WSN F2F Minutes

05/19/05 Morning session

WS-Topics 

Issue WSN 4.2: No source document for FullTopicPathExpressions
Peter’s proposal at: http://www.oasis-open.org/apps/org/workgroup/wsn/download.php/12531/WSN4.2-topics%207.doc

This is what we have now:


<filter>




<topicExpression> tns:t1/t2 </TopicExpression>



</filter>


But XPath would look like:



Topic[@name=’t1’]/topic[@name=’t2’]


Proposal: 

Selector->XSLT transform->xpath


Igor likes to use proper XPath.

We will have to decide if we should come up with something easier.


Sid: This does not make sense. We don’t need the transformation, as long as the document is machine readable.
Rick: But people also manually write expressions.
Peter: We have two requirements: to support regular expression, and to support using of XML.
William: We need constraints for the document and need machine validable output.
Rick: If all topic expressions are XPath, it may be too complicated for some use cases. Peter is proposing a way to represent things as regular expressions
Sid: What could make things more complicated is that the topic space can be ad hoc, and from various origins

DavidC: How does that affect the way things are structured?

Sid: We should just define containers of topics. People can add and remove topics. These containers can be agreed and moved around

Peter: How could people find out the meaning of topics, the format of messages, and the types of messages?

Sid: Schema defines formats.
Peter: Here are the solutions:

1. as it is

2. new selector syntax

a. xpath against <topic space>

b. something else

3. change <topicspace> to be unconstrained

4. my proposal
define <topicspace> ->XSLT transform -> <instance tree structure>
I prefer the current simple way, and the question is: do we define a schema for topic spaces?

William: Extensions might not be topics, so we need some rules to specify which one is a topic and which one is just an extension of a topic element.
Sid: XSLT is evil. Let’s find out the importance of the entities, and try to resolve the identified problems. Is the originator the TopicSpace schema?

DavidS: We need to think about it

William: There is a difference between TopicSpace aggregating and inheritance

Sid: Get rid of the middle man, if it is simply for XPath selection
Rick: The middle man is the XSLT transform. Since it is one-to-one transform, why we need it?

Sid: Let’s define schema that can derive the end result document.
Brian: It is a limitation of XML that you can not use a selector as currently defined in the spec
Peter: An output looks like: 


<tns:TopicSpaceRoot xmlns:tns=…>



<tns:t1>




<t2/>




<t3/>



</tns:t1>

<tns:t4>




<t5/>




<t6/>



</tns:t4>


</tns:TopicSpaceRoot>

William: I suggestion that we use <t1 @topic=’true’>

DavidS: We can set the default to true.
Sam: Can we make only elements topics?
William: We can declare a topic element space. Only elements within this namespace are topics and elements of other namespaces are not.
Peter: We all agree that Producers operate on the above instance tree structure, so the question is how we get there. We need more information in the TopicSpace doc than in the instance doc.
William: We can use the topic[@name=’t1] annotation

We need these two: 

Some constraints are useful 

Provide options including XPath, and to provide something working rather than ideal

DavidC: For vendors, having a TopicSpace schema makes things easier

WS-BrokeredNotification

Issue WSN 3.7: Specify baseline policy behavior

 (similar to WSN 2.36 for WS-BaseNotification)
1. subscription durability – none

2. message durability – covered by send/reliver

3. pull notification - ? we will talk about later

4. continuity – no assumption

5. flow control – out of scope

6. reliability – similar to durability

Peter:  These are all for producers 

1. Is there any others for broker?

2. Will broker baseline be different from WS-BaseNotification?
Martin: Broker can use these too and extra policies go to policy spec.
Lily: We should use different wording for message durability in WS-BrokeredNotification. There is one more component (broker) in the process. Broker may drop messages.
Peter: There can be filters in the broker. 

DavidC: We should be able to specify a set of policies on the broker.
Martin: Baseline should allow anything and assume nothing.
DavidC: Broker may have full control of the flow control, and that should not be out of scope.
DavidC: How about subscription propagation?

Peter: That is application specific.
Sid: Shouldn’t we identify what is a broker?

Martin/Sanjay: We don’t mention how things go between producer and consumer.
Sid: These are minimum policies we have for Producers. Shouldn’t we look into ones for brokers/consumers? The baseline does not specify behaviors of brokers.
DavidC: The conclusion we have is that the baseline is the same, but it doesn’t mean it is not open for changes.
DavidH: Broker can be a consumer and a producer, and more.
Lily: Broker related policies such as message order, load balance, and wild card subscription are broker behaviors, but I am not sure whether they should be baseline policies or be in the policy document.
Peter: Approach: Editors to copy WS-BaseNotification baseline and to examine publish/subscription. Add appropriate new wording if needed and support flexibility.
WSN 3.9 Separate endpoints fir producer, consumer etc

Do we need a BrokerNotificatonProducer and BrokerNotificatonConsumer interfaces?
Peter: 
1. Should we allow people to do this?
2. What changes we should bring to the spec?

         The spec is not clear that people can implement broker that way.
Lily: Can we take out the UML - it is incomplete and does not helpful to understand the flexibility.
Peter: 
1. There are 3 roles possible. Is broker allowed to implement any combination of these roles?
2. Clarification of the UML.
3. What do we do in the spec about broker producers and consumers?
4. What should we put in the wsdl artifacts?

Sanjay: We can divide broker rules into portTypes. How the broker interface is implemented is application specific, but it should allow the flexibility.
Rick: What is the identity of the broker?

Peter: If broker extends NotificationProducer, it inherits topics and can query RP from the same endpoint.
DavidC: Suggest keeping the WSDL and adding language that you can compose broker differently.
Sanjay: People use WSDL as guidance.
Martin: There is no restriction in the spec. The question is how you navigate through broker’s producers and consumers.
DavidS: What bad things we can get by breaking them?

Steve: It will make private publisher harder. There is a cost for separating it out.
Sanjay: If you have separate portTypes, it does not prevent you implementing them at the same component or private component.
Steve: An aggregated one is simpler and common.
Lily: Agreed, it is a common broker.
Martin: Separating out makes it more modular.
Steve: The current spec already supports that.
Sanjay; It makes our implementation hard if all these broker interfaces are surfaced in all places.
DavidH: Publisher registration is not public, and is not separate out.
Steve: Separating out causes another problem. Which one is more severe? We make the model more complicated.
William: It is a question about the wsdl.
Martin/Peter: The question is about EPR.
Sanjay: We separated out subscription manager.
Steve: Broker is a combination of these two interfaces (NP, NC).
Sanjay: Broker is a role.

DavidH: Broker is offering producer and consumer at different places, and it may offer producer interfaces at multiple EPRs.
Peter: Summarize:


Some like the single broker interface, and it has useful cases.  
Martin: Spec does not say you can have multiple EPR)

Sanjay: How can I construct a distributed broker? There are two ways to do that: define producer and consumer interfaces and allow federation
Steve: Separate web services aside, and implement in the component level, through delegation
DavidH: Separate registration at a different EPR. We can leverage the separation of subscription management.
Steve: Then separate out a registration portType and keep an NP-NC portType.
Allow people to do what ever they like. But what should be normalized? I don’t want broker spec to describe multiplied topology
Peter: summary

1. keep NP, NC, RP in same endpoint, add may be able to federate with other NBs

2. split NB into separate NP NC RP, relationship not modeled by WSN

3. allow NB to contain EPRs to separate NP, NC endpoints

i. keep “built-in” NP NC

ii. no built-in NP, NC
Steve:


Change NB(contains RP) <-NP, (NC

 To:  NB <-NP, <-NC, ( RP (specified in BrokeredNotification)
Martin: Those things on the right are not called NB.
Steve: Yes

William: Will people be able to do portType cut/paste correctly?

Steve: The spec normatively defines an NB interface.
Martin: This NB is the one normalized by this spec. Other combinations are possible and we mention that in Primer.
William: Why we have to aggregate these NP, NC, RP interfaces into NB? There is no difference between NB from users’ own aggregated portTypes from NP, NC, and RP. Or is the NB carrying semantics?
Steve: We have different scenarios; there are cases of simple combinations of these three.
William: You are using this NB to carry semantics, which we don’t have.
Martin: NB is a particular combination of NP, NC, and RP. Smashing things together doesn’t mean it is a broker.
Rick: There is no metadata indicate a correlated set is a NB

Sanjay: Then we need to put in spec both are brokers.
Peter: Official broker have three things implemented on the same EPR
You can smash things together. We should allow people put these implementations at different EPRs
DavidS: There is a WSN broker with a QName and people know its behavior. Then there are abstract brokers, with provision of these interfaces, and advertised as brokers.
Steve: It will not be in the spec.
DavidS: We can say that in the primer.
DavidS: How are we going to define those abstract brokers?

Steve: It is hard to describe an abstract broker cloud.
DavidH: If we can define broker behavior, such as publishing/consuming, and then we don’t have much to add.
Steve: Put it in spec then.
William: If we define NB interface, we should add wording to say this is not the only way to implement broker.
Peter:


Agreement to have NC(from WS-BaseNotification), NP(from WS-BaseNotification), RP (new in WS-BrokeredNotification) portType, and a refactored NB (as federation of these three) in the wsdl, and new wordings to say this NB is not the only way to implement broker and people are free to implement distributed brokers.

Delete the UML.

Continue to document RP, NB interface in section 5.
DavidH: As a convenience we bundle them (NP, NC, RP) together.
Martin/Peter: We want it stronger than that.
William: Approach agreed.
