706/claims/action 

The wsa:Action specified in a request 

/auth:ClaimType/@Optional 2544 

This OPTIONAL boolean attribute specifies the claim is optional (true) or required (false). The 2545 
default value is false. 2546 

/auth:ClaimType/auth:DisplayName 2547 

This OPTIONAL element provides a friendly name for this claim type that can be shown in user 2548 
interfaces. 2549 

/auth:ClaimType/auth:DisplayName/@{any} 2550 

This extensibility point allows attributes to be added.  Use of this extensibility mechanism MUST 2551 
NOT alter the semantics defined in this specification. 2552 

/auth:ClaimType/auth:Description 2553 

This OPTIONAL element provides a description of the semantics for this claim type. 2554 

/auth:ClaimType/auth:Description/@{any} 2555 

This extensibility point allows attributes to be added. Use of this extensibility mechanism MUST 2556 
NOT alter the semantics defined in this specification. 2557 

/auth:ClaimType/auth:DisplayValue 2558 

This OPTIONAL element provides a displayable value for a claim returned in a security token. 2559 

/auth:ClaimType/auth:DisplayValue/@{any} 2560 

This extensibility point allows attributes to be added. Use of this extensibility mechanism MUST 2561 
NOT alter the semantics defined in this specification. 2562 

/auth:ClaimType/auth:Value 2563 

This OPTIONAL element allows a specific string value to be specified for the claim. 2564 

/auth:ClaimType/auth:EncryptedValue 2565 

This OPTIONAL element is used to convey the ciphertext of a claim. 2566 

/auth:Claims/auth:ClaimType/auth:EncryptedValue/xenc:EncryptedData 2567 

This OPTIONAL element is only used for conveying the KeyInfo.  2568 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 79 of 137 

/auth:Claims/auth:ClaimType/auth:EncryptedValue/@DecryptionCondition 2569 

This OPTIONAL attribute specifies the URI indicating the conditions under which this claim 2570 
SHOULD be decrypted.   2571 

The decryptor SHOULD decrypt only if the decryption condition is fulfilled. Note that a decryptor 2572 
MAY be a 3

rd
 party. In order for such a decryption to happen, the recipient of the claim has to 2573 

provide the ciphertext and decryption condition to the decryptor..  This specification does not 2574 
define any URI values.  Participating parties MAY use other values under private agreements. 2575 

/auth:ClaimType/auth:StructuredValue 2576 

This OPTIONAL element specifies the value of a claim in a well formed xml structure. 2577 

/auth:ClaimType/auth:StructuredValue/@{any} 2578 

This extensibility point allows additional structured value types to be specified for the claim. Use 2579 
of this extensibility point MUST NOT alter the semantics defined in this specification. 2580 

 2581 

/auth:ClaimType/auth:ConstrainedValue 2582 

This OPTIONAL element specifies constraints on a given claim. It MAY contain the constraint that 2583 
value MUST satisfy, or it MAY contain the actual constrained value.  For more details on 2584 
constraints see section 9.3.1. 2585 

/auth:ClaimType/@{any} 2586 

This extensibility point allows attributes to be added. Use of this extensibility point MUST NOT 2587 
alter the semantics defined in this specification. 2588 

/auth:ClaimType/{any} 2589 

This extensibility point allows additional values types to be specified for the claim. Use of this 2590 
extensibility point MUST NOT alter the semantics defined in this specification. 2591 

 2592 

9.3.1 Expressing value constraints on claims 2593 

When requesting or returning claims in a [WS-Trust] RST request or specifying required claims in [WS-2594 
SecurityPolicy] it MAY be necessary to express specific constraints on those claims. The 2595 

<auth:ConstrainedValue> element, used within the <auth:ClaimType> element, provides this 2596 

capability.  2597 

 2598 

The semantics of the comparison operators specified in the <auth:ConstrainedValue> element are 2599 

specific to the given claim type unless explicitly defined below. 2600 

 2601 

The syntax for the <auth:ConstrainedValue> element, used within the <auth:ClaimType> 2602 

element, is as follows.  2603 

 <auth:ConstrainedValue AssertConstraint="xs:boolean">  2604 
  ( <auth:ValueLessThan> 2605 
      (<auth:Value> xs:string </auth:Value> | 2606 

     <auth:StructuredValue> xs:any </auth:StructuredValue>) 2607 
    </auth:ValueLessThan> | 2608 
    <auth:ValueLessThanOrEqual> 2609 
        (<auth:Value> xs:string </auth:Value> | 2610 
        <auth:StructuredValue> xs:any </auth:StructuredValue>) 2611 
      </auth:ValueLessThanOrEqual> | 2612 
    <auth:ValueGreaterThan> 2613 
        (<auth:Value> xs:string </auth:Value> | 2614 
        <auth:StructuredValue> xs:any </auth:StructuredValue>) 2615 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 80 of 137 

    </auth:ValueGreaterThan> | 2616 
      <auth:ValueGreaterThanOrEqual> 2617 
        (<auth:Value> xs:string </auth:Value> | 2618 
        <auth:StructuredValue> xs:any </auth:StructuredValue>) 2619 
    </auth:ValueGreaterThanOrEqual> | 2620 
    <auth:ValueInRange> 2621 
        <auth:ValueUpperBound> 2622 
          (<auth:Value> xs:string </auth:Value> | 2623 
          <auth:StructuredValue> xs:any </auth:StructuredValue>) 2624 
        </auth:ValueUpperBound> 2625 
        <auth:ValueLowerBound> 2626 
          (<auth:Value> xs:string </auth:Value> | 2627 
          <auth:StructuredValue> xs:any </auth:StructuredValue>) 2628 
        </auth:ValueLowerBound> 2629 
    </auth:ValueInRange> | 2630 
    <auth:ValueOneOf> 2631 
        (<auth:Value> xs:string </auth:Value> | 2632 
         <auth:StructuredValue> xs:any </auth:StructuredValue>) + 2633 
    </auth:ValueOneOf> ) ? 2634 
     ... 2635 
 </auth:ConstrainedValue> ? 2636 

The following describe the above syntax 2637 

/auth:ClaimType/auth:ConstrainedValue 2638 

This OPTIONAL element indicates that there are constraints on the claim value. This element 2639 
MUST contain one of the defined elements below when used in a RST/RSTR message. This 2640 
element MAY be empty when used in the fed:ClaimTypesOffered element to describe a service's 2641 
capabilities which means that any constrained value form, from he defined elements below, is 2642 
supported for the claim type. 2643 

/auth:ClaimType/auth:ConstrainedValue/@AssertConstraint 2644 

This OPTIONAL attribute indicates that when a claim is issued the constraint itself is asserted 2645 
(when true) or that a value that adheres to the condition is asserted (when false). The default 2646 
value is true.  2647 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThan 2648 

This OPTIONAL element indicates that the value of the claim MUST be less than the given value.  2649 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThan/auth:Value 2650 

This element specifies the string value the claim MUST be less than. 2651 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThan/auth:StructuredValue 2652 

This element specifies the value of a claim in a well formed xml structure the claim MUST be less 2653 
than. 2654 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThanOrEqual 2655 

This OPTIONAL element indicates that the value of the claim MUST be less than or equal to the 2656 
given value.  2657 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThanOrEqua/auth:Value 2658 

This element specifies the string value the claim MUST be less than or equal to. 2659 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueLessThanOrEqual/auth:StructuredValue 2660 

This element specifies the value of a claim in a well formed xml structure the claim MUST be less 2661 
than or equal to. 2662 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThan 2663 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 81 of 137 

This OPTIONAL element indicates that the value of the claim MUST be greater than the given 2664 
value.  2665 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThan/auth:Value 2666 

This element specifies the string value the claim MUST be greater than. 2667 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThan/auth:StructuredValue 2668 

This element specifies the value of a claim in a well formed xml structure the claim MUST be 2669 
greater than. 2670 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThanOrEqual 2671 

This OPTIONAL element indicates that the value of the claim MUST be greater than or equal to 2672 
the given value.  2673 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThanOrEqual/auth:Value 2674 

This element specifies the string value the claim MUST be greater than or equal to. 2675 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueGreaterThanOrEqual/auth:StructuredValue 2676 

This element specifies the value of a claim in a well formed xml structure the claim MUST be 2677 
greater than or equal to. 2678 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueInRange 2679 

This OPTIONAL element indicates that the value of the claim MUST be in the specified range. 2680 
The specified boundary values are included in the range. 2681 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueInRange/auth:ValueUpperBound 2682 

This element specifies the upper limit on a given value.  2683 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueInRange/auth:ValueLowerBound 2684 

This element specifies the lower limit on a given value. 2685 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueOneOf 2686 

This element specifies a collection of values among which the value of claim MUST fall. 2687 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueOneOf/auth:Value 2688 

This element specifies an allowed string value for the claim. 2689 

/auth:ClaimType/auth:ConstrainedValue/auth:ValueOneOf/auth:StructuredValue 2690 

This element specifies an allowed value for the claim in a well formed xml structure. 2691 

/auth:ClaimType/auth:ConstrainedValue/{any} 2692 

This extensibility point allows additional constrained value types to be specified for the claim.. 2693 
Use of this extensibility mechanism MUST NOT alter the semantics defined in this specification. 2694 

 2695 

 2696 

9.4  Claims Target 2697 

The @fed:ClaimsTarget attribute is defined for use on the wst:Claims element as a way to indicate the 2698 
intended consumer of claim information . 2699 

The syntax for @auth:ClaimsTarget is as follows.  2700 

<wst:Claims fed:ClaimsTarget="..." ...>  2701 
  ... 2702 
</wst:Claims> 2703 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 82 of 137 

The following describes the above syntax. 2704 

 2705 

/wst:Claims /@fed:ClaimsTarget 2706 

This OPTIONAL attribute indicates the intended consumer of the claim information.  If this 2707 
attribute is not specified, then a default value is assumed.  The predefined values are listed in the 2708 
table below, but parties MAY use other values under private agreements.  This attribute MAY be 2709 
used if the context doesn’t provide a default target or if a different target is required.  This attribute 2710 
MUST NOT appear in a RST or RSTR message defined in WS-Trust,  2711 

 2712 

URI Description 

http://docs.oasis-

open.org/wsfed/authorization/200706/claims/target/recipient 

(default) 

Whoever is the ultimate 

receiver of the element 

is expected to process it. 

http://docs.oasis-

open.org/wsfed/authorization/200706/claims/target/client 

The client or originating 

requestor (typically the 

party issuing the original 

RST request) is 

expected to process this 

element.   

http://docs.oasis-

open.org/wsfed/authorization/200706/claims/target/issuer 

The entity that has the 

responsibility and 

(typically the party 

issuing the token) is 

expected to process this 

element. 

http://docs.oasis-

open.org/wsfed/authorization/200706/claims/target/rp 

The entity that is 

expected to consume a 

security token is 

expected to process this 

element. 

 2713 

 2714 

9.5 Authorization Requirements 2715 

Authorization requestors and issuing services (providers) compliant with this specification MUST conform 2716 

to the rules described in this section when issuing RST requests and returning RSTR responses. 2717 

R001 – The authorization service MUST accept an <wsp:AppliesTo> target in the RST 2718 

R002 – The authorization service MUST specify an <wsp:AppliesTo> target in the RSTR if one is 2719 

specified in the RST 2720 

R003 – The authorization service SHOULD encode the <wsp:AppliesTo> target in issued tokens if the 2721 

token format supports it 2722 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 83 of 137 

R004 – The <wsp:AppliesTo> target for issued token MAY be for a broader scope than the scope 2723 

specified in the RST but MUST NOT be narrower (as specified in WS-Trust) 2724 

R005 – The authorization service MUST accept reference properties in the <wsp:AppliesTo> target 2725 

R006 – The authorization service MUST accept the <auth:AdditionalContext> parameter 2726 

R007 – The authorization service MUST accept the claim dialect defined in this specification 2727 

R008 – The authorization service MAY ignore elements in the auth:AdditionalContext parameter if it 2728 

doesn’t recognize or understand them 2729 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 84 of 137 

10 Indicating Specific Policy/Metadata 2730 

When a requestor communicates with a recipient service there may be additional security requirements, 2731 

beyond those in the general security policy or other metadata, that are required based on the specifics of 2732 

the request.  For example, if a request contains a “gold customer” custom message header to indicate 2733 

customer classification (and routing), then proof that the requestor is a gold member may be required 2734 

when the request is actually authorized.  There may also be contextual requirements which are hard to 2735 

express in a general policy.  For example, if a requestor wants to submit a purchase, it may be required to 2736 

present a token from a trusted source attesting that the requestor has the requisite funds. 2737 

To address this scenario a mechanism is introduced whereby the recipient service MAY indicate to the 2738 

requestor that additional security semantics apply to the request.  The requestor MAY reconstruct the 2739 

message in accordance with the new requirements if it can do so.  In some cases the requestor may 2740 

need to obtain additional tokens from an authorization or identity service and then reconstruct and 2741 

resubmit the message. 2742 

The mechanism defined by this specification that MAY be used  to dynamically indicate that a specific 2743 

policy or metadata applies to a specific request is to issue a specialized SOAP Fault.  This fault indicates 2744 

to the requestor that additional security metadata is REQUIRED.  The new metadata, in its complete form 2745 

(not a delta) is specified in the fault message using the WS-MetadataExchange format. 2746 

The fault is the fed:SpecificMetadata and is specified as the fault code.  The <S:Detail> of this 2747 

fault contains a mex:Metadata element containing sections with the effective metadata for the endpoint 2748 

processing this specific request. 2749 

The following example illustrates a fault with embedded policy: 2750 

<S:Envelope xmlns:S="..." xmlns:auth="..." xmlns:wst="..." xmlns:fed="..."  2751 
 xmlns:sp="..." xmlns:wsp="..." xmlns:mex="..."> 2752 
  <S:Body> 2753 
    <S:Fault> 2754 
      <S:Code> 2755 
        <S:Value>fed:SpecificMetadata</S:Value> 2756 
      </S:Code> 2757 
      <S:Reason> 2758 
        <S:Text>Additional credentials required in order to 2759 
                perform operation. Please resubmit request with  2760 
                appropriate credentials. 2761 
        </S:Text> 2762 
      </S:Reason> 2763 
      <S:Detail> 2764 
       <mex:Metadata> 2765 
        <mex:MetadataSection  2766 
                 Dialect='http://schemas.xmlsoap.org/ws/2004/09/policy'> 2767 
         <wsp:Policy> 2768 
          ... 2769 
           <sp:EndorsingSupportingTokens> 2770 
            <sp:IssuedToken> 2771 
              <sp:Issuer>...</sp:Issuer> 2772 
              <sp:RequestSecurityTokenTemplate> 2773 
                <wst:Claims> 2774 
                  ... 2775 
                 </wst:Claims> 2776 
                 <auth:AdditionalContext> 2777 
                  ... 2778 
                 </auth:AdditionalContext> 2779 
                ... 2780 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 85 of 137 

               </sp:RequestSecurityTokenTemplate> 2781 
            </sp:IssuedToken> 2782 
           </sp:EndorsingSupportingTokens> 2783 
         </wsp:Policy> 2784 
        </mex:MetadataSection> 2785 
       </mex:Metadata> 2786 
      </S:Detail> 2787 
    </S:Fault> 2788 
  </S:Body> 2789 
</S:Envelope> 2790 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 86 of 137 

11 Authentication Types 2791 

The [WS-Trust] specification defines the wst:AuthenticationType parameter to indicate a desired 2792 

type of authentication (or to return the type of authentication verified).  However, no pre-defined values 2793 
are specified.  While any URI can be used, to facilitate federations the following OPTIONAL types are 2794 
defined but are NOT REQUIRED to be used: 2795 

URI Description 

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/unknown 

Unknown level of authentication 

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/default 

Default sign-in mechanisms 

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/Ssl 

Sign-in using SSL 

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/SslAndKey 

Sign-in using SSL and a security key 

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/SslAndStro
ngPasssword 

Sign-in using SSL and a “strong” 
password 

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/SslAndStro
ngPasswordWithExpiration 

Sign-in using SSL and a “strong” 
password with expiration 

http://docs.oasis-
open.org/wsfed/authorization/200706/authntypes/smartcard 

Sign-in using Smart Card 

 2796 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 87 of 137 

12 Privacy 2797 

When a requestor contacts an authority to obtain a security token or to obtain authorization for an action it 2798 

is often the case that information subject to personal or organizational privacy requirements MAY be 2799 

presented in order to authorize the request.  In such cases the authority MAY require the requestor to 2800 

indicate the restrictions it expects on the use and distribution of sensitive information contained in tokens 2801 

it obtains. In this document, this is referred to as a “disclosure constraint”.  It should be noted that 2802 

disclosure constraints may apply if the requestor is requesting tokens for itself or if the requestor is acting 2803 

on behalf of another party. 2804 

This specification describes how requestors can communicate their disclosure constraints to security 2805 

token services using the [WS-Trust] protocol.  It additionally facilitates the requestor’s compliance with 2806 

such constraints by allowing it to request elevated data protection for some or all of the response and 2807 

issued tokens. The disclosure constraint and protection elevation request are communicated using 2808 

existing WS-Trust mechanisms as well as extensions defined in this specification. 2809 

The WS-Trust specification describes how to request tokens as well as parameters to the token request 2810 

(RST) for indicating how to encrypt proof information as well as algorithms to be used.  The following sub-2811 

sections define extension parameters that MAY be specified in RST requests (and echoed in RSTR 2812 

responses) to indicate additional privacy options which complement the existing WS-Trust parameters. 2813 

12.1 Confidential Tokens 2814 

The information contained within an issued token MAY be confidential or sensitive.  Consequently, the 2815 

requestor may wish to have this information protected (confidential) so that only the intended recipient of 2816 

the resulting token (or tokens) can access the information. 2817 

The [WS-Trust] specification describes how to indicate a key to use if any data in the token is to be 2818 

encrypted, but doesn’t specify any mandates around when or what data is to be protected.  This 2819 

parameter indicates a protection requirement from the requestor (the STS MAY choose to protect data 2820 

even if the requestor doesn’t mandate it). 2821 

Any protected (encrypted) information is secured using the token specified in the <wst:Encryption> 2822 

parameter or using a token the recipient knows to be correct for the request. 2823 

The following parameters MAY be specified in an RST request (and echoed in an RSTR response) to 2824 

indicate that potentially sensitive information in the token be protected: 2825 

<wst:RequestSecurityToken> 2826 
  ...   2827 
  <priv:ProtectData ...> 2828 
    <wst:Claims ...>...</wst:Claims> ? 2829 
    ... 2830 
  </priv:ProtectData> 2831 
  ... 2832 
</wst:RequestSecurityToken> 2833 

The following describes the above syntax: 2834 

/priv:ProtectData 2835 

This OPTIONAL parameter indicates that sensitive information in any resultant tokens MUST be 2836 
protected (encrypted).  If specific claims are identified they MUST be protected.  The issuer MAY 2837 
have an out-of-band agreement with the requestor as to what MUST be protected.  If not, and if 2838 
specific claims are not identified, the issuer MUST protect all claims.  The issuer MAY choose to 2839 
protect more than just the requested claims. 2840 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 88 of 137 

/priv:ProtectData/@{any} 2841 

This extensibility point allows additional attributes to be specified. Use of this extensibility 2842 
mechanism MUST NOT violate any semantics defined in this document. 2843 

/priv:ProtectData/wst:Claims 2844 

This OPTIONAL element allows the requestor to indicate specific claims which, at a minimum, 2845 
MUST be protected.  This re-uses the claim specification mechanism from [WS-Trust].  Claims 2846 
specified in this set MUST be protected.  There is no requirement that all claims specified are in 2847 
the issued token.  That is, claims identified but not issued MAY be ignored by the STS. 2848 

/priv:ProtectData/{any} 2849 

This extensibility point allows additional content to be specified Use of this extensibility point 2850 
MUST NOT violate any semantics defined in this document. 2851 

12.2 Parameter Confirmation 2852 

The RST request MAY contain a number of parameters indicating a requestor’s disclosure constraints 2853 

and data protection preferences.  The STS MAY choose , (but is is not required) to honor these 2854 

preferences and MAY, (or might  not) include selected parameters in any RSTR response. 2855 

For privacy reasons a requestor may wish to (a) know if privacy preferences (or any RST parameter) 2856 

were accepted or not, (b) what default parameter values were used, (c) require that privacy preferences 2857 

(or any RST parameter) be honored, and (d) know what the STS is reporting in a token if it is protected 2858 

and unreadable by the requestor. 2859 

The following parameters MAY be specified in a RST request (and echoed in an RSTR response) to 2860 

indicate to support these requirements: 2861 

<wst:RequestSecurityToken> 2862 
 ...   2863 
 <priv:EnumerateParameters ...> 2864 
   <xs:list itemType='xs:QName' /> 2865 
 </priv:EnumerateParameters> 2866 
 <priv:FaultOnUnacceptedRstParameters ...> 2867 
   ... 2868 
</priv:FaultOnUnacceptedRstParameters> 2869 
 <priv:EnumerateAllClaims ...>  2870 
 ... 2871 
 <priv:EnumerateAllClaims ...> 2872 
 ... 2873 
</wst:RequestSecurityToken> 2874 

The following describes the above syntax: 2875 

/priv:EnumerateParameters 2876 

A RST request MAY include parameters but the STS is not required to honor them.  As such 2877 
there is no way for the requestor to know what values where used by the STS.  This OPTIONAL 2878 
parameter provides a way to request the STS to return the values it used for parameters (or Fault 2879 
if it refuses) – either taken from the RST or defaulted using internal policy or settings.  The 2880 
contents of this parameter indicate a list of QNames that represents RST parameters which 2881 
MUST be included in the RSTR.  That is, each QName listed MUST be present in the RSTR 2882 
returned by the STS indicating the value the STS used for the parameter. 2883 

/priv:EnumerateParameters/@{any} 2884 

This extensibility point allows additional attributes to be specified. Use of this extensibility point 2885 
MUST NOT violate any semantics defined in this document. 2886 

/priv:FaultOnUnacceptedRstParameters 2887 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 89 of 137 

This OPTIONAL parameter indicates that if any parameters specified in the RST are not accepted 2888 
by the STS, then the STS MUST Fault the request (see the Error Code section for the applicable 2889 
Fault code).  This means that any unknown parameter causes the request to fail.  Note that this 2890 
includes extension parameters to the RST. 2891 

/priv:FaultOnUnacceptedRstParameters/@{any} 2892 

This extensibility point allows additional attributes to be specified. Use of this extensibility point 2893 
MUST NOT violate any semantics defined in this document. 2894 

/priv:FaultOnUnacceptedRstParameters/{any} 2895 

This extensibility point allows additional content to be specified. Use of this extensibility point 2896 
MUST NOT violate any semantics defined in this document. 2897 

/priv:EnumerateAllClaims 2898 

This OPTIONAL parameter indicates that all claims issued in resulting tokens MUST be identified 2899 
in the RSTR so that the requestor can inspect them.  The claims are returned in a 2900 

<wst:Claims> element in the RSTR. 2901 

/priv:EnumerateAllClaims/@{any} 2902 

This extensibility point allows additional attributes to be specified. Use of this extensibility point 2903 
MUST NOTviolate any semantics defined in this document. 2904 

/priv:EnumerateAllClaims/{any} 2905 

This extensibility point allows additional content to be specified. Use of this extensibility point 2906 
MUST NOT violate any semantics defined in this document. 2907 

12.3 Privacy Statements 2908 

Some services offer privacy statements.  This specification defines a mechanism by which privacy 2909 

statements, in any form of representation, can be obtained using the mechanisms defined in [WS-2910 

Transfer/WS-ResourceTransfer].   2911 

The following URI is defined which can be used as a metadata section dialect in [WS-Transfer/WS-2912 

ResourceTransfer]: 2913 

http://docs.oasis-open.org/wsfed/privacy/200706/privacypolicy 2914 

As well, the following element can be used to indicate the EPR to which a [WS-Transfer/WS-2915 

ResourceTransfer] GET message can be sent to obtain the privacy policy: 2916 

<priv:PrivacyPolicyEndpoint SupportsMex="xs:boolean" ?> 2917 
  ...endpoint reference value...   2918 
</priv:PrivacyPolicyEndpoint 2919 

This element is an endpoint-reference as described in [WS-Addressing].  A [WS-Transfer/WS-2920 

ResourceTransfer] GET message can be sent to it to obtain the previously defined privacy policy dialect.  2921 

If the SupportsMex attribute is true (the default is false), then a [WS-MetadataExchange] request can be 2922 

directed at the endpoint. 2923 

Note that no specific privacy policy form is mandated so requestors must inspect the contents of the 2924 

returned privacy policy (or policies) to determine if they can process it (them).  The privacy policy could be 2925 

a complete privacy policy document, a privacy policy document that references other privacy policies, or 2926 

even a compact form of a privacy policy.  The form of these documents is outside the scope of this 2927 

document. 2928 

Alternatively, HTTP GET targets can be specified by including a URL with the following federated 2929 

metadata statement: 2930 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 90 of 137 

<priv:PrivacyNoticeAt ...> location URL </priv:PrivacyNoticeAt> 2931 

 2932 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 91 of 137 

13 Web (Passive) Requestors 2933 

This specification defines a model and set of messages for brokering trust and federation of identity and 2934 

authentication information across different trust realms and protocols.  This section describes how this 2935 

Federations model is applied to Web requestors such as Web browsers that cannot directly make Web 2936 

Service requests. 2937 

13.1 Approach 2938 

The federation model previously described builds on the foundation established by [WS-Security] and 2939 

[WS-Trust].  Typical Web client requestors cannot perform the message security and token request 2940 

operations defined in these specifications. Consequently, this section describes the mechanisms for 2941 

requesting, exchanging, and issuing security tokens within the context of a Web requestor. 2942 

Web requestors use different but philosophically compatible message exchanges.  For example, the 2943 

resource might act as its own Security Token Service (STS) and not use a separate service (or even URI) 2944 

thereby eliminating some steps.  It is expected that subsequent profiles can be defined to extend the Web 2945 

mechanisms to include additional exchange patterns. 2946 

13.1.1 Sign-On 2947 

The primary issue for Web browsers is that there is no easy way to directly issue SOAP requests.  2948 

Consequently, the processing MUST be performed within the confines of the base HTTP 1.1 functionality 2949 

(GET, POST, redirects, and cookies) and conform as closely as possible to the WS-Trust protocols for 2950 

token acquisition. 2951 

At a high-level, requestors are associated with an Identity Provider (IP) or Security Token Service (STS) 2952 

where they authenticate themselves.  At the time/point of initial authentication an artifact/cookie MAY be 2953 

created for the requestor at their Identity Provider so that every request for a resource doesn't require 2954 

requestor intervention. At other times, authentication at each request is the desired behavior. 2955 

In the Web approach, there is a common pattern used when communicating with an IP/STS. In the first 2956 

step, the requestor accesses the resource; the requestor is then redirected to an IP/STS if no token or 2957 

cookie is supplied on the request.  The requestor may MAY be redirected to a local IP/STS operated by 2958 

the resource provider.  If it has not cached data indicating that the requestor has already been 2959 

authenticated, a second redirection to the requestor's IP/STS will be performed.  This redirection process 2960 

MAY require prompting the user to determine the requestor’s home realm. The IP/STS in the requestor’s 2961 

home realm generates a security token for use by the federated party.  This token MAY be consumed 2962 

directly by the resource, or it MAY be exchanged at the resource’s IP/STS for a token consumable by the 2963 

resource.  In some cases the requestor’s IP/STS has the requisite information cached to be able to issue 2964 

a token, in other cases it must prompt the user. Note that the resource’s IP/STS can be omitted if the 2965 

resource is willing to consume the requestor’s token directly. 2966 

The figure below illustrates an example flow where there is no resource IP/STS.  As depicted, all 2967 

communication occurs with the standard HTTP GET and POST methods, using redirects (steps 23 and 2968 

56) to automate the communication.  Note that when returning non-URL content a POST is REQUIRED 2969 

(e.g. in step 6) if a result reference is not used.  In step 2 the resource MAY act as its own IP/STS so 2970 

communication with an additional service isn't required.  Note that step 3 depicts the resource redirecting 2971 

directly to the requestor’s IP/STS.  As previously discussed, this could redirect to an IP/STS for the 2972 

resource (or any number of chained IP/STS services).  It might also redirect to a home realm discovery 2973 

service.  2974 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 92 of 137 

It should be noted that in step 4, the authentication protocol employed MAY be implementation-2975 

dependent. 2976 

 2977 

Figure 25: Sample Browser Sign-On 2978 

13.1.2 Sign-Out 2979 

For Web browsers, sign-out can be initiated by selecting the sign-out URL at a resource.  In doing so, the 2980 

browser will ultimately be redirected to the requestor's IP/STS indicating sign-out.  Note that the browser 2981 

MAY be first redirected to the resource's IP/STS and then to the requestor's IP/STS.  Note that if multiple 2982 

IP/STS services are used, and unaware of each other, multiple sign-outs MAY be required. 2983 

The requestor's IP/STS SHOULD keep track of the realms to which it has issued tokens where cleanup 2984 

may be required – specifically the IP/STS for the realms (or resources if different).  When the sign-out is 2985 

received at the requestor's IP/STS, it SHOULD initiate clean-up (e.g. issuing HTTP GET requests against 2986 

the tracked realms indicating a sign-out cleanup is in effect or it can use the sign-out mechanism 2987 

previously discussed).  The exact mechanism by which this occurs is up to the IP/STS and is policy-2988 

driven.  The only requirement is that a sign-out cleanup be performed at the IP/STS so that subsequent 2989 

requests to the IP/STS don’t use cached data.   2990 

As described in section 4.2, there are two possible flows for these messages.  They could be effectively 2991 

chained through all the STSs involved in the session by successively redirecting the browser between 2992 

each resource IP/STS and the requestor’s IP/STS.  Or the requestor’s IP/STS can send sign-out 2993 

messages to all the other STSs in parallel.  The chained (sequential) approach has been found to be 2994 

fragile in practice.  If a resource IP/STS fails to redirect the user after cleaning up local state, or the 2995 

network partitions, the sign-out notification will not reach all the resource IP/STSs involved.  For this 2996 

reason, compliant implementations SHOULD employ the parallel approach.   2997 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 93 of 137 

When a sign-out clean-up GET is received at a realm, the realm SHOULD clean-up any cached 2998 

information and delete any associated artifacts/cookies.  If requested, on completion the requestor is 2999 

redirected back to requestor's IP/STS. 3000 

 3001 

Figure 26: Sample Browser Sign-Out 3002 

The figure above illustrates this process where a resource-specific IP/STS doesn’t exist.  The mechanism 3003 

illustrated use redirection in steps 2 and 4 (optional) and the general correlation of messages to chain the 3004 

sign-out.  As previously noted there could be a resource-specific IP/STS which handles local chaining or 3005 

notification. 3006 

It should be noted that as a result of the single sign-out request (steps 5 and 6), an IP/STS MAY send 3007 

sign-out messages as described in this specification. 3008 

13.1.3 Attributes 3009 

At a high-level, attribute processing uses the same mechanisms defined for security token service 3010 

requests and responses.  That is, redirection is used to issue requests to attribute services and 3011 

subsequent redirection returns the results of the attribute operations.  All communication occurs with the 3012 

standard HTTP 1.1 GET and POST methods using redirects to automate the communication as shown in 3013 

the example below.   3014 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 94 of 137 

 3015 

Figure 27: Sample Browser Attribute Access 3016 

The figure above illustrates this process including calling out the redirection in steps 2 and 4 and the 3017 

general correlation of messages for an attribute scenario where there is no resource-specific IP/STS. 3018 

As well, it should be noted that as a result of step 3 the IP/STS MAY prompt the user for approval before 3019 

proceeding to step 4. 3020 

13.1.4 Pseudonyms 3021 

At a high-level, pseudonym processing uses the same mechanisms defined for attribute and security 3022 

token service requests.  That is, redirection is used to issue requests to pseudonym services and 3023 

subsequent redirection returns the results of the pseudonym operations.  All communication occurs with 3024 

the standard HTTP GET and POST methods using redirects to automate the communication as in the 3025 

example below.   3026 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 95 of 137 

 3027 

Figure 28: Sample Browser Pseudonym Access 3028 

The figure above illustrates this process including calling out the redirection in steps 2 and 4 and the 3029 

general correlation of messages for an attribute scenario where there is no resource-specific IP/STS. 3030 

13.1.5 Artifacts/Cookies 3031 

In order to prevent requestor interaction on every request for security token, artifacts/cookies can be used 3032 

by SSO implementations as they are used today to cache state and/or authentication information or 3033 

issued tokens.  However implementations MAY omit this caching if the desired behavior is to authenticate 3034 

on every request.  As noted in the Security Consideration section later in this document, there are 3035 

security issues when using cookies. 3036 

There are no restrictions placed on artifacts/cookie formats – they are up to each service to determine.  3037 

However, it is RECOMMENDED artifacts/cookies be encrypted or computationally hard to compromise. 3038 

13.1.6 Bearer Tokens and Token References 3039 

In cases where bearer tokens or references to tokens are passed it is strongly RECOMMENDED that the 3040 

messages use transport security in order to prevent attack. 3041 

13.1.7 Freshness 3042 

In cases where a resource requires specific authentication freshness, they can specify requirements in 3043 

their IP/STS requests, as described in the following section (see 13.2.2). 3044 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 96 of 137 

13.2 HTTP Protocol Syntax 3045 

This section describes the syntax of the protocols used by Web requestors.  This protocol typically uses 3046 

the redirection facilities of HTTP 1.1.  This happens using a standard HTTP 302 error code for redirects 3047 

(as illustrated below) and HTTP POST to push the forms: 3048 

HTTP/1.1 302 Found  3049 
Location: url?parameters 3050 

The exact parameters and form fields are described in detail in the sub-sections that follow the detailed 3051 

example. 3052 

In the descriptions below, some mechanisms are OPTIONAL meaning they MAY be supported.  Within a 3053 

mechanism, certain parameters MUST be specified while others, noted using square brackets, are 3054 

OPTIONAL and MAY (or might not) be present. 3055 

13.2.1 Parameters 3056 

All HTTP 1.1 methods (both GET and POST) used in the redirection protocol allow query string 3057 

parameters as illustrated below: 3058 

GET url?parameters 3059 
POST url?parameters 3060 

The GET and POST requests have required parameters and may have optional parameters depending 3061 

on the operation being performed.  For GET requests, these parameters are specified in the query string; 3062 

for POST requests, these parameters are specified in the POST body (using the standard encoding rules 3063 

for POST).  The query string parameters of a POST request SHOULD be for extensibility only, and MAY 3064 

be ignored by an implementation that is otherwise compliant with this specification.   3065 

The following describes the parameters used for messages in this profile: 3066 

wa=string 3067 
[wreply=URL] 3068 
[wres=URL] 3069 
[wctx=string] 3070 
[wp=URI] 3071 
[wct=timestring] 3072 
[wfed=string] 3073 
[wencoding=string] 3074 

wa 3075 

This REQUIRED parameter specifies the action to be performed.  By including the action, URIs 3076 
can be overloaded to perform multiple functions.  For sign-in, this string MUST be "wsignin1.0".  3077 
Note that this serves roughly the same purpose as the WS-Addressing Action header for the WS-3078 
Trust SOAP RST messages. 3079 

wreply 3080 

This OPTIONAL parameter is the URL to which responses are directed.  Note that this serves 3081 

roughly the same purpose as the WS-Addressing <wsa:ReplyTo> header for the WS-Trust 3082 

SOAP RST messages. 3083 

wres 3084 

This OPTIONAL parameter is the URL for the resource accessed.  This is a legacy parameter 3085 
which isn’t typically used.  The wtrealm parameter is typically used instead. 3086 

wctx 3087 

This OPTIONAL parameter is an opaque context value that MUST be returned with the issued 3088 
token if it is passed in the request.  Note that this serves roughly the same purpose as the WS-3089 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 97 of 137 

Trust SOAP RST @Context attribute.  In order not to exceed URI length limitations, the value of 3090 
this parameter should be as small as possible. 3091 

wp 3092 

This OPTIONAL parameter is the URL for the policy which can be obtained using an HTTP GET 3093 
and identifies the policy to be used related to the action specified in "wa", but MAY have a 3094 
broader scope than just the "wa".  Refer to WS-Policy and WS-Trust for details on policy and 3095 
trust.  This attribute is only used to reference policy documents.  Note that this serves roughly the 3096 
same purpose as the Policy element in the WS-Trust SOAP RST messages. 3097 

wct 3098 

This OPTIONAL parameter indicates the current time at the sender for ensuring freshness.  This 3099 
parameter is the string encoding of time using the XML Schema datetime time using UTC 3100 
notation.  Note that this serves roughly the same purpose as the WS-Security Timestamp 3101 
elements in the Security headers of the SOAP RST messages. 3102 

wfed 3103 

This OPTIONAL parameter indicates the federation context in which the request is made.  This is 3104 

equivalent to the FederationId parameter in the RST message. 3105 

wencoding 3106 

This OPTIONAL parameter indicates the encoding style to be used for XML parameter content. If 3107 
not specified the default behavior is to use standard URL encoding rules. This specification only 3108 
defines one other alternative, base64url as defined in section 5 of [RFC 4648]. Support for 3109 
alternate encodings is expressed by assertions under the WebBinding assertion defined in this 3110 
specification. 3111 

Note that any values specified in parameters are subject to encoding as specified in the HTTP 1.1 3112 

specification. 3113 

When an HTTP POST is used, any of the query strings can be specified in the form contents using the 3114 

same name.  Note that in this profile form values take precedence over URL parameters. 3115 

Parameterization is extensible so that cooperating parties can exchange additional information in 3116 

parameters based on agreements or policy. 3117 

13.2.2 Requesting Security Tokens 3118 

The HTTP requests to an Identity Provider or security token service use a common syntax based on 3119 

HTTP forms.  Requests typically arrive using the HTTP GET method as illustrated below but MAY be 3120 

issued using a POST method: 3121 

GET resourceSTS?parameters HTTP/1.1 3122 
POST resourceSTS?parameters HTTP/1.1 3123 

The parameters described in the previous section (wa, wreply, wres, wctx, wp, wct) apply to the token 3124 

request. The additional parameters described below also apply.  Note that any values specified in forms 3125 

are subject to encoding as described in the HTTP 1.1 specification. 3126 

The following describes the additional parameters used for a token request: 3127 

wtrealm=string 3128 
[wfresh=freshness] 3129 
[wauth=uri] 3130 
[wreq=xml] 3131 

wtrealm 3132 

This REQUIRED parameter is the URI of the requesting realm.  The wtrealm SHOULD be the 3133 
security realm of the resource in which nobody (except the resource or authorized delegates) can 3134 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 98 of 137 

control URLs.  Note that this serves roughly the same purpose as the AppliesTo element in the 3135 
WS-Trust SOAP RST messages. 3136 

wfresh 3137 

This OPTIONAL parameter indicates the freshness requirements.  If specified, this indicates the 3138 
desired maximum age of authentication specified in minutes.  An IP/STS SHOULD NOT issue a 3139 
token with a longer lifetime.  If specified as “0” it indicates a request for the IP/STS to re-prompt 3140 
the user for authentication before issuing the token.    Note that this serves roughly the same 3141 
purpose as the Freshness element in the WS-Trust SOAP RST messages. 3142 

wauth 3143 

This OPTIONAL parameter indicates the REQUIRED authentication level.  Note that this 3144 

parameter uses the same URIs and is equivalent to the wst:AuthenticationType element in 3145 

the WS-Trust SOAP RST messages. 3146 

wreq 3147 

This OPTIONAL parameter specifies a token request using either a 3148 

<wst:RequestSecurityToken> element or a full request message as described in WS-Trust.  3149 

If this parameter is not specified, it is assumed that the responding service knows the correct type 3150 
of token to return.  Note that this can contain the same RST payload as used in WS-Trust RST 3151 
messages. 3152 

To complete the protocol for requesting a token, it is necessary to redirect the Web requestor from the 3153 

resource, or its local IP/STS, to the requestor’s IP/STS.  Determining the location of this IP/STS is 3154 

frequently referred to as Home Realm Discovery; that is, determining the realm which manages the 3155 

requestor’s identity and thus where its IP/STS is located.  This frequently involves interaction with the 3156 

user (see section 13.5 for additional discussion).  There are situations – particularly when users only 3157 

access resources via portals and never directly via bookmarked URLs – when it can be advantageous to 3158 

include the requestor’s home realm in the request to avoid the requirement for human interaction.  The 3159 

following parameter MAY be specified for this purpose. 3160 

[whr=string] 3161 

whr 3162 

This  OPTIONAL parameter indicates the account partner realm of the client.  This parameter is 3163 
used to indicate the IP/STS address for the requestor.  This may be specified directly as a URL or 3164 
indirectly as an identifier (e.g. urn: or uuid:).  In the case of an identifier the recipient is expected 3165 
to know how to translate this (or get it translated) to a URL.  When the whr parameter is used, the 3166 
resource, or its local IP/STS, typically removes the parameter and writes a cookie to the client 3167 
browser to remember this setting for future requests. Then, the request proceeds in the same 3168 
way as if it had not been provided. Note that this serves roughly the same purpose as federation 3169 
metadata for discovering IP/STS locations previously discussed. 3170 

In the event that the XML request cannot be passed in the form (due to size or other considerations), the 3171 

following parameter MAY be specified and the form made available by reference: 3172 

wreqptr=url 3173 

wreqptr 3174 

This OPTIONAL parameter specifies a URL for where to find the request expressed as a 3175 

<wst:RequestSecurityToken> element.  Note that this does not have a WS-Trust parallel. 3176 

The wreqptr parameter MUST NOT be included in a token request if wreq is present. 3177 

When using wreqptr it is strongly RECOMMENDED that the provider of the wreqptr data authenticate the 3178 

data to the consumer (relying party) in some way and that the provider authenticate consumers 3179 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 99 of 137 

requesting the wreqptr data.  If the wreqptr data is sensitive the provider SHOULD consider ensuring 3180 

confidentiality of the data transfer. 3181 

The RST is logically constructed to process the request.  If one is specified (either directly via wreq or 3182 

indirectly via wreqptr) it is the authoritative source for parameter information.  That is, parameters outside 3183 

of the RST (e.g.  wfresh, wtrealm, …) are used to construct an RST if the RST is not present or if the 3184 

corresponding RST values are not present. 3185 

13.2.3 Returning Security Tokens 3186 

Security tokens are returned by passing an HTTP form. To return the tokens, this profile embeds a 3187 

<wst:RequestSecurityTokenResponse> element as specified in [WS-Trust]. 3188 

POST resourceURI?parameters HTTP/1.1 3189 
GET resourceURI?parameters HTTP/1.1 3190 

In many cases the IP/STS to whom the request is being made, will prompt the requestor for information or 3191 

for confirmation of the receipt of the token.  As a result, the IP/STS can return an HTTP form to the 3192 

requestor who then submits the form using an HTTP POST method.  This allows the IP/STS to return 3193 

security token request responses in the body rather than embedded in the limited URL query string.  3194 

However, in some circumstances interaction with the requestor may not be required (e.g. cached 3195 

information).  In these circumstances the IP/STS have several options: 3196 

1. Use a form anyway to confirm the action 3197 

2. Return a form with script to automate and instructions for the requestor in the event that scripting 3198 

has been disabled 3199 

3. Use HTTP GET and return a pointer to the token request response (unless it is small enough to fit 3200 

inside the query string) 3201 

This specification RECOMMENDS using the POST method as the GET method requires additional state 3202 

to be maintained and complicates the cleanup process whereas the POST method carries the state inside 3203 

the method.   3204 

Note that when using the POST method, any values specified in parameters are subject to encoding as 3205 

described in the HTTP 1.1 specification.  The standard parameters apply to returning tokens as do the 3206 

following additional form parameters: 3207 

wresult=xml 3208 
[wctx=string] 3209 

wresult 3210 

This REQUIRED parameter specifies the result of the token issuance.  This can take the form of 3211 

the <wst:RequestSecurityTokenResponse> element or 3212 

<wst:RequestSecurityTokenResponseCollection> element, a SOAP security token 3213 

request response (that is, a <S:Envelope>) as detailed in WS-Trust, or a SOAP <S:Fault> 3214 

element.  This carries the same content as a WS-Trust RSTR element (or even the actual SOAP 3215 
Envelope containing the RSTR element). 3216 

wctx 3217 

This OPTIONAL parameter specifies the context information (if any) passed in with the request 3218 
and typically represents context from the original request. 3219 

In the event that the token/result cannot be passed in the form, the following parameter MAY be specified: 3220 

wresultptr=url 3221 

wresultptr 3222 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 100 of 137 

This parameter specifies a URL to which an HTTP GET can be issued.  The result is a document 3223 

of type text/xml that contains the issuance result.  This can either be the 3224 

<wst:RequestSecurityTokenResponse> element, the 3225 

<wst:RequestSecurityTokenResponseCollection> element, a SOAP response, or a 3226 

SOAP <S:Fault> element.    Note that this serves roughly the same purpose as the WS-3227 

ReferenceToken mechanism previously discussed (although this is used for the full response not 3228 
just the token). 3229 

13.2.4 Sign-Out Request Syntax 3230 

This section describes how sign-out requests are formed and redirected by Web requestors.  For 3231 

modularity, it should be noted that support for sign-out is OPTIONAL. 3232 

Sign-out can be initiated by a client at one of four points in the system: 3233 

1. A Relying Party application server 3234 

2. A Relying Party STS 3235 

3. An application server local to the Identity Provider 3236 

4. The Identity Provider STS 3237 

For the first three use cases, the requestor's client must be redirected to the Identity Provider STS where 3238 

the current session originated. This STS is required to send clean-up messages to all Relying Party STSs 3239 

and any local applications for which the IP STS has issued security tokens for the requestor's current 3240 

session.  How the STS tracks this state for the requestor is implementation specific and outside the scope 3241 

of this specification. 3242 

 As can be seen, for passive requestors the sign-out process is divided into two separate phases, referred 3243 

to as sign-out and clean-up. Two different messages are used to ensure that all components of the 3244 

system understand which phase is in effect to ensure that the requestor's sign-out request is processed 3245 

correctly. 3246 

13.2.4.1 Sign-out Message Syntax 3247 

 3248 

The following describes the parameters used for the sign-out request (note that this parallels the sign-out 3249 

SOAP message previously discussed): 3250 

wa=string 3251 
wreply=URL 3252 

wa 3253 

This REQUIRED parameter specifies the action to be performed.  By including the action, URIs 3254 
can be overloaded to perform multiple functions.  For sign-out, this string MUST be "wsignout1.0".   3255 

 3256 

wreply 3257 

This OPTIONAL parameter specifies the URL to return to once clean-up (sign-out) is complete.  If 3258 
this parameter is not specified, then after cleanup the GET completes by returning any realm-3259 
specific data such as a string indicating cleanup is complete for the realm. 3260 

13.2.4.2 Clean-up Message Syntax 3261 

The following describes the parameters used for the clean-up phase of a sign-out 3262 
request: 3263 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 101 of 137 

wa=string 3264 
wreply=URL 3265 

wa 3266 

This required parameter specifies the action to be performed. By including the action, URIs can 3267 
be overloaded to perform multiple functions. For the clean-up phase of a sign-out request, this 3268 
string MUST be "wsignoutcleanup1.0". 3269 

wreply 3270 

This optional parameter specifies the URL to return to once clean-up is complete. If this 3271 
parameter is not specified, then after cleanup the GET MAY complete by returning any realm-3272 
specific data such as a string indicating cleanup is complete for the realm. 3273 

 3274 

13.2.5 Attribute Request Syntax 3275 

This section describes how attribute requests are formed and redirected by Web requestors.  For 3276 

modularity, it should be noted that support for attributes is OPTIONAL.  Additionally it should be noted 3277 

that security considerations may apply.  While the structure described here MAY be used with an attribute 3278 

service supporting Web clients, the actual attribute request and response XML syntax is undefined and 3279 

specific to the attribute store. 3280 

The following describes the valid parameters used within attributes requests: 3281 

wa=string 3282 
[wreply=URL] 3283 
[wtrealm=URL] 3284 
wattr=xml-attribute-request 3285 
wattrptr=URL 3286 
wresult=xml-result 3287 
wresultptr-URL 3288 

wa 3289 

This REQUIRED parameter specifies the action to be performed.  By including the action, URIs 3290 
can be overloaded to perform multiple functions.  For attribute requests, this string MUST be 3291 
"wattr1.0".  3292 

wreply 3293 

This OPTIONAL parameter specifies the URL to return to when the attribute result is complete. 3294 

wattr 3295 

This OPTIONAL parameter specifies the attribute request.  The syntax is specific to the attribute 3296 
store being used and is not mandated by this specification. This attribute is only present on the 3297 
request. 3298 

wattrptr 3299 

This OPTIONAL parameter specifies URL where the request can be obtained. 3300 

wresult 3301 

This OPTIONAL parameter specifies the result as defined by the attribute store and is not 3302 
mandated by this specification.  This attribute is only present on the responses. 3303 

wresultptr 3304 

This OPTIONAL parameter specifies URL where the result can be obtained. 3305 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 102 of 137 

13.2.6 Pseudonym Request Syntax 3306 

This section describes how pseudonym requests are formed and redirected by Web requestors.  For 3307 

modularity, it should be noted that support for pseudonyms is also OPTIONAL.  As well, it should be 3308 

noted that security considerations may apply. 3309 

The following describes the valid parameters used within pseudonym requests (note that this parallels the 3310 

pseudonym messages previously discussed): 3311 

wa=string 3312 
[wreply=URL] 3313 
[wtrealm=URL] 3314 
wpseudo=xml-pseudonym-request 3315 
wpseudoptr=URL 3316 
wresult=xml-result 3317 
wresultptr=URL 3318 

wa 3319 

This REQUIRED parameter specifies the action to be performed.  By including the action, URIs 3320 
can be overloaded to perform multiple functions.  For pseudonym requests, this string MUST be 3321 
"wpseudo1.0".  3322 

wreply 3323 

This OPTIONAL parameter specifies the URL to return to when the pseudonym result is 3324 
complete. 3325 

wpseudo 3326 

This OPTIONAL parameter specifies the pseudonym request and either contains a SOAP 3327 

envelope or a pseudonym request, such as a WS-Transfer/WS-ResourceTransfer <Get>.  This 3328 

attribute is only present on the request. 3329 

wpseudoptr 3330 

This OPTIONAL parameter specifies URL from which the request element can be obtained. 3331 

wresult 3332 

This OPTIONAL parameter specifies the result as either a SOAP envelope or a pseudonym 3333 
response.  This attribute is only present on the responses. 3334 

wresultptr 3335 

This optional OPTIONAL parameter specifies URL from which the result element can be 3336 
obtained. 3337 

13.3 Detailed Example of Web Requester Syntax 3338 

This section provides a detailed example of the protocol defined in this specification.  The exact flow for 3339 

Web sign-in scenarios can vary significantly; however, the following diagram and description depict a 3340 

common or basic sequence of events.   3341 

In this scenario, the user at a requestor browser is attempting to access a resource which requires 3342 

security authentication to be validated by the resource's security token service.  In this example there is a 3343 

resource-specific IP/STS. 3344 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 103 of 137 

  

Requestor

Browser

Requestor

IP/STS

Resource

IP/STS

GET resource

Redirect to resource’s IP/STS

GET resource token

UI to determine realm

Redirect to requestor’s IP/STS

Requestor IP/

STS token

UI to collect 

authentication 

data

1.

2.

3.

3.1

4.

5.

5.1.

WS

Resource

Return requestor 

token

6.

POST requestor token
7.

Return resource token
8.

POST resource token
9.

Return result
10.

 3345 

Figure 29: Details Sample Browser Sign-In 3346 

Simple Scenario: 3347 

This scenario depicts an initial federated flow.  Note that subsequent flows from the requestor to the 3348 

resource realm MAY be optimized.  The steps below describe the above interaction diagram.  Appendix 3349 

III provides a set of sample HTTP messages for these steps. 3350 

Step 1: The requestor browser accesses a resource, typically using the HTTP GET method. 3351 

Step 2: At the resource, the requestor's request is redirected to the IP/STS associated with the target 3352 

resource.  The redirected URL MAY contain additional information reflecting agreements which the 3353 

resource and its IP/STS have established; however, this (redirection target) URL MUST be used 3354 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 104 of 137 

throughout the protocol as the URL for the resource's IP/STS.  Typically, this occurs using a standard 3355 

HTTP 302 error code.  (Alternatively, the request for the token MAY be done using a HTTP POST method 3356 

described in step 6). 3357 

It is RECOMMENDED that the resource STS provide confidentiality (e.g. using encryption or HTTP/S) of 3358 

the information. 3359 

Step 3: Upon receipt of the redirection, the IP/STS must  determine the requestor realm.  This requestor 3360 

realm MAY be cached in an artifact/cookie from an earlier exchange, it MAY be known to or fixed by the 3361 

resource, or the requestor MAY be prompted to enter or select their realm (step 3.1). 3362 

Step 3.1: This is an OPTIONAL step.  If the resource IP/STS cannot determine the requestor’s realm, 3363 

then the IP/STS MAY prompt the requestor for realm information. 3364 

Step 4: The resource IP/STS redirects to the requestor’s IP/STS in order to validate the requestor.  3365 

Typically, this is done using a HTTP 302 redirect. 3366 

As in step 2, additional information MAY be passed to reflect the agreement between the two IP/STS’s, 3367 

and this request for the token MAY be done using a POST method (see syntax for details). 3368 

The requestor IP/STS SHOULD provide information confidentiality or use HTTP/S or some other 3369 

transport-level security mechanism. 3370 

Step 5: The requestor's IP/STS now authenticates the requestor to establish a sign in. 3371 

Step 5.1: Validation of the requestor MAY involve displaying some UI in this OPTIONAL step. 3372 

Step 6: Once requestor information has been successfully validated, a security token response (RSTR) is 3373 

formatted and sent to the resource IP/STS. 3374 

Processing continues at the resource IP/STS via a redirect. 3375 

While an IP/STS MAY choose to return a pointer to token information using wresultptr, it is 3376 

RECOMMENDED that, whenever possible to return the security token (RSTR) using a POST method to 3377 

reduce the number of overall messages.  This MAY be done using requestor-side scripting.  The exact 3378 

syntax is described in Appendix I. 3379 

Step 7: Resource's IP/STS receives and validates the requestor's security token (RSTR). 3380 

Step 8: The resource's IP/STS performs a federated authentication/authorization check (validation 3381 

against policy).  After a successful check, the resource's IP/STS can issue a security token for the 3382 

resource.  The resource IP/STS redirects to the resource. 3383 

It should be noted that the OPTIONAL wctx parameter specifies the opaque context information (if any) 3384 

passed in with the original request and is echoed back here.  This mechanism is an optional way for the 3385 

IP/STS to have state returned to it. 3386 

At this point the resource's IP/STS MAY choose to set an artifact/cookie to indicate the sign-in state of the 3387 

requestor (which likely includes the requestor’s realm). 3388 

Step 9: The resource receives the security token (RSTR) from the resource IP/STS.  On successful 3389 

validation the resource processes the request (per policy). 3390 

The security token SHOULD be passed using an HTML POST using the syntax previously described. 3391 

Step 10: The resource MAY establish a artifact/cookie indicating the sign-in state of the requestor when it 3392 

returns the result of the resource request. 3393 

 3394 

Optimized Scenario: 3395 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 105 of 137 

 3396 

Figure 30: Optimized Sample Browser Sign-In 3397 

This scenario assumes that an initial federated flow has occurred.  Note that many legs of the initial flow 3398 

MAY be eliminated due to the presence of artifacts/cookies.  For readability, the similar steps are 3399 

numbered consistently with the previous non-optimized example. 3400 

Step 1: The requestor browser accesses a resource, typically using the HTTP GET method. 3401 

Step 2: At the resource, the requestor's request is redirected to the IP/STS associated with the target 3402 

resource.  The redirected URL MAY contain additional information reflecting agreements which the 3403 

resource and its IP/STS have established; however, this (redirection target) URL MUST be used 3404 

throughout the protocol as the URL for the resource's IP/STS.  Typically, this occurs using a standard 3405 

HTTP 302 error code.  (Alternatively, the request for the token MAY be done using a HTTP POST method 3406 

described in step 6). 3407 

It is RECOMMENDED that the resource STS provide confidentiality (e.g. using encryption or HTTP/S) of 3408 

the information. 3409 

Step 3: Upon receipt of the redirection, the IP/STS must determine the requestor realm.  This requestor 3410 

realm could be cached in an artifact/cookie from an earlier exchange, it could be known to or fixed by the 3411 

resource, or the requestor MAY be prompted to enter or select their realm (step 3.1). 3412 

Step 8: The resource's IP/STS performs a federated authentication/authorization check (validation 3413 

against policy).  After a successful check, the resource's IP/STS can issue a security token for the 3414 

resource.  The resource IP/STS redirects to the resource. 3415 

It should be noted that the  OPTIONAL wctx parameter specifies the opaque context information (if any) 3416 

passed in with the original request and is echoed back here.  This mechanism is an optional way for the 3417 

IP/STS to have state returned to it. 3418 

At this point the resource's IP/STS MAY choose to set an artifact/cookie to indicate the sign-in state of the 3419 

requestor (which likely includes the requestor’s realm). 3420 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 106 of 137 

Step 9: The resource receives the security token (RSTR) from the resource IP/STS.  On successful 3421 

validation the resource processes the request (per policy). 3422 

The security token SHOULD be passed using an HTML POST using the syntax previously described. 3423 

Step 10: The resource MAY establish a artifact/cookie indicating the sign-in state of the requestor when it 3424 

returns the result of the resource request. 3425 

13.4 Request and Result References 3426 

The previous example illustrates a common form of messaging when passing WS-Trust messages via a 3427 

simple Web browser.  However, in some scenarios it is undesirable to use POST messages and carry the 3428 

full details within the messages (e.g. when redirecting through wireless or mobile devices).  In such cases 3429 

requests and responses can be referenced via a URL and all messages passed as part of the query 3430 

strings (or inside small POSTs). 3431 

Request references are specified via wreqptr and typically specify a <wst:RequestSecurityToken> 3432 

element that can be obtained by issuing a HTTP GET against the specified URL.  Response references 3433 

are specified via wresultptr and typically specify a <wst:RequestSecurityTokenResponse> or 3434 

<wst:RequestSecurityTokenResponseCollection> element that can be obtained by issuing a 3435 

HTTP GET against the specified URL. 3436 

This section provides a detailed example of the use of references with the protocol defined in this 3437 

specification.  The exact flow for Web sign-in scenarios can vary significantly; however, the following 3438 

diagram and description depict a common or basic sequence of events.  Note that this example only 3439 

illustrates result reference not request references and makes use of a resource-specific IP/STS. 3440 

In this scenario, the user at a requestor browser is attempting to access a resource which requires 3441 

security authentication to be validated by the resource's security token service. 3442 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 107 of 137 

Requestor

Browser

Requestor

IP/STS

Resource

IP/STS

GET resource

Redirect to resource’s IP/STS

GET resource token

UI to determine realm

Redirect to requestor’s IP/STS

Requestor IP/

STS token

UI to collect 

authentication 

data

1.

2.

3.

3.1

4.

5.

5.1.

WS

Resource

Return requestor 

token reference

6.

Redirect
7.

GET requestor 

token from 

reference

7.1.

Return requestor 

token

7.2.

Return resource token reference
8.

Redirect
9.

Return result
10.

GET resource 

token from 

reference

9.1.

Return resource 

token

9.2.

   3443 

Figure 31: Sample Browser Sign-In with Request and Result References 3444 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 108 of 137 

Step 1: The requestor browser accesses a resource, typically using the HTTP GET method. 3445 

Step 2: At the resource, the requestor's request is redirected to the IP/STS associated with the target 3446 

resource.  The redirected URL MAY contain additional information reflecting agreements which the 3447 

resource and its IP/STS have established; however, this (redirection target) URL MUST be used 3448 

throughout the protocol as the URL for the resource's IP/STS.  Typically, this occurs using a standard 3449 

HTTP 302 error code.  (Alternatively, the request for the token MAY be done using a HTTP POST method 3450 

described in step 6). 3451 

It is RECOMMENDED that the resource STS provide confidentiality (e.g. using encryption or HTTP/S) of 3452 

the information. 3453 

Step 3: Upon receipt of the redirection, the IP/STS must determine the requestor realm.  This requestor 3454 

realm could be cached in an artifact/cookie from an earlier exchange, it could be known to or fixed by the 3455 

resource, or the requestor MAY be prompted to enter or select their realm (step 3.1). 3456 

Step 3.1: This is an OPTIONAL step.  If the resource IP/STS cannot determine the requestor’s realm, 3457 

then the IP/STS MAY prompt the requestor for realm information. 3458 

Step 4: The resource IP/STS redirects to the requestor’s IP/STS in order to validate the requestor.  3459 

Typically, this is done using a HTTP 302 redirect. 3460 

As in step 2, additional information MAY be passed to reflect the agreement between the two IP/STS’s, 3461 

and this request for the token MAY be done using a POST method (see syntax for details). 3462 

The requestor IP/STS SHOULD provide information confidentiality or use HTTP/S or some other 3463 

transport-level security mechanism. 3464 

Step 5: The requestor's IP/STS now authenticates the requestor to establish a sign in. 3465 

Step 5.1: Validation of the requestor MAY involve displaying some UI in this OPTIONAL step. 3466 

Step 6: Once requestor information has been successfully validated, a security token response (RSTR) is 3467 

formatted and sent to the resource IP/STS. 3468 

Processing continues at the resource IP/STS via a redirect. 3469 

Step 7: Resource's IP/STS receives and validates the requestor's security token (RSTR). 3470 

Step 7.1: The Resource IP/STS issues a GET to the Requestor IP/STS to obtain the actual RSTR. 3471 

Step 7.2: The Requestor IP/STS responds to the GET and returns the actual RSTR. 3472 

Step 8: The resource's IP/STS performs a federated authentication/authorization check (validation 3473 

against policy).  After a successful check, the resource's IP/STS can issue a security token for the 3474 

resource.  The resource IP/STS redirects to the resource. 3475 

It should be noted that the OPTIONAL wctx parameter specifies the opaque context information (if any) 3476 

passed in with the original request and is echoed back here.  This mechanism is an optional way for the 3477 

IP/STS to have state returned to it. 3478 

At this point the resource's IP/STS MAY choose to set an artifact/cookie to indicate the sign-in state of the 3479 

requestor (which likely includes the requestor’s realm). 3480 

Step 9: The resource receives the security token (RSTR) from the resource IP/STS.  On successful 3481 

validation the resource processes the request (per policy). 3482 

The security token SHOULD be passed using an HTML POST using the syntax previously described. 3483 

Step 9.1: The Resource issues a GET to the Resource IP/STS to obtain the actual RSTR. 3484 

Step 9.2: The Resource IP/STS responds to the GET and returns the actual RSTR. 3485 

Step 10: The resource MAY establish a artifact/cookie indicating the sign-in state of the requestor when it 3486 

returns the result of the resource request. 3487 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 109 of 137 

13.5 Home Realm Discovery 3488 

In the protocol previously described the resource or the resource’s IP/STS must determine the IP/STS for 3489 

the requestor and re-direct to obtain an identity token.  After this is done, the information can be cached in 3490 

a cookie (or by whatever means is desired).   3491 

There is no normative way of discovering the home realm of the requestor, however, the following 3492 

mechanisms are common methods: 3493 

• Fixed – The home realm is fixed or known 3494 

• Requestor IP – The home realm is determined using the requestor’s IP address 3495 

• Prompt – The user is prompted (typically using a Web page) 3496 

• Discovery Service – A service is used to determine the home realm 3497 

• Shared Cookie – A shared cookie from a shared domain is used (out of scope) 3498 

The first three mechanisms are well understood, the Discovery Service is discussed next, and the cookie 3499 

mechanism is outside the scope of this document. 3500 

13.5.1 Discovery Service 3501 

The Home Realm Discovery Service is a Web-based service that, through implementation-specific 3502 

methods MAY be able to determine a requestor’s home realm without user interaction. 3503 

A resource or resource IP/STS MAY redirect to a discovery service to attempt to determine the home 3504 

realm without prompting the user.  The discovery service MUST redirect back to the URL specified by the 3505 

wreply parameter.  If the context parameter is specified it MUST also be specified.  If the discovery 3506 

service was able to determine the home realm, it is returned using the whr parameter defined in section 3507 

13.2.2.  This parameter contains a URI which identifies the home realm of the user.  This SHOULD be the 3508 

same URI that the user’s realm uses for the wtrealm parameter when it makes token requests to other 3509 

federated partners.  This value can be used to lookup the URL for the user’s IP/STS for properly 3510 

redirecting the token request. 3511 

If the discovery service is unable to determine the home realm then the whr parameter is not specified 3512 

and the home realm must be discovered by other means. 3513 

13.6 Minimum Requirements 3514 

For the purposes of interoperability of federated Web Single Sign-on, this sub-section defines a subset of 3515 

the exchanges defined in this chapter which MUST be supported by all Web-enabled requestors and 3516 

services.  Optional aspects are optional for both clients and services. 3517 

The scenario and diagram(s) in section 13.3 illustrates the core Sign-On messages between two 3518 
federated realms.  This is the center of the interoperability subset described below. 3519 

13.6.1 Requesting Security Tokens 3520 

The focus of these requirements is on the message exchange between the requestor IP/STS and the 3521 
resource IP/STS.  Thus, to conform to this specification, messages 1, 4, 7 & 10 MUST be supported 3522 
(again refer to the figure and steps in section 13.3).  All other message exchanges are implementation 3523 
specific and are only provided here for guidance. 3524 

A security token is requested via SignIn message in step 2 of the diagram.  Message 3 arrives via HTTP 3525 
GET and is protected by SSL/TLS.  The parameters are encoded in a query string as specified in section 3526 
13.2.  The message will contain parameters as detailed below.  Parameters enclosed in brackets are 3527 
OPTIONAL. 3528 

 3529 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 110 of 137 

wa=wsignin1.0 3530 
wtrealm=resource realm URI 3531 
[wreply=Resource IP/STS Url] 3532 
[wctx=anything]  3533 
[wct=ISO8601 UTC] 3534 

 3535 

The REQUIRED wa field is common to all SignIn messages and is fixed. 3536 

The REQUIRED wtrealm field MUST contain a URI that the Resource IP/STS and Requestor IP/STS 3537 
have agreed to use to identify the realm of Resource IP/STS in messages to Requestor IP/STS. 3538 

The OPTIONAL wreply field specifies the URL to which this message’s response will be POSTed (see 3539 

Returning Security Tokens). 3540 

The OPTIONAL wctx field is provided for Resource IP/STS’s use and MUST be returned by Requestor 3541 
IP/STS unchanged.   3542 

The OPTIONAL wct field, if present, MUST contain the current time in UTC using the ISO8601 format 3543 
(e.g. “2003-04-30T22:47:20Z”).  This field MAY not be available if the requestor is coming via a portal link.  3544 
Individual implementations of Requestor IP/STS MAY require this field to be present. 3545 

Other options MAY be specified but are not required to be supported. 3546 

13.6.2 Returning Security Tokens 3547 

A security token is returned  in response to successful Web SignIn messages, as described in the 3548 
example protocol message flow in section 13.3.  Security tokens are returned to the requestor and 3549 
SHOULD be transmitted to a Resource Provider via HTTP POST and be protected by SSL/TLS, as 3550 
depicted in steps 6-7 and 9-10 of figure 29.   Optionally, the token MAY be returned using the wresultptr 3551 
parameter.  Encoding of the parameters in the POST body MUST be supported.  The parameters to the 3552 
message MAY be encoded in the query string if wresultptr is being used.  The message will contain 3553 

parameters as detailed below.  Parameters enclosed in brackets are OPTIONAL. 3554 

 3555 

wa=wsignin1.0 3556 
wresult=RequestSecurityTokenResponse 3557 
[wctx=wctx from the request]  3558 
[wresultptr=URL] 3559 

  3560 

The REQUIRED wa field is common to all SignIn messages and is fixed. 3561 

The REQUIRED wresult field MUST contain a <wst:RequestSecurityTokenResponse> element, as 3562 

detailed below. 3563 

The OPTIONAL wctx field MUST be identical to the wctx field from the incoming SignIn message that 3564 

evoked this response. 3565 

The OPTIONAL wresultptr field provides a pointer to the resulting 3566 

<wst:RequestSecurityTokenResponse> element, as detailed below. 3567 

13.6.3 Details of the RequestSecurityTokenResponse element 3568 

The <wst:RequestSecurityTokenResponse> element that is included as the wresult field in the 3569 

SignIn response MUST contain a <wst:RequestedSecurityToken> element.  Support for SAML 3570 

assertions MUST be provided but another token format MAY be used (depending on policy).  3571 

The <wst:RequestSecurityTokenResponse> element MAY include a wsp:AppliesTo / 3572 

wsa:EndpointReference / wsa:Address element that specifies the Resource Realm URI.  Note that 3573 

this data MUST be consistent with similar data present in security tokens (if any is present) – for example 3574 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 111 of 137 

it must duplicate the information in the signed token’s saml:Audience element when SAML security 3575 

tokens are returned. 3576 

13.6.4 Details of the Returned Security Token Signature 3577 

It MUST be possible to return signed security tokens, but unsecured tokens MAY be returned.  Signed 3578 
security tokens SHOULD contain an enveloped signature to prevent tampering but MAY use alternative 3579 
methods if the security token format allows for specialized augmentation of the token.  The signature 3580 
SHOULD be performed over canonicalized XML [XML-C14N] (failure to do so MAY result in non-verifiable 3581 
security tokens).  The signature SHOULD be produced using the Requestor STS private key, which 3582 
SHOULD correspond to either a security token included as part of the response or pre-established with 3583 
the requestor.  Note that in the above example the certificate is included directly in KeyInfo (via the 3584 
X509Data element [WSS:X509Token]).  This is the RECOMMENDED approach.   3585 

When used, the X509SKI element contains the base64 encoded plain (i.e., non-DER-encoded) value of 3586 
an X509 V.3 SubjectKeyIdentifier extension.  If the SubjectKeyIdentifier field is not present in the 3587 
certificate, the certificate itself MUST be included directly in KeyInfo (see the above example). 3588 

Note that typically the returned security token is unencrypted (The entire RSTR is sent over SSL3.0/TLS 3589 
[HTTPS]) but it MAY be encrypted in specialized scenarios. 3590 

Take care to include appropriate transforms in Signature/Reference/Transforms.  For example, all SAML 3591 
tokens [WSS:SAMLTokenProfile] following the rules above MUST contain the enveloped signature and 3592 
EXCLUSIVE cannonicalization transforms.   3593 

13.6.5 Request and Response References 3594 

If the wreqptr or wresultptr parameters are supported, it MUST be possible to pass 3595 

<wst:RequestSecurityToken> in the wreqptr and either 3596 

<wst:RequestSecurityTokenResponse> or 3597 

<wst:RequestSecurityTokenResponseCollection> in wresultptr.  Other values MAY (but are not 3598 

required) to be supported. 3599 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 112 of 137 

14 Additional Policy Assertions 3600 

This specification defines the following assertions for use with [WS-Policy] and [WS-SecurityPolicy]. 3601 

14.1 RequireReferenceToken Assertion 3602 

This element represents a requirement to include a ReferenceToken (as described previously in this 3603 

specification).  The default version of this token is the version described in this document. 3604 

The syntax is as follows: 3605 

<fed:RequireReferenceToken sp:IncludeToken="xs:anyURI" ? ... > 3606 
  <wsp:Policy> 3607 
    <fed:RequireReferenceToken11 ...>...</fed:RequireReferenceToken11> ? 3608 
    ... 3609 
  </wsp:Policy> ? 3610 
  ... 3611 
</fed:RequireReferenceToken> 3612 

The following describes the attributes and elements listed in the schema outlined above: 3613 

/fed:RequireReferenceToken 3614 

This identifies a RequireReference assertion 3615 

/fed:RequireReferenceToken/sp:IncludeToken 3616 

This OPTIONAL attribute identifies the token inclusion value for this token assertion 3617 

/fed:RequireReferenceToken/wsp:Policy 3618 

This OPTIONAL element identifies additional requirements for use of the 3619 
fed:RequireReferenceToken assertion. 3620 

/fed:RequireReferenceToken/wsp:Policy/fed:RequireReferenceToken11 3621 

This OPTIONAL element indicates that a reference token should be used as defined in this 3622 
specification. 3623 

/fed:RequireReferenceToken/wsp:Policy/fed:RequireReferenceToken11/@{any} 3624 

This extensibility mechanism allows attributes to be added. Use of this extensibility point MUST 3625 
NOT violate or alter the semantics defined in this specification. 3626 

/fed:RequireReferenceToken/wsp:Policy/fed:RequireReferenceToken11/{any} 3627 

This is an extensibility point allowing content elements to be specified.  Use of this extensibility 3628 
point MUST NOT alter semantic defined in this specification. 3629 

/fed:RequireReferenceToken/@{any} 3630 

This extensibility mechanism allows attributes to be added . Use of this extensibility point MUST 3631 
NOT violate or alter the semantics defined in this specification. 3632 

/fed:RequireReferenceToken/{any} 3633 

This is an extensibility point allowing content elements to be specified. Use of this extensibility 3634 
point MUST NOT alter semantic defined in this specification.  3635 

This assertion is used wherever acceptable token types are identified (e.g. within the supporting token 3636 

assertions defined in WS-SecurityPolicy). 3637 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 113 of 137 

14.2 WebBinding Assertion 3638 

The WebBinding assertion is used in scenarios where requests are made of token services using a Web 3639 

client and HTTP with GET, POST, and redirection as described in Section 13.  Specifically, this assertion 3640 

indicates that the requests use the Web client mechanism defined in this document and are protected 3641 

using the means provided by a transport.  This binding has several specific binding properties:   3642 

• The [TransportToken] property indicates what transport mechanism is used to protect requests 3643 

and responses.   3644 

• The [AuthenticationToken] property indicates the REQUIRED token type for authentication.  Note 3645 

that this can be a choice of formats as it uses nested policy.  Also note that this can specify 3646 

fed:ReferenceToken as an option to indicate that token handles are accepted (and dereferenced).   3647 

• The [RequireSignedTokens] property indicates that tokens MUST be signed i.e. only tokens that 3648 

are signed are accepted.   3649 

• The [RequireBearerTokens] property indicates that tokens MUST be bearer tokens i.,e only 3650 

bearer tokens are accepted. 3651 

• The [RequireSharedCookies] property indicates if shared cookies MUST be used for home realm 3652 

discovery 3653 

• The [Bas64Url] property indicates that base64url encoded xml parameter content is REQUIRED. 3654 

 The syntax is as follows: 3655 

<fed:WebBinding ...> 3656 
  <wsp:Policy> 3657 
    <sp:TransportToken ...> ... </sp:TransportToken> ? 3658 
    <fed:AuthenticationToken ... > ? 3659 
      <wsp:Policy> ... </wsp:Policy> 3660 
      <fed:ReferenceToken ...>... </fed:ReferenceToken> ? 3661 
    </fed:AuthenticationToken>    <fed:RequireSignedTokens ... /> ? 3662 
    <fed:RequireBearerTokens ... /> ? 3663 
    <fed:RequireSharedCookies ... /> ? 3664 
    <fed:Base64Url ... /> ? 3665 
    ... 3666 
  </wsp:Policy> ? 3667 
</fed:WebBinding> 3668 

The following describes the attributes and elements listed in the schema outlined above: 3669 

/fed:WebBinding 3670 

This identifies a WebBinding assertion 3671 

/fed:WebBinding/wsp:Policy 3672 

This identifies a nested wsp:Policy element that defines the behavior of the WebBinding 3673 

assertion. 3674 

/fed:WebBinding/wsp:Policy/sp:TransportToken 3675 

This indicates that a Transport Token as defined in [WS-SecurityPolicy] is REQUIRED 3676 

/fed:WebBinding/wsp:Policy/fed:AuthenticationToken 3677 

This indicates the REQUIRED token type for authentication. 3678 

/fed:WebBinding/wsp:Policy/fed:AuthenticationToken/wsp:Policy 3679 

This indicates a nested wsp:Policy element to specify a choice of formats for the authentication 3680 
token. 3681 

/fed:WebBinding/wsp:Policy/fed:AuthenticationToken/fed:ReferenceToken 3682 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 114 of 137 

This OPTIONAL element indicates token handles that are accepted. See section 8.1 for a 3683 
complete description. 3684 

/fed:WebBinding/wsp:Policy/RequireSignedTokens 3685 

This indicates a requirement for tokens to be signed.  This sets the [RequireSignedTokens] 3686 
property to true (the default value is false). 3687 

/fed:WebBinding/wsp:Policy/RequireBearerTokens 3688 

This indicates a requirement for bearer tokens.  This sets the [RequireBearerTokens] property to 3689 
true (the default value is false). 3690 

/fed:WebBinding/wsp:Policy/RequireSharedCookies 3691 

This indicates a requirement for shared cookies to facilitate home realm discovery.  This sets the 3692 
[RequireSharedCookies] property to true (the default value is false). 3693 

/fed:WebBinding/wsp:Policy/Base64Url 3694 

This indicates a requirement for xml parameter content to be base64url encoded. This sets the 3695 
[Bas64Url] property to true (the default value is false). 3696 

Note that the sp:AlgorithmSuite, sp:Layout, and sp:IncludeTimestamp properties are not used 3697 

by this binding and SHOULD NOT be specified. 3698 

This assertion SHOULD only be used with endpoint subjects. 3699 

14.3 Authorization Policy 3700 

To indicate support for the authorization features described in this specification, the following policy 3701 

assertions are specified. 3702 

<fed:RequiresGenericClaimDialect ... /> 3703 
<fed:IssuesSpecificMetadataFault ... /> 3704 
<fed:AdditionalContextProcessed ... /> 3705 

The following describes the above syntax: 3706 

/fed:RequiresGenericClaimDialect 3707 

This assertion indicates that  the use of the generic claim dialect defined in this specification in 3708 
Section 9.3.is REQUIRED by the service. 3709 

/fed:IssuesSpecificPolicyFault 3710 

This assertion indicates that the service issues the fed:SpecificPolicy Fault defined in this 3711 

document if the security requirements for a specific request are beyond those of the base policy. 3712 

/fed:AdditionalContextProcessed 3713 

This assertion indicates that the service will process the fed:AdditionalContext parameter if 3714 

specified in an RST request. 3715 

Typically these assertions are specified at the service or port/endpoint. 3716 

These assertions SHOULD be specified within a binding assertion. 3717 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 115 of 137 

15 Error Handling 3718 

This specification defines the following error codes that MAY be used.  Other errors MAY also be used.  3719 

These errors use the SOAP Fault mechanism.  Note that the reason text provided below is 3720 

RECOMMENDED, buy alternative text MAY be provided if more descriptive or preferred by the 3721 

implementation.  The table below is defined in terms of SOAP 1.1.  For SOAP 1.2 the Fault/Code/Value is 3722 

env:Sender (as defined in SOAP 1.2) and the Fault/Code/SubCode/Value is the faultcode below, and the 3723 

Fault/Reason/Text is the faultstring below.  It should be notes that profiles MAY provide second-level 3724 

detail fields but they should be careful not to introduce security vulnerabilities when doing so (e.g. by 3725 

providing too detailed information or echoing confidential information over insecure channels).  It is 3726 

RECOMMENDED that Faults use the indicated action URI when sending the Fault. 3727 

Error that occurred 

(faultstring) 

Fault code (faultcode) Fault Action URI 

No pseudonym found for 

the specified scope 

fed:NoPseudonymInScope http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/NoPseudonymInScope 

The principal is already 

signed in (need not be 

reported) 

fed:AlreadySignedIn http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/AlreadySignedIn 

The principal is not signed 

in (need not be reported) 

fed:NotSignedIn http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/NotSignedIn 

An improper request was 

made (e.g., 

Invalid/unauthorized 

pseudonym request) 

fed:BadRequest http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/BadRequest 

No match for the specified 

scope 

fed:NoMatchInScope http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/NoMatchInScope 

Credentials provided don’t 

meet the freshness 

requirements 

fed:NeedFresherCredentials http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/NeedFresherCredentials 

Specific policy applies to 

the request – the new 

policy is specified in the 

S12:Detail element. 

fed:SpecificPolicy http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/SpecificPolicy 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 116 of 137 

Error that occurred 

(faultstring) 

Fault code (faultcode) Fault Action URI 

The specified dialect for 

claims is not supported 

fed:UnsupportedClaimsDialect http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/UnsupportedClaimsDialect 

A requested RST 

parameter was not 

accepted by the STS.  The 

details element contains a 

fed:Unaccepted 

element.  This element’s 

value is a list of the 

unaccepted parameters 

specified as QNames. 

fed:RstParameterNotAccepted http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/RstParameterNotAccepted 

A desired issuer name is 

not supported by the STS 

fed:IssuerNameNotSupported http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/IssuerNameNotSupported 

A wencoding value or 

other parameter with XML 

content was received in an 

unknown/unsupported 

encoding. 

fed:UnsupportedEncoding http://docs.oasis-

open.org/wsfed/federation/200706/

Fault/UnsupportedEncoding 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 117 of 137 

16 Security Considerations  3728 

It is strongly RECOMMENDED that the communication between services be secured using the 3729 
mechanisms described in [WS-Security].  In order to properly secure messages, the body and all relevant 3730 
headers need to be included in the signature.   3731 

Metadata that is exchanged also needs to be secured to prevent various attacks.  All metadata 3732 
documents SHOULD be verified to ensure that the issuer can speak for the specified endpoint and that 3733 
the metadata is what the issuer intended. 3734 

All federation-related messages such as sign-out, principal, attribute, and pseudonym management 3735 
SHOULD be integrity protected (signed or use transport security).  If a message is received where the 3736 
body is not integrity protected, it is RECOMMENDED that the message not be processed.   3737 

All sign-out requests SHOULD be signed by the principal being purported to be signing in or out, or by a 3738 
principal that is authorized to be on behalf of the indicated principal. 3739 

It is also RECOMMENDED that all messages be signed by the appropriate security token service.  If a 3740 
message is received that does not have a signature from a principal authorized to speak for the security 3741 
token service, it is RECOMMENDED that the message not be processed. 3742 

When using Web messages care should be taken around processing of the wreply parameter as its value 3743 
could be spoofed.  It is RECOMMENDED that implementations do explicit lookup and verification of URL, 3744 
and that these values be passed with transport security. 3745 

The attribute service maintains information that may be very sensitive.  Significant care SHOULD be 3746 
taken to ensure that a principal's privacy is taken into account first and foremost. 3747 

The pseudonym service may contain passwords or other information used in proof-of-possession 3748 
mechanisms.  Extreme care needs to be taken with this data to ensure that it cannot be compromised.  It 3749 
is strongly RECOMMENDED that such information be encrypted over communications channels and in 3750 
any physical storage.   3751 

If a security token does not contain an embedded signature (or similar integrity mechanism to protect 3752 
itself), it SHOULD be included in any message integrity mechanisms (e.g. included in the message 3753 
signature). 3754 

If privacy is a concern, the security tokens used to authenticate and authorize messages MAY be 3755 
encrypted for the authorized recipient(s) using mechanisms in WS-Security. 3756 

Care SHOULD be taken when processing and responding to requests from 3
rd

-parties to mitigate 3757 

potential information disclosure attacks by way of faulting requests for specific claims. 3758 

As a general rule tokens SHOULD NOT have lifetimes beyond the minimum of the basis credentials 3759 
(security tokens).  However, in some cases special arrangements may exist and issuers may provide 3760 
longer lived tokens.  Care SHOULD be taken in such cases not to introduce security vulnerabilities. 3761 

The following list summarizes common classes of attacks that apply to this protocol and identifies the 3762 
mechanism to prevent/mitigate the attacks.  Note that wherever WS-Security is suggested as the 3763 
mitigation, [HTTPS] is the corresponding mechanism for Web requestors: 3764 

 Metadata alteration – Alteration is prevented by including signatures in metadata or using secure 3765 

channels for metadata transfer. 3766 

 Message alteration – Alteration is prevented by including signatures of the message information 3767 

using [WS-Security]. 3768 

 Message disclosure – Confidentiality is preserved by encrypting sensitive data using [WS-Security]. 3769 

 Key integrity – Key integrity is maintained by using the strongest algorithms possible (by comparing 3770 

secured policies – see [WS-Policy] and [WS-SecurityPolicy]). 3771 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 118 of 137 

 Authentication – Authentication is established using the mechanisms described in [WS-Security] 3772 

and [WS-Trust].  Each message is authenticated using the mechanisms described in [WS-Security]. 3773 

 Accountability – Accountability is a function of the type of and string of the key and algorithms being 3774 

used.  In many cases, a strong symmetric key provides sufficient accountability.  However, in some 3775 

environments, strong PKI signatures are required. 3776 

 Availability – All reliable messaging services are subject to a variety of availability attacks.  Replay 3777 

detection is a common attack and it is RECOMMENDED that this be addressed by the mechanisms 3778 

described in [WS-Security].  Other attacks, such as network-level denial of service attacks are harder 3779 

to avoid and are outside the scope of this specification.  That said, care SHOULD be taken to ensure 3780 

that minimal state is saved prior to any authenticating sequences. 3781 

 Replay attacks:  It is possible that requests for security tokens could be replayed.  Consequently, it 3782 

is RECOMMENDED that all communication between Security Token Services and resources take 3783 

place over secure connections. All cookies indicating state SHOULD be set as secure. 3784 

 Forged security tokens:  Security token services MUST guard their signature keys to prevent 3785 

forging of tokens and requestor identities. 3786 

 Privacy:  Security token services SHOULD NOT send requestors’ personal identifying information or 3787 

information without getting consent from the requestor. For example a Web site SHOULD NOT 3788 

receive requestors’ personal information without an appropriate consent process. 3789 

 Compromised services:  If a Security Token Service is compromised, all requestor accounts 3790 

serviced SHOULD be assumed to be compromised as well (since an attacker can issue security 3791 

tokens for any account they want). However they SHOULD NOT not be able to issue tokens directly 3792 

for identities outside the compromised realm.  This is of special concern in scenarios like the 3
rd

 party 3793 

brokered trust where a 3
rd

 party IP/STS is brokering trust between two realms.  In such a case 3794 

compromising the broker results in the ability to indirectly issue tokens for another realm by indicating 3795 

trust. 3796 

As with all communications careful analysis SHOULD be performed on the messages and interactions to 3797 

ensure they meet the desired security requirements. 3798 

 3799 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 119 of 137 

17 Conformance 3800 

An implementation conforms to this specification if it  satisfies  all of the MUST or REQUIRED level 3801 

requirements defined within this specification. A SOAP Node MUST NOT use the XML namespace 3802 

identifier for this specification (listed in Section 1.4) within SOAP Envelopes unless it is compliant with this 3803 

specification. 3804 

This specification references a number of other specifications (see the table above).  In order to comply 3805 

with this specification, an implementation MUST implement the portions of referenced specifications 3806 

necessary to comply with the required provisions of this specification. Additionally, the implementation of 3807 

the portions of the referenced specifications that are specifically cited in this specification MUST comply 3808 

with the rules for those portions as established in the referenced specification.   3809 

Additionally normative text within this specification takes precedence over normative outlines (as 3810 

described in section 1.3), which in turn take precedence over the XML Schema [XML Schema Part 1, 3811 

Part 2] and WSDL [WSDL 1.1] descriptions. That is, the normative text in this specification further 3812 

constrains the schemas and/or WSDL that are part of this specification; and this specification contains 3813 

further constraints on the elements defined in referenced schemas. 3814 

If an OPTIONAL message is not supported, then the implementation SHOULD Fault just as it would for 3815 
any other unrecognized/unsupported message. If an OPTIONAL message is supported, then the 3816 
implementation MUST satisfy all of the MUST and REQUIRED sections of the message. 3817 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 120 of 137 

Appendix A WSDL 3818 

The following illustrates the WSDL for the Web service methods described in this specification: 3819 

<wsdl:definitions xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/' 3820 
xmlns:xs='http://www.w3.org/2001/XMLSchema'  3821 

 xmlns:tns='http://docs.oasis-open.org/wsfed/federation/200706'  3822 
 targetNamespace='http://docs.oasis-open.org/wsfed/federation/200706' > 3823 
 3824 
<!-- WS-Federation endpoints implement WS-Trust --> 3825 
<wsdl:import namespace='http://docs.oasis-open.org/ws-sx/ws-trust/200512 3826 
location='http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3.wsdl' 3827 
/> 3828 
 3829 
<!-- WS-Federation endpoints can implement WS-MEX --> 3830 
<wsdl:import namespace='http://schemas.xmlsoap.org/ws/2004/09/mex'  3831 
location='http://schemas.xmlsoap.org/ws/2004/09/mex/MetadataExchange.wsdl' /> 3832 
 3833 
<!-- WS-Federation endpoints can implement WS-Eventing --> 3834 
<wsdl:import namespace='http://schemas.xmlsoap.org/ws/2004/08/eventing' 3835 
location='http://schemas.xmlsoap.org/ws/2004/08/eventing/eventing.wsdl' /> 3836 
 3837 
<!-- WS-Federation endpoints can implement WS-Transfer --> 3838 
<wsdl:import namespace='http://schemas.xmlsoap.org/ws/2004/09/transfer' 3839 
location='http://schemas.xmlsoap.org/ws/2004/09/transfer/transfer.wsdl'/> 3840 
 3841 
<!-- WS-Federation endpoints can implement WS-ResourceTransfer --> 3842 
<wsdl:import 3843 
namespace='http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer' 3844 
location='http://schemas.xmlsoap.org/ws/2006/08/resourceTransfer/wsrt.wsdl' /> 3845 
 3846 
<wsdl:types>  3847 
 <xs:schema> 3848 
  <xs:import namespace='http://docs.oasis-open.org/wsfed/federation/200706' /> 3849 
 </xs:schema> 3850 
</wsdl:types> 3851 
 3852 
<wsdl:message name='SignOut' > 3853 
 <wsdl:part name='Body' element='tns:SignOut' /> 3854 
</wsdl:message> 3855 
 3856 
<wsdl:portType name='SignOutIn' > 3857 
  <wsdl:operation name='SignOut' > 3858 
    <wsdl:input message='tns:SignOut' />   3859 
  </wsdl:operation> 3860 
</wsdl:portType> 3861 
 3862 
<wsdl:portType name='SignOutOut' > 3863 
  <wsdl:operation name='SignOut' > 3864 
    <wsdl:output message='tns:SignOut' /> 3865 
  </wsdl:operation> 3866 
</wsdl:portType> 3867 
 3868 
</wsdl:definitions> 3869 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 121 of 137 

Appendix B Sample HTTP Flows for Web Requestor 3870 

Detailed Example 3871 

This appendix provides sample HTTP messages for the detailed example previously described in the 3872 

Web requestor section. 3873 

In this example, the following URLs are used: 3874 

Item URL 

Resource Realm Resource.com 

Resource https://res.resource.com/sales 

Resource's IP/STS https://sts.resource.com/sts 

Account Account.com 

Resource https://sts.account.com/sts 

Step 1 – GET resource 3875 

GET https://res.resource.com/sales HTTP/1.1 3876 

Step 2 – Redirect to resource’s IP/STS 3877 

HTTP/1.1 302 Found  3878 
Location: 3879 
https://sts.resource.com/sts?wa=wsignin1.0&wreply=https://res.resource.com/sal3880 
es&wct=2003-03-03T19:06:21Z 3881 

In addition, the resource could check for a previously written artifact/cookie and, if present, skip to Step 3882 

10. 3883 

Step 3 – GET resource challenge 3884 

GET https://sts.resource.com/sts?wa=wsignin1.0&wreply= 3885 
https://res.resource.com/sales&wct=2003-03-03T19:06:21Z HTTP/1.1 3886 

Step 3.1 – UI to determine realm (OPTIONAL) 3887 

 [Implementation Specific Traffic] 3888 

Step 4 – Redirect to requestor’s IP/STS 3889 

HTTP/1.1 302 Found  3890 
Location: https://sts.account.com/sts?wa=wsignin1.0&wreply= 3891 
https://sts.resource.com/sts&wctx= https://res.resource.com/sales&wct=2003-03-3892 
03T19:06:22Z&wtrealm=resource.com 3893 

In addition, the Resource IP/STS MAY check for a previously written artifact/cookie and, if present, skip to 3894 

Step 8. 3895 

Step 5 – Requestor IP/STS challenge 3896 

GET 3897 
https://sts.account.com/sts?wa=wsignin1.0&wreply=https://sts.resource.com/sts&3898 
wctx=https://res.resource.com/sales&wct=2003-03-3899 
03T19:06:22Z&wtrealm=resource.com HTTP/1.1 3900 

Step 5.1 – UI to collect authentication data (OPTIONAL) 3901 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 122 of 137 

 [Implementation Specific Traffic] 3902 

Step 6 – Return requestor token 3903 

HTTP/1.1 200 OK 3904 
... 3905 
 3906 
<html xmlns="https://www.w3.org/1999/xhtml"> 3907 
<head> 3908 
<title>Working...</title> 3909 
</head> 3910 
<body> 3911 
<form method="post" action="https://sts.resource.com/sts"> 3912 
<p> 3913 
<input type="hidden" name="wa" value="wsignin1.0" /> 3914 
<input type="hidden" name="wctx" value="https://res.resource.com/sales" /> 3915 
<input type="hidden" name="wresult" 3916 
value="&lt;RequestSecurityTokenResponse&gt;...&lt;/RequestSecurityTokenRespons3917 
e&gt;" /> 3918 
<button type="submit">POST</button> <!-- included for requestors that do not 3919 
support javascript --> 3920 
</p> 3921 
</form> 3922 
<script type="text/javascript"> 3923 
setTimeout('document.forms[0].submit()', 0); 3924 
</script> 3925 
</body> 3926 
</html> 3927 

Step 7 – POST requestor token 3928 

POST https://sts.resource.com/sts HTTP/1.1  3929 
…  3930 
 3931 
wa=wsignin1.0  3932 
wctx=https://res.resource.com/sales 3933 
wresult=<RequestSecurityTokenResponse>…</RequestSecurityTokenResponse> 3934 

Step 8 – Return resource token 3935 

HTTP/1.1 200 OK 3936 
… 3937 
 3938 
<html xmlns="https://www.w3.org/1999/xhtml"> 3939 
<head> 3940 
<title>Working...</title> 3941 
</head> 3942 
<body> 3943 
<form method="post" action="https://res.resource.com/sales"> 3944 
<p> 3945 
<input type="hidden" name="wa" value="wsignin1.0" /> 3946 
<input type="hidden" name="wresult" 3947 
value="&lt;RequestSecurityTokenResponse&gt;...&lt;/RequestSecurityTokenRespons3948 
e&gt;" /> 3949 
<button type="submit">POST</button> <!-- included for requestors that do not 3950 
support javascript --> 3951 
</p> 3952 
</form> 3953 
<script type="text/javascript"> 3954 
setTimeout('document.forms[0].submit()', 0); 3955 
</script> 3956 
</body> 3957 
</html> 3958 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 123 of 137 

Step 9 – POST Resource token 3959 

POST https://res.resource.com/sales HTTP/1.1  3960 
...  3961 
 3962 
wa=wsignin1.0  3963 
wresult=<RequestSecurityTokenResponse>...</RequestSecurityTokenResponse> 3964 

Step 10 – Return result 3965 

[Implementation Specific Traffic] 3966 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 124 of 137 

Appendix C Sample Use Cases 3967 

The following sub-sections describe several use case scenarios and how they could be supported using 3968 

this specification.  Note that for each scenario there are potentially multiple ways to apply the messages 3969 

and patterns in this specification so these examples SHOULD NOT not be interpreted as the only or even 3970 

the best approach, just an exemplary approach. 3971 

C.1 Single Sign On 3972 

Requestors use the mechanisms defined within [WS-Security], [WS-Trust], and [WS-Federation] to effect 3973 

single sign-on.   3974 

At a high-level, policy is used to indicate communication requirements.  Requestors can obtain the policy 3975 

ahead of time or via error responses from services.  In general, requestors are required to obtain a 3976 

security token (or tokens) from their Identity Provider (or STS) when they authenticate themselves.  The 3977 

IP/STS generates a security token for use by the federated party.  This is done using the mechanisms 3978 

defined in WS-Trust.  In some scenarios, the target service acts as its own IP/STS so communication with 3979 

an additional service isn't required.  Otherwise the requestor MAY be required to obtain additional security 3980 

tokens from service-specific or service-required identity providers or security token services. The figure 3981 

below illustrates one possible flow. 3982 

 3983 

While the example above doesn't illustrate this, it is possible that the WS-Trust messages for security 3984 

tokens MAY involve challenges to the requestors.  Refer to WS-Trust for additional information.   3985 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 125 of 137 

C.2 Sign-Out 3986 

Just as it isn't typical for Web Service requestors to sign-in as a special operation, it isn't typical to sign-3987 

out either.  However, for those scenarios where this is desirable, the sign-out messages defined in this 3988 

specification can be used.  3989 

In situations where federated sign-out messages are desirable, the requestor's IP/STS SHOULD keep 3990 

track of the realms to which it has issued tokens – specifically the IP/STS for the realms (or resources if 3991 

different).  When the sign-out is received at the requestor's IP/STS, the requestor’s IP/STS is responsible 3992 

for issuing federated sign-out messages to interested and authorized parties.  The exact mechanism by 3993 

which this occurs is up to the IP/STS, but it is strongly RECOMMENDED that the sign-out messages 3994 

defined in WS-Federation be used. 3995 

When a federated sign-out message is received at a realm, the realm SHOULD clean-up any cached 3996 

information and delete any associated state as illustrated in the figure below: 3997 

 3998 

C.3 Attributes 3999 

For Web Service requestors, attribute services are identified via WS-Policy or metadata as previously 4000 

described.  Web services and other authorized parties can obtain or even update attributes using the 4001 

messages defined by the specific attribute service. 4002 

The figure below illustrates a scenario where a requestor issues a request to a Web service.  The request 4003 

MAY include the requestor's policy or it may MAY be already cached at the service or the requestor MAY 4004 

use [WS-MetadataExchange].  The Web service issues a request to the requestor's attribute service to 4005 

obtain the values of a few attributes; WS-Policy MAY be used to describe the location of the attribute 4006 

service.  The service is authorized so the attributes are returned.  The request is processed and a 4007 

response is returned to the requestor. 4008 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 126 of 137 

 4009 

C.4 Pseudonyms 4010 

For Web Service requestors, pseudonym services are identified via metadata as previously described.  4011 

Services and other authorized parties can obtain or manage pseudonyms using the messages previously 4012 

defined. 4013 

The figure below illustrates a scenario where a requestor issues a request to a Web service.  The request 4014 

MAY include the requestor's policy and the location of the requestor’s pseudonym service or it MAY be 4015 

already cached at the Web service.  The Web service issues a request to the requestor's pseudonyms 4016 

service to obtain the pseudonyms that are authorized by the security token.  The Web service is 4017 

authorized so the pseudonym is returned.  The request is processed and a response is returned to the 4018 

requestor. 4019 

  4020 

As previously described, the pseudonym and IP/STS can interact as part of the token issuance process.  4021 

The figure below illustrates a scenario where a requestor has previously associated a pseudonym and a 4022 

security token for a specific realm.  When the requestor requests a security token to the domain/realm, 4023 

the pseudonym and token are obtained and returned to the requestor.  The requestor uses these security 4024 

tokens for accessing the Web service. 4025 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 127 of 137 

  4026 

C.5 Detailed Example 4027 

This section provides a detailed example of the protocol defined in this specification.  The exact flow can 4028 

vary significantly; however, the following diagram and description depict a common sequence of events.   4029 

In this scenario, a SOAP requestor is attempting to access a service which requires security 4030 

authentication to be validated by the resource's security token service. 4031 

 4032 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 128 of 137 

Step 1: Acquire Policy 4033 

If the requestor doesn't already have the policy for the service, it can obtain it using the mechanisms 4034 

defined in WS-MetadataExchange. 4035 

Step 2: Return Policy 4036 

The requested policy is returned using the mechanisms defined in WS-MetadataExchange. 4037 

Step 3: Request Security Token 4038 

The requestor requests a security token from its IP/STS (assuming short-lived security tokens) using the 4039 

mechanisms defined in WS-Trust (<RequestSecurityToken>) 4040 

Step 4: Issue Security Token 4041 

The IP/STS returns a security token (and optional proof of possession information) using the mechanisms 4042 

defined in WS-Trust (<RequestSecurityTokenResponse> and <RequestedProofToken>) 4043 

Step 5: Request Security Token 4044 

The requestor requests a security token from the Web services IP/STS for the target Web service using 4045 

the mechanisms defined in WS-Trust (<RequestSecurityToken>).  Note that this is determined via 4046 

policy or some out-of-band mechanism. 4047 

Step 6: Issue Security Token 4048 

The Web service's IP/STS returns a token (and optionally proof of possession information) using the 4049 

mechanisms defined in WS-Trust (<RequestSecurityTokenResponse>) 4050 

Step 7: Send secured request 4051 

The requestor sends the request to the service attaching and securing the message using the issued 4052 

tokens as described in WS-Security. 4053 

Step 8: Return result 4054 

The service issues a secured reply using its security token. 4055 

C.6 No Resource STS 4056 

The figure below illustrates the resource access scenario above, but without a resource STS.  That is, the 4057 

Web service acts as its own STS: 4058 

 4059 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 129 of 137 

C.7 3rd-Party STS 4060 

The figure below illustrates the resource access scenario above, but trust is brokered through a 3rd-party 4061 

STS: 4062 

 4063 

Note that 3
rd

-Party IP/STS is determined via policy or some out-of-band mechanism. 4064 

C.8 Delegated Resource Access 4065 

The figure below illustrates where a resource accesses data from another resource on behalf of the 4066 

requestor: 4067 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 130 of 137 

 4068 

In this example, the requestor used a <RequestSecurityTokenResponse> as defined in WS-Trust to 4069 

issue the delegation token in Step 1. This provides to Web Service 1 the necessary information so that 4070 

Web Service 1 can act on the requestor’s behalf as it contacts Web Service 2. 4071 

 4072 

C.9 Additional Web Examples 4073 

This section presents interaction diagrams for additional Web requestor scenarios. 4074 

 No Resource STS 4075 

The figure below illustrates the sign-in scenario above, but without a resource STS.  That is, the requestor 4076 

acts as its own STS: 4077 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 131 of 137 

 4078 

 3rd-Party STS 4079 

The figure below illustrates the sign-in scenario above, but trust is brokered through a 3rd-party STS: 4080 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 132 of 137 

 4081 

 Sign-Out 4082 

The figure below illustrates the sign-out flow for a Web browser requestor that has signed in at two sites 4083 

and requests that the sign-out cleanup requests redirect back to the requestor: The message flow is an 4084 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 133 of 137 

example of the use case in which all sign-out messages must be transmitted by the requestor.  Since it 4085 

cannot be assumed that all browser requestors can transmit parallel requests, the sequential method is 4086 

depicted.  This message flow is enabled by the "wreply" parameter defined in section 13.2.4. 4087 

 4088 

 Delegated Resource Access 4089 

The figure below illustrates the case where a resource accesses data from another resource on behalf of 4090 

the first resource and the information is returned through the requestor: 4091 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 134 of 137 

 4092 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 135 of 137 

Appendix D SAML Binding of Common Claims 4093 

The content of the auth:Value, auth:EncryptedValue, auth:StructuredValue, and auth:ConstrainedValue 4094 
elements, not including the root node, can be serialized into any token format that supports the content 4095 
format. For SAML 1.1 and 2.0 this content SHOULD be serialized into the saml:AttributeValue element. 4096 

The display information, such as auth:DisplayName, auth:Description and auth:DisplayValue is not 4097 
intended for serialization into tokens.  4098 

 4099 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 136 of 137 

Appendix E Acknowledgements 4100 

The following individuals have participated in the creation of this specification and are gratefully 4101 
acknowledged: 4102 

Original Authors of the initial contributions: 4103 
Hal Lockhart, BEA 4104 
Steve Anderson, BMC Software 4105 
Jeff Bohren, BMC Software 4106 
Yakov Sverdlov, CA Inc.  4107 
Maryann Hondo, IBM 4108 
Hiroshi Maruyama, IBM 4109 
Anthony Nadalin (Editor), IBM 4110 
Nataraj Nagaratnam, IBM 4111 
Toufic Boubez, Layer 7 Technologies, Inc. 4112 
K Scott Morrison, Layer 7 Technologies, Inc.  4113 
Chris Kaler (Editor), Microsoft 4114 
Arun Nanda, Microsoft 4115 
Don Schmidt, Microsoft 4116 
Doug Walters, Microsoft 4117 
Hervey Wilson, Microsoft 4118 
Lloyd Burch, Novell, Inc.  4119 
Doug Earl, Novell, Inc.  4120 
Siddharth Bajaj, VeriSign  4121 
Hemma Prafullchandra, VeriSign 4122 

 4123 

Original Acknowledgements of the initial contributions: 4124 
John Favazza, CA 4125 
Tim Hahn, IBM 4126 
Andrew Hatley, IBM 4127 
Heather Hinton, IBM 4128 
Michael McIntosh, IBM 4129 
Anthony Moran, IBM 4130 
Birgit Pfitzmann, IBM 4131 
Bruce Rich, IBM 4132 
Shane Weeden, IBM 4133 
Jan Alexander, Microsoft 4134 
Greg Carpenter, Microsoft 4135 
Paul Cotton, Microsoft 4136 
Marc Goodner, Microsoft 4137 
Martin Gudgin, Microsoft 4138 
Savas Parastatidis, Microsoft  4139 

 4140 

TC Members during the development of this specification: 4141 
Don Adams, TIBCO Software Inc. 4142 
Steve Anderson, BMC Software 4143 
Siddharth Bajaj, VeriSign 4144 
Abbie Barbir, Nortel 4145 
Hanane Becha, Nortel 4146 
Toufic Boubez, Layer 7 Technologies Inc. 4147 
Norman Brickman, Mitre Corporation 4148 
Geoff Bullen, Microsoft Corporation 4149 



ws-federation-1.2-spec-cd-01  June 23 2008 

Copyright © OASIS® 1993–2008. All Rights Reserved.   Page 137 of 137 

Lloyd Burch, Novell 4150 
Brian Campbell, Ping Identity Corporation 4151 
Greg Carpenter, Microsoft Corporation 4152 
Steve Carter, Novell 4153 
Marco Carugi, Nortel 4154 
Paul Cotton, Microsoft Corporation 4155 
Doug Davis, IBM 4156 
Fred Dushin, IONA Technologies 4157 
Doug Earl, Novell 4158 
Colleen Evans, Microsoft Corporation 4159 
Christopher Ferris, IBM 4160 
Marc Goodner, Microsoft Corporation 4161 
Tony Gullotta, SOA Software Inc. 4162 
Maryann Hondo, IBM 4163 
Mike Kaiser, IBM 4164 
Chris Kaler, Microsoft Corporation 4165 
Paul Knight, Nortel 4166 
Heather Kreger, IBM 4167 
Ramanathan Krishnamurthy, IONA Technologies 4168 
Kelvin Lawrence, IBM 4169 
Paul Lesov, Wells Fargo 4170 
David Lin, IBM 4171 
Jonathan Marsh, WSO2 4172 
Robin Martherus, Ping Identity Corporation 4173 
Monica Martin, Microsoft Corporation 4174 
Michael McIntosh, IBM 4175 
Nandana Mihindukulasooriya, WSO2 4176 
Anthony Nadalin, IBM 4177 
Arun Nanda, Microsoft Corporation 4178 
Kimberly Pease, Active Endpoints, Inc. 4179 
Larry Rogers, Lockheed Martin 4180 
Anil Saldhana, Red Hat 4181 
Richard Sand, Tripod Technology Group, Inc. 4182 
Don Schmidt, Microsoft Corporation 4183 
Sidd Shenoy, Microsoft Corporation 4184 
Kent Spaulding, Tripod Technology Group, Inc. 4185 
David Staggs, Veterans Health Administration 4186 
Yakov Sverdlov, CA 4187 
Gene Thurston, AmberPoint 4188 
Atul Tulshibagwale, Hewlett-Packard  4189 
Ron Williams, IBM 4190 
Jason Woloz, Booz Allen Hamilton 4191 
Gerry Woods, SOA Software Inc. 4192 

 4193 


