

Web Services Topics 1.3
(WS-Topics)

Working Draft 01b, 27 June 2005
Document identifier:

wsn-WS-Topics-1.3-draft-01b
Location:

http://docs.oasis-open.org/wsn//wsn-WS-Topics-1.3-draft-01b.doc
Editor:

William Vambenepe, HP <vbp@hp.com>
Steve Graham, IBM <sggraham@us.ibm.com>

Sid Askary, Individual <saskary@nuperus.com>
Igor Sedukhin, Computer Associates < Igor.Sedukhin@ca.com>
Abstract:

The Event-driven, or Notification-based, interaction pattern is a commonly used pattern for inter-object communications. Examples exist in many domains, for example in publish/subscribe systems provided by Message Oriented Middleware vendors, or in system and device management domains. This notification pattern is increasingly being used in a Web services context.

WS-Notification is a family of related specifications that define a standard Web services approach to notification using a topic-based publish/subscribe pattern. It includes: standard message exchanges to be implemented by service providers that wish to participate in Notifications, standard message exchanges for a notification broker service provider (allowing publication of messages from entities that are not themselves service providers), operational requirements expected of service providers and requestors that participate in notifications, and an XML model that describes topics. The WS-Notification family of documents includes: three normative specifications: [WS-BaseNotification], [WS-BrokeredNotification], and WS-Topics.

This document defines a mechanism to organize and categorize items of interest for subscription known as “topics”. These are used in conjunction with the notification mechanisms defined in WS-Base Notification. WS-Topics defines three topic expression dialects that can be used as subscription expressions in subscribe request messages and other parts of the WS-Notification system. It further specifies an XML model for describing metadata associated with topics. This specification should be read in conjunction with the WS-Base Notification specification and the Publish-Subscribe Notification for Web Services document.
Status:

This document is published by this TC as a "working draft". It is possible that it may change during this process, but it should nonetheless provide a stable reference for discussion and early adopters' implementations.
Committee members should send comments on this specification to the wsn@lists.oasis-open.org list. Others may submit comments to the TC via the web form found on the TC's web page at http://www.oasis-open.org/committees/wsn. Click the button for "Send A Comment" at the top of the page. Submitted comments (for this work as well as other works of that TC) are publicly archived and can be viewed at:
http://lists.oasis-open.org/archives/wsn-comment/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the WSN TC web page (http://www.oasis-open.org/committees/wsn/).

Table of Contents

51
Introduction

51.1
Goals and Requirements

51.1.1
Requirements

51.1.2
Non-Goals

61.2
Notational Conventions

61.3
Namespaces

71.4
Fault Definitions

82
Terminology and Concepts

123
Topics and Topics Spaces

144
Example

155
Modeling Topic Spaces in XML

156
Modeling Topics in XML

187
Topic Expressions

187.1
SimpleTopic Expressions

197.2
ConcreteTopicPath Expressions

207.3
FullTopicPath Expressions

227.3.1
Validating FullTopicExpressions

238
AliasRefs and their resolution

249
Growing a Topic Tree

2510
The “ad-hoc” Topic Space

2611
NotificationProducer and Topics

2712
Security Considerations

2712.1
Securing the Message Exchanges

2812.2
Securing Subscriptions and Notifications

3013
References

31Appendix A. Acknowledgments

32Appendix B. XML Schema

37Appendix C. Revision History

38Appendix D. Notices

1 Introduction

The Event-driven, or Notification-based, interaction pattern is a commonly used pattern for inter-object communications. Examples exist in many domains, for example in publish/subscribe systems provided by Message Oriented Middleware vendors, or in system and device management domains.

This document defines a mechanism to organize and categorize items of interest for subscription known as “topics”. These are used in conjunction with the notification mechanisms defined in WS-Base Notification.

WS-Topics defines three topic expression dialects that can be used as subscription expressions in subscribe request messages and other parts of the WS-Notification system. It further specifies an XML model for describing metadata associated with topics. This specification should be read in conjunction with the WS-Base Notification specification.

1.1 Goals and Requirements

The goal of the WS-Topics specification is to define a mechanism to organize and categorize

items of interest for subscription known as “topics”. It defines a set of topic expression dialects that can be used as subscription expressions in subscribe request messages and other parts of the WS-Notification system.

1.1.1 Requirements

In meeting this goal, the specification must address the following specific requirements:

· Must support resource-constrained devices. The specifications must be factored in a way that allows resource-constrained devices to participate in the Notification pattern. Such devices will be able to send information to, and receive information from Web services, without having to implement all the features of the specifications.

· Must permit transformation and aggregation of Topics: It must be possible to construct configurations (using intermediary brokers) where the Topic subscribed to by the NotificationConsumer differs from the Topic published to by the NotificationProducer, yet Notifications from the NotificationProducer are routed to the NotificationConsumer by a broker that is acting according to administratively-defined rules.

· Must permit non-centralized development of a topic tree: It must be possible for actors to define additional topics based on existing topics without requiring coordination with the actor responsible for creating the topics that are being built on.

1.1.2 Non-Goals

The following aspects are outside the scope of these specifications:

· Defining the format of notification payloads: The data carried in notification messages is application-domain specific, and this specification does not prescribe any particular format for this data.

1.2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC 2119].

When describing abstract data models, this specification uses the notational convention used by the [XML Infoset]. Specifically, abstract property names always appear in square brackets (e.g., [some property]).

This specification uses a notational convention, referred to as “Pseudo-schemas” in a fashion similar to the WSDL 2.0 Part 1 specification [WSDL 2.0]. A Pseudo-schema uses a BNF-style convention to describe attributes and elements:

· `?' denotes optionality (i.e. zero or one occurrences),

· `*' denotes zero or more occurrences,

· `+' one or more occurrences,

· `[' and `]' are used to form groups,

· `|' represents choice.

· Attributes are conventionally assigned a value which corresponds to their type, as defined in the normative schema.

<!-- sample pseudo-schema -->

<element

 required_attribute_of_type_QName="xs:QName"

 optional_attribute_of_type_string="xs:string"? >

 <required_element />

 <optional_element /> ?

 <one_or_more_of_these_elements /> +

 [<choice_1 /> | <choice_2 />] *

</element>

Where there is disagreement between the separate XML schema and WSDL files describing the messages defined by this specification and the normative descriptive text (excluding any pseudo-schema) in this document, the normative descriptive text will take precedence over the separate files. The separate files take precedence over any pseudo-schema and over any schema and WSDL included in the appendices.

1.3 Namespaces

The following namespaces are used in this document:

	Prefix
	Namespace

	xsd
	http://www.w3.org/2001/XMLSchema

	
	

	
	

	wsrf-rp
	http://docs.oasis-open.org/wsrf/2005/03/wsrf-WS-ResourceProperties-1.2-draft-06.xsd

	wsrf-bf
	http://docs.oasis-open.org/wsrf/2005/03/wsrf-WS-BaseFaults-1.2-draft-04.xsd

	wsbfw
	http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.wsdl

	
	

	wsnt
	http://docs.oasis-open.org/wsn/yyyy/mm/wsn-WS-BaseNotification-1.3-draft-01.xsd

	wsntw
	http://docs.oasis-open.org/wsn/yyyy/mm/wsn-WS-BaseNotification-1.3-draft-01.wsdl

	wstop
	http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-01.xsd

1.4 Fault Definitions

All faults generated by a NotificationBroker, RegisterPublisher, or PublisherRegistrationManager SHOULD be compliant with the WS-BaseFaults [WS-BaseFaults] specification.

All faults defined by this specification MUST use the following URI for the WS-Addressing [action] Message Addressing Property:

http://docs.oasis-open.org/wsn/fault
2 Terminology and Concepts

Situation:

· A Situation is some occurrence known to a NotificationProducer and of potential interest to third parties.

· A Situation could be a change of the internal state of a resource or could be environmental, such as a timer event. It could also be an external event, such as a piece of news that has been supplied by a news-feed service.

· WS-Notification does not specify what a Situation is or is not, nor does it define the relationship between a Situation and the Notification(s) that are used to describe it.

Notification:

· A Notification is an artifact of a Situation containing information about that Situation that some entity wishes to communicate to other entities.

· A Notification is represented as an XML element with a Namespace qualified QName and a type defined using XML Schema.

· A typical usage pattern is to define a single Notification type (to be precise, its defining XML element) for each kind of Situation, containing information pertinent to that kind of Situation; in this case one can think of a Notification instance as in some sense being (or at least representing) the Situation.

A designer could choose to associate several different Notification types with a Situation, for example, describing different aspects of the Situation, destined for different target recipients, etc. Conversely it is possible that several essentially different Situations give rise to Notifications of the same type.
NotificationProducer:

· A NotificationProducer is a Web service that implements the message exchanges associated with the NotificationProducer interface.

· A NotificationProducer is capable of producing Notifications for those NotificationConsumers for which Subscriptions have been registered, based on Situations that occur and on the parameters supplied with the requests from which the Subscriptions were created.

· A Web Service that implements the message exchanges associated with NotificationProducer may directly produce Notifications itself, or it may be a NotificationBroker, reproducing Notifications that were produced by separate Publisher and/or NotificationProducer entities.

· It is the factory for Subscription resources.

NotificationConsumer:

· A NotificationConsumer is an endpoint, represented by a WS-Addressing endpoint reference, designated to receive Notifications produced by a NotificationProducer as a result of a subscription.

· A NotificationConsumer may accept the generic Notify message, or it may be able to process one or more domain-specific Notification types.

Subscription:

· A Subscription represents the relationship between a NotificationConsumer and a NotificationProducer, including any filtering parameters such as Topic and various other optional filter expressions, along with any relevant policies and context information.

· A Subscription resource is created when a Subscriber sends the SubscribeRequest message to a NotificationProducer.

· Subscription resources are manipulated by messages sent to the SubscriptionManager Web service associated with the Subscription resource.

SubscriptionManager

· A SubscriptionManager is an endpoint, represented by an endpoint reference [WS-Addressing] that implements message exchanges associated with the SubscriptionManager interface.

· A SubscriptionManager provides operations that allow a service requestor to query and manipulate Subscription resources that it manages

· A SubscriptionManager is subordinate to the NotificationProducer, and MAY be implemented by the NotificationProducer service provider. However WS-Notification permits it to be implemented by a separate service provider, should an implementer so desire.

Subscriber:

· A Subscriber is any entity that sends the SubscribeRequest message to a NotificationProducer.

Note that a Subscriber may be a different entity from the NotificationConsumer for which Notifications are actually produced.
Topic:

· A Topic is the concept used to categorize Notifications and their related Notification schemas.

· Topics are used as part of the matching process that determines which (if any) subscribing NotificationConsumers should receive a Notification.

· Every Notification instance generated by a Publisher is associated with a Topic. The relation between Situation and Topic is not specified by WSNotification but MAY be specified by the designer of the TopicSpace.

· A synonym in some other publish/subscribe models is subject.
Topic Space:

· A forest of Topic Trees grouped together into the same namespace for administrative purposes.
Topic Tree:

· A hierarchical grouping of Topics.
Publisher:

· A Publisher is an entity that creates NotificationMessages, based upon Situation(s) that it is capable of detecting and translating into Notification artifacts. It does not need to be a Web service.
· A Publisher can register what topics it wishes to publish with a NotificationBroker.

· A Publisher MAY be a Web service that implements the message exchanges associated with the NotificationProducer interface, in which case it also distributes the NotificationMessages to the relevant NotificationConsumers.

· If a Publisher does not implement the message exchanges associated with NotificationProducer, then it is not required to support the Subscribe request message and does not have to maintain knowledge of the NotificationConsumers that are subscribed to it; a NotificationBroker takes care of this on its behalf.
NotificationBroker:

· A NotificationBroker is an intermediary Web service that decouples NotificationConsumers from Publishers. A NotificationBroker is capable of subscribing to notifications, either on behalf of NotificationConsumers, or for the purpose of messaging management. It is capable disseminating notifications on behalf of Publishers to NotificationConsumers

· A NotificationBroker aggregates NotificationProducer, NotificationConsumer, and RegisterPublisher interfaces.

· Acting as an intermediary, a NotificationBroker, it provides additional capabilities to the basic NotificationProducer interface:

· It can relieve a Publisher from having to implement message exchanges associated with NotificationProducer; the NotificationBroker takes on the duties of a SubscriptionManager (managing subscriptions) and NotificationProducer (distributing NotificationMessages) on behalf of the Publisher.

· It can reduce the number of inter-service connections and references, if there are many Publishers and many NotificationConsumers

· It can act as a finder service. Potential Publishers and Subscribers can in effect find each other by utilizing a common NotificationBroker.

· It can provide anonymous Notification, so that the Publishers and NotificationConsumers need not be aware of each others identity.

· An implementation of a NotificationBroker may provide additional added-value function that is beyond the scope of this specification, for example logging NotificationMessages, or transforming Topics and/or Notification content. Additional function provided by a NotificationBroker can apply to all Publishers that utilize it.

· It may be the factory for Subscription resources or it may delegate the subscription factory to another component.

· A NotificationBroker provides publisher registration functions.

· A NotificationBroker may subscribe and disseminate messages that are not WS-Notification conforming.
PublisherRegistration:

· PublisherRegistration is a resource. A PublisherRegistration represents the relationship between a Publisher and a NotificationBroker, in particular which topic(s) the publisher is permitted to publish to.

· A PublisherRegistration resource is created when a Publisher sends the RegisterPublisher request message to a NotificationBroker.

· PublisherRegistration resources are manipulated by messages sent to a PublisherRegistrationManager Web service.
RegisterPublisher:

· A RegisterPublisher is a Web service that implements the message exchanges associated with the RegisterPublisher interface. A PublisherRegistration resource is created as a result of a RegisterPublisher request to a NotificationBroker.
PublisherRegistrationManager:

· A PublisherRegistrationManager is a Web service that implements the message exchanges associated with the PublisherRegistrationManager interface.

· A publisher registration resource can be manipulated through PublisherRegistrationManager message exchanges.
· A PublisherRegistrationManager provides services that allow a service requestor to query and manipulate PublisherRegistration resources that it manages.

· A PublisherRegistrationManager is subordinate to the NotificationBroker, and MAY be implemented by the NotificationBroker service provider. However WS-BrokeredNotification permits it to be implemented by a separate service provider, should an implementer so desire.
Demand-Based Publishing:

· Some Publishers may be interested in knowing whether they have any Subscribers or not, since producing a Notification may be a costly process. Such Publishers can register with the NotificationBroker as a Demand-Based Publisher.

· Demand-Based Publishers implement message exchanges associated with the NotificationProducer interface.

· The NotificationBroker subscribes to the Demand-Based Publisher. When the NotificationBroker knows that there are no Subscribers for the NotificationMessages from a Demand-Based Publisher it pauses its Subscription with that Publisher; when it knows that there are some Subscribers, it resumes the Subscription.

This way the Demand-Based Publisher doesn’t need to produce messages when there are no Subscribers, however a Demand-Based Publisher is only required to support a single Subscriber on any given Topic, and so can delegate the management of multiple Subscribers, delivery to multiple NotificationConsumers and other related issues (for example security) to the NotificationBroker
3 Topics and Topics Spaces

A collection of related Topics is used to organize and categorize a set of notification messages. It provides a convenient means by which subscribers can reason about notifications of interest. Topics appear in several places within the WS-Notification system. As part of the publication of a Notification, the Publisher associates it with one or more Topics. When a Subscriber creates a Subscription, it associates the Subscription with one or more Topics. The NotificationProducer uses these Topic lists as part of the matching process: a Notification is delivered to a NotificationConsumer if the list of Topics associated with the Subscription has a non-empty intersection with the list of Topics associated with the Notification.

In order to avoid naming collisions, and to facilitate interoperation between independently developed NotificationProducers and Subscribers, every WS-Notification Topic is assigned to an XML Namespace. The set of Topics associated with a given XML Namespace is termed a Topic Space. Any XML namespace has the potential to scope a single collection of Topics. Of course, not every XML namespace will define a Topic Space.

It is important to understand the distinction between a Topic Space and the set of Topics (the “Topic Set”) supported by a NotificationProducer. A Topic Space is just an abstract set of Topic definitions. While it is certainly possible for a given Topic Space to be used by exactly one Notification Producer, there is no expectation that this will be the case. Topics from a single Topic Space may be referenced in the Topic Sets of many different NotificationProducers. Moreover the Topic Set of a NotificationProducer MAY contain Topics from several different Topic Spaces. This concept is expanded upon in section 11.

Each Topic can have zero or more child topics and a child topic can itself contain further child topics. A Topic without a parent is termed a root topic. A particular root topic and all its descendents form a hierarchy (termed a Topic Tree).

The rationale for hierarchical topic structures is:

· They allow Subscribers to subscribe against multiple Topics. For example a Subscriber can subscribe against an entire Topic Tree, or a subset of the Topics in a Topic Tree. This reduces the number of subscription requests that a Subscriber needs to issue if it is interested in a large sub-tree. It also means that a Subscriber can receive NotificationMessages related to descendent topics without having to be specifically aware of their existence.

· They provide a convenient way to manage large Topic Spaces (for example when administering security policies).

Note: Although WS-Notification permits hierarchical topic structures, there is no requirement or expectation that all Topic Spaces will contain them. It is perfectly possible for a Topic Space to contain only root topics (possibly only a single root topic). A NotificationProducer is not required to support structured topics. It may restrict its Topic Set to include only topics from Topic Spaces that contain only root Topics; even if it does include topics from a Topic Space that contains topic hierarchies, it may choose only to support root topics from that Topic Space.

A Topic Space is thus a collection (forest) of Topic Trees. The Topic Space contains additional metadata relating to its member Topics. The metadata describing a particular Topic Space can be modeled as an XML document (see section 5).

Each Topic has a local name, an NCName. All root topics must have unique names within their Topic Space. In this way, a root Topic can be uniquely referenced by a QName formed by combining the XML Namespace associated with the Topic Space and the local name of the root topic. Child topics can only be referred to relative to their ancestor root topic’s QName using a path-based TopicExpression dialect (see section 7).

No Topic can contain two immediate child topics with the same name, however Topics with the same name can appear elsewhere in a Topic Tree, and no relationship is implied. Similarly two separate Topic Trees in the same Topic Space may contain descendent Topics with the same name; these are not necessarily related to each other in any way either.

4 Example

Consider a Topic Space that can be depicted as illustrated by Figure 1. The Topic Space is contained in the "http://example.org/topicSpace/example1" namespace. This Topic Space has two root Topics, named t1 and t4. Topic t1 has two child topics, t2 and t3. Topic t4 has two child topics, t5 and t6. Topic t6 is an alias for t1’s child topic t3.

This topic space and its metadata can be described using the following XML instance document:

<?xml version="1.0" encoding="UTF-8"?>

<wstop:TopicSpace name="TopicSpaceExample1"

 targetNamespace="http://example.org/topicSpace/example1"

 xmlns:tns="http://example.org/topicSpace/example1"

 xmlns:xyz="http://example.org/anotherNamespace"

 xmlns:wstop=

 " http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-01.xsd " >

 <wstop:Tpic name="t1">

 <wstop:Topic name="t2" messageTypes="xyz:m1 tns:m2"/>

 <wstop:Topic name="t3" messageTypes="xyz:m3"/>

 </wstop:Topic>

 <wstop:Topic name="t4">

 <wstop:Topic name="t5" messageTypes="tns:m3"/>

 <wstop:Topic name="t6">

 <wstop:AliasRef

 dialect=" http://docs.oasis-open.org/wsn/2004/06/TopicExpression/Concrete" >

 tns:t1/t3

 </wstop:AliasRef>

 </wstop:Topic>

 </wstop:Topic>

</wstop:topicSpace>

We describe the details behind modeling topic spaces and topics in the following sections.

5 Modeling Topic Spaces in XML

The WS-Topics XML Schema contains element and type definitions used to create topic space instance documents. An instance document is associated with a single Topic Space and contains the names of Topics in that Topic Space along with their metadata. It may include all the topics in that topic space, or just a subset of them. The following is a non-normative description of a TopicSpace element:

...

<TopicSpace name=NCName? targetNamespace=anyURI …>

 <Topic … />*

…

</TopicSpace>

A TopicSpace element is further constrained in the following way:

/wstop:TopicSpace

The top-level element in a topic space instance document. It contains Topic declaration elements and associates them with the XML Namespace for the topic space

/wstop:TopicSpace/@name

An optional name that can be assigned to the TopicSpace element for light-weight documentation purposes.

/wstop:TopicSpace/@targetNameSpace

The XML Namespace for this topic space. It is expressed as a URI. This forms the namespace component of the QName of each root Topic in the Topic Space.

/wstop:topicSpace/Topic

The TopicSpace has a collection of zero or more child Topic elements that define the roots of the Topic Trees within the Topic Space. The TopicSpace element may contain any number of Topic elements. The value of /Topic/@name MUST be unique amongst all root Topics defined in the TopicSpace.

/wstop:TopicSpace/{any}

This is an extensibility mechanism to allow additional elements to be specified.

/wstop:TopicSpace/@{any}

This is an extensibility mechanism to allow additional attributes to be specified.

6 Modeling Topics in XML

WS-Notification defines an XML representation of a Topic that can be represented in the following non-normative fashion:

<TopicSpace name=… targetNamespace=…>

 <Topic name=NCName messageTypes=list of QName? final=boolean?>

 (

 <AliasRef>wsnt:TopicExpression</AliasRef>

 |

 <MessagePattern>wsrp:QueryExpression</MessagePattern>?

 <Topic … />*

…

)

 </Topic>

A Topic element is further constrained in the following way:

/wstop:Topic

This describes the definition of a Topic. Its contents MUST be either a single /AliasRef child element or an optional /MessagePattern child element followed by zero or more child Topic elements.

The namespace of a Topic is defined as the targetNamespace of the TopicSpace element ancestor of the Topic. As we saw in section 5, individual root topics are modeled by defining Topic child elements of the TopicSpace element.

/wstop:Topic/@name

The NCName of this topic. This attribute is required. These NCNames must all be unique with respect to the parent element (TopicSpace or Topic) that contains this Topic. In the case of a root Topic, the @namespace and @name attributes combine to form the QName of the root Topic.

/wstop:Topic/@messageTypes

An optional list of the QNames of XML global element declarations (GEDs) that define the kinds of Notification that may be used with the Topic. A Publisher using a given Topic MUST NOT generate a Notification with root element whose QName is not included in this list, although the special value xsd:any indicates that a Notification may have any XML element as root. A given QName MAY appear multiple times in the list; second or subsequent appearance of a given QName are not meaningful and MAY BE ignored. If this list is empty, or the attribute not defined, the default value of "xsd:any" is assumed.

/wstop:Topic/@final

An optional attribute whose value is of type xsd:boolean. The default value is “false”. If the value is “true” it indicates that the NotificationProducer cannot dynamically add child Topics to this Topic. This means that it is an error if a Publisher or Subscriber attempts to use a TopicExpression that references child Topics of a Topic that is marked as @final=”true” – other than child Topics that are explicitly included in the definition of the Topic.

/wstop:Topic/AliasRef

This element indicates that the Topic definition is an alias for another Topic (or set of Topics). This mechanism can be used to permit alternative spellings of a given Topic name, or to allow a Topic (sub)tree from one Topic Space to be imported into a Topic definition in another Topic Space. The contents of an AliasRef element is a TopicExpression that may resolve to multiple Topics, including further aliases (even possibly itself). Publishing or subscribing using a Topic which is an alias is equivalent to publishing or subscribing to all the non-alias Topics which result from the process of alias resolution. This process is described in greater detail in the next section. A Topic containing an AliasRef child element MAY contain @messageTypes, or @final– however if it does their values SHOULD be ignored. The algorithm for resolving AliasRef elements is described in section 8.

/wstop:Topic/AliasRef/@dialect

A URI that identifies the TopicExpression dialects used in the AliasRef component. This document defines the URIs for three TopicExpression languages. The designer MAY choose from these URIs or use a URI associated with a TopicExpression dialect defined elsewhere.

/wstop:Topic/MessagePattern

An optional QueryExpression as defined by WS-ResourceProperties. This QueryExpression is used to describe the pattern of the message that will appear on the Topic. Conceptually, the MessagePattern component can be thought of as the object of an boolean() expression, evaluated against a Notification. This boolean() expression, with the value of MessagePattern as parameter, is guaranteed to evaluate to “true” when evaluated in the context of any Notification that is associated with the Topic. The MessagePattern component constrains the NotificationMessages that can be used with the Topic. It is additional to the constraint contained in @messageTypes, and provides a further refinement to that constraint.

/wstop:Topic/MessagePattern/@dialect

A URI that identifies the language of the QueryExpression. WS-ResourceProperties defines standard URIs for XPath 1.0 and XPath 2.0 languages. Designers MAY define and use other domain-specific URIs to identify the dialect of the QueryExpression.

/wstop:Topic/Topic

Declares a child Topic. A Topic may contain any number of child Topic elements; however the value of the @name attribute of a child Topic must be unique amongst all the child Topics of its immediate parent.

/wstop:Topic/{any}

This is an extensibility mechanism to allow additional elements to be specified.

/wstop:Topic/@{any}

This is an extensibility mechanism to allow additional attributes to be specified.

7 Topic Expressions

Topics are referred to by TopicExpressions. There are several places in WS-Notification where these expressions are used:

· As a component of the Subscribe message request to a NotificationProducer;

· As a component of the Notify message to a NotificationConsumer or NotificationBroker;

· In the Topics Resource Property element(s) associated with the NotificationProducer role

· In the aliasRef attribute of a Topic element.

A non-normative syntax for a TopicExpression is shown below:

<wsnt:TopicExpression dialect=anyURI?>

 dialect-specific expression

…

</wsnt:TopicExpression>

A topic expression has two components:

/wsnt:TopicExpression/@dialect

The dialect component contains a URI which identifies the type of grammar used in the TopicExpression. This URI may be one from the set defined in this document, or may be a URI defined elsewhere.

/wsnt:TopicExpression/{any}

The content of the TopicExpression is an expression in the grammar defined by the expression language identified by the @dialect component.

The purpose of a TopicExpression is to identify a relevant set of Topics from one or more Topic Spaces.

7.1 SimpleTopic Expressions

This specification defines a simple TopicExpression dialect with the following URI:

http://docs.oasis-open.org/wsn/2004/06/TopicExpression/Simple

This dialect is defined to standardize a very simple Topic Expression language for use by resource constrained entities in the WS-Notification system that deal only with simple Topic Spaces.

A TopicExpression in this dialect is a token (as defined by XML Schema) with an additional constraint on its format. The constraint is the token must contain a TopicExpression. The grammar is defined using the simple Extended Backus Naur Form (EBNF) also used in [XML]:

[1] TopicExpression
::=
RootTopic

[2] RootTopic

::=
QName
[vc: If a namespace is included in the RootTopic, it must correspond to a valid Topic Space definition and the local name must correspond to the name of a root topic defined in that namespace.]

Because the only valid TopicExpression in this dialect is a QName, only root topics can be addressed by this grammar. For those entities that support only this dialect of TopicExpression, only simple topic spaces, those that define only root topics, SHOULD be used.

An example TopicExpression within this dialect is shown below:

…

 xmlns:tns=…

<wsnt:TopicExpression

 dialect=" http://docs.oasis-open.org/wsn/2004/06/TopicExpression/Simple">

 tns:t1

</wsnt:TopicExpression>

This TopicExpression identifies the root Topic t1 within the Topic Space corresponding to the namespace prefix tns.

7.2 ConcreteTopicPath Expressions

This specification defines a simple path-based TopicExpression dialect with the following URI:

http://docs.oasis-open.org/wsn/2004/06/TopicExpression/Concrete

The ConcreteTopicPath expression is used to identify a single Topic within a Topic Space, using a path notation.

A TopicExpression in this dialect is a token (as defined by XML Schema) with an additional constraint on its format. The constraint is the token must contain a TopicExpression. The grammar is defined using the simple Extended Backus Naur Form (EBNF) also used in [XML]:

[3] TopicExpression
::=
TopicPath

[4] TopicPath

::=
RootTopic ChildTopicExpression*

[5] RootTopic

::=
QName
[vc: If a namespace is included in the RootTopic, it must correspond to a valid Topic Space Document and the local name must correspond to the name of a root topic defined in that namespace.]

[6] ChildTopicExpression ::=
‘/’ ChildTopicName

[7] ChildTopicName
::=
NCName
[vc: The NCName must correspond to the name of a topic within the descendant path from the RootTopic, where each forward slash denotes another level of child topic elements in the path.]

Note: White space is not permitted within a ConcreteTopicPath expression.

An example TopicExpression within this dialect is shown below:

…

 xmlns:tns=…

<wsnt:TopicExpression

 dialect=" http://docs.oasis-open.org/wsn/2004/06/TopicExpression/Concrete">

 tns:t1/t3

</wsnt:TopicExpression>

The TopicPath expression identifies the Topic named “t3”, child of Topic tns:t1.

As with XPath, this TopicPath expression syntax uses the slash (“/”) to describe child of.

Note: The simple Topic Expression dialect defined in the previous section is a subset of the ConcreteTopicPath Expression dialect.

7.3 FullTopicPath Expressions

This specification defines a fully featured path-based TopicExpression dialect with the following URI:

http://docs.oasis-open.org/wsn/2004/06/TopicExpression/Full

FullTopicPath expressions consist of XPath [XPath] relative location path expressions with optional Namespace prefixes. The XPath expression is evaluated over a document whose nodes are made up of the topics in the topic space, and where topics include their child topics as contained XML elements (note that this document is not the same as the topic space document described earlier, but can be derived from it). The document root element is not itself a topic, so that root topics in the topic space appear as first-level children of the document root. The TopicExpression selects the set of topics that correspond to the node-set that results from evaluating the location path contained in the TopicExpression, using standard XPath. The initial context node for this evaluation is the document root element.

The FullTopicPath dialect does not permit the use of the entire XPath language. This specification provides syntactic constraints on the contents of the FullTopicPath expression, that limit the constructs that can be used

A TopicExpression in this dialect is a token (as defined by XML Schema) with an additional constraint on its format. The constraint is that the token must conform to production rule [1] in the following grammar. This grammar is defined using the simple Extended Backus Naur Form (EBNF) also used in [XML]:

[8] TopicExpression
::=
TopicPath | ConjoinedTopicExpression

[9] ConjoinedTopicExpression
::=
TopicExpression Conjunction

TopicExpression

[10] Conjunction
 ::=
‘|’

[11] TopicPath
 ::=
RootTopic ChildTopicExpression*

[12] RootTopic
 ::=
NamespacePrefix? ('//')? (NCName | ‘*’)

[vc: If a namespace is included in the RootTopic, it must correspond to a valid Topic Space Document and the local name must correspond to the name of a root topic defined in that namespace.]

[13] NamespacePrefix
::=
NCName ‘:’

[14] ChildTopicExpression ::=
‘/’ ‘/’? (ChildTopicName | ‘*’ | ‘.’)

[15] ChildTopicName
::=
NCName
[vc: The NCName must correspond to the name of a topic within the descendant path from the RootTopic, where each forward slash denotes another level of child topic elements in the path.]

In this grammar, each TopicPath [4] is to be interpreted as an XPath location path evaluated over the document derived from the Topic Space designated by the NamespacePrefix.

Note: White space is not permitted within a FullTopicPath expression.

Note: The ConcreteTopicPath dialect defined in the previous section is a subset of the FullTopicPath dialect that contains no wildcards, '//' separators, or '|' operators..

The dialect is further explained by the following examples (for the sake of brevity, the examples show only the content of the TopicExpression element):

The wildcard character * is used to identify a node-set consisting of a collection of child Topics. For example

“tns:t1/*”

This TopicExpression identifies all of the child Topics of the root Topic t1. Note that this TopicExpression does not include the root Topic t1 itself, and it does not include any grandchildren or further descendents of t1.

Wildcard characters may be interspersed with fixed child Topic names, to build up longer paths, for example:

“tns:t1/*/t3”

This TopicExpression identifies all grandchildren of tns:t1 that have the name t3.

The wildcard * may also be used in place of a root topic name, for example:

“tns:*”

This TopicExpression identifies all root topics in the tns: Topic Space.

As in full XPath the // separator is used to identify all descendents (subject of course to the constraints implied by the remainder of the path), not just immediate children.

If the TopicExpression ends with the characters “//.” this indicates that the TopicExpression matches a Topic subtree. For example:

“tns:t1/t3//.”

This identifies the subtree consisting of tns:t1/t3 and all its descendents.

If the TopicExpression ends with the characters “//*” this indicates that the TopicExpression matches all the descendents of a topic. For example:

“tns:t1/t3//*”

This identifies the subtree consisting of the descendents of tns:t1/t3 but, unlike the previous example, does not include tns:t1/t3 itself.

To include all the topics in the entire Topic Space the following TopicExpression can be used:

“tns://*”

The // separator can also be used in the middle of a TopicExpression, for example

“tns:t1//t3”

This TopicExpression identifies all descendents of tns:t1 that have the name t3.

A TopicExpression MAY contain two or more wildcards (both * and //).

TopicExpressions may be combined together with the conjunction operator as follows:

 “tns:t1/t2|tns:t4/t5”

A TopicExpression using | can include root Topics from different Topic Spaces. Note: a TopicExpression containing a conjunction operator is equivalent to the set union of the Topics described by combining the TopicExpression on either side of the conjunction operator.

7.3.1 Validating FullTopicExpressions

If the NotificationProducer permits it, the FullTopicExpression dialect can be used as the TopicExpression in the Subscribe message [WS-BaseNotification]. Such TopicExpressions MAY refer to one or more topics which may or may not exist in the Topic Space, or in the Topic Set supported by the NotificationProducer.

The NotificationProducer MUST validate the TopicExpression as follows:
· If the TopicExpression explicitly refers to a Topic that is not permitted by the Topic Space, then the NotificationProducer MUST respond with a Fault. A Topic is not permitted if it is a root topic that is not defined in the Topic Space or it descends from a root topic that is not defined in the Topic Space. A Topic is also not permitted if it, or any of its ancestors, are not defined in the Topic Space and are the child of a Topic that is defined with @final=’true’.

· If the NotificationProducer has a fixed Topic Set, and the intersection of the topics selected by the TopicExpression with this Topic Set is empty, then the NotificationProducer MUST respond with a Fault.

Here are some examples to illustrate these rules:

Suppose that Topic Space tns1 contains root topics tns1:A (@final= “true’”) and tns1:B (@final = “false”), and that NotificationProducer (X) has a fixed topic set consisting just of tns1:B.

· Any subscribe with a TopicExpression containing tns1:D is rejected

· Any subscribe with a TopicExpression containing tns1:A/X is rejected

· A subscribe to tns1:B/X is rejected, but would be permitted if X did not have a fixed topic set.

· A subscribe to tns1:A is rejected, but would be permitted if X did not have a fixed topic set.

· A subscribe to tns1:* is permitted (and is equivalent in this case to a subscribe to tns1:B)

· A subscribe to tns1://* is permitted (and is equivalent in this case to a subscribe to tns1:B)

· A subscribe to tns1:A|tns1:B is permitted (and is equivalent in this case to a subscribe to tns1:B)

8 AliasRefs and their resolution

The AliasRef is an optional child element of a Topic element that indicates that the Topic is an alias for another Topic (or combination of topics). This mechanism can be used to permit alternative spellings of a given Topic name, or to allow a Topic (sub)tree from one TopicSpace to be imported into a Topic definition in another Topic Space. In this example Topic t6 is defined as an alias for tns:t1/t3

 <wstop:topic name="t6">

 <wstop:AliasRef

 dialect=" http://docs.oasis-open.org/wsn/2004/06/TopicExpression/Concrete " >
 tns:t1/t3

 </wstop:AliasRef>

 </wstop:topic>

An AliasRef MAY contain any TopicExpression, including those expressing wild cards or ‘|’ operators. This means that an AliasRef might reference another AliasRef Topic definition, or might be a wild card expression that includes a mixture of alias and non-alias definitions.

An AliasRef is resolved into a set of zero or more non-aliased Topics using the following rules:

· If the AliasRef is a concrete TopicPath expression that is not an alias, then the alias resolves to the Topic identified by that concreteTopicPath expression.

· If the AliasRef is a concreteTopicPath expression that itself identifies an alias, then resolution proceeds recursively from this alias.

· If the AliasRef is a FullTopicPath expression with “*”, “//” but no ‘|’ operators, then the alias resolves to this set of Topics (no deeper examination of aliases is performed in this case).

· If the AliasRef is a FullTopicPath expression containing ‘|’ operators, then each component of the expression is treated separately and creates a new resolution branch. Resolution proceeds on each branch individually, using rules 1,2,3, the resolution of each branch is aggregated to the resolved Topic set.

· If a circular reference is encountered (AliasRef pointing directly or indirectly back to itself) then the branch in question contributes nothing to the resolved Topic set.

If a TopicExpression is supplied as a parameter on a message exchange defined by any of the WS-Notification specifications, it is subjected to the alias resolution process described above. The resulting resolved Topic set is then used in place of the original parameter. If the resolved Topic set is empty, the operation MUST fail. If the operation required a concrete topic and the resolved set contains multiple topics, or contains wild card topic expressions, then the operation MUST fail.

9 Growing a Topic Tree

If a Topic in the TopicSpace is marked with the ‘final’ attribute, with value=”true”, then no further child Topics can be added dynamically to that Topic.

If a Topic is not marked with the ‘final’ attribute with value=”true”, then a NotificationProducer could potentially add further child Topics to that Topic, and permit Subscriptions to such child Topics. This specification does not define the circumstances under which this occurs, and it is up to the NotificationProducer to determine if and when it permits additional children (it is not obligated to allow children to be added just because a Topic may be marked with final=”false”).

When a NotificationProducer accepts Topics that are not previously defined in the TopicSpace, it is not obliged to update any actual instance document that contains the TopicSpace definition. Rather, the extension exists only for that NotificationProducer and any Subscriber that interacts with it. Circumstances under which a NotificationProducer MAY add new child Topics to a Topic include:

· A Subscriber attempting to subscribe using a TopicExpression that suggests one or morenew child Topic;

· A Publisher attempting to publish using a TopicExpression that suggests a new child Topic;

· The NotificationProducer implementation encountering a new circumstance that doesn’t fit well with any of the existing child Topics (for example a new company starts trading on a stock market, and a stock ticker service wishes to include it);

· An administrator explicitly adding support for a new child Topic using some administrative portType (not defined by any WS-Notification specification) implemented by the NotificationProducer.

10 The “ad-hoc” Topic Space

Associating a TopicSpace with an XML namespace provides an unambiguous naming scheme for Topics. This is important when two entities which have no prior knowledge of each other attempt (for example a Subscriber which has just discovered a NotificationBroker) to interact.

However, there are circumstances where someone wishes to implement a Publisher for which there is no suitable pre-existing TopicSpace – and where the implementer does not wish to incur the overhead of creating a new TopicSpace (assigning a unique namespace, and creating the TopicSpace element within some XML instance document).

To help such users, WS-Notification defines a special built-in TopicSpace called the ad-hoc TopicSpace.

The ad-hoc TopicSpace has no pre-defined root Topics, but allows new root Topics to be added dynamically (in the same way that a non-final Topic allows new child Topics to be added to it). Any Topic that is added dynamically to the ad-hoc TopicSpace itself permits the addition of further child Topics, and allows any type of Notification element to be associated with it. There is no concept of Topic aliasing in the ad-hoc TopicSpace.

The ad-hoc TopicSpace is defined by the following namespace URI (http://docs.oasis-open.org/wsn/2004/06/TopicSpaces/adHoc) and is accessed using TopicExpressions that reference this namespace.

A NotificationProducer or Subscriber can use this TopicSpace to define ad-hoc Topics dynamically, without having to associate them with their own TopicSpace. Caution should be used when employing ad-hoc Topics, as there is no way for a NotificationConsumer to distinguish between it and other similarly-named ad-hoc Topics supported by any number of NotificationProducers.

11 NotificationProducer and Topics

A NotificationProducer uses Topics to group NotificationMessages related to some Situation. A NotificationProducer can support one or more Topics, from multiple Topic Spaces. A NotificationProducer can support an entire Topic Tree, or just a subset of the Topics in that Topic Tree. The set of Topics currently supported by a NotificationProducer can be determined by accessing the wsnt:Topic Resource Property element (see [WS-BaseNotification]). This Resource Property contains the set of Topics that the NotificationProducer expects to handle.

The list of Topics supported by the NotificationProducer MAY change over time. Reasons for the set of Topics changing include:

· The NotificationProducer supporting additional Topics from a TopicSpace that is already partially supported;

· The NotificationProducer supporting additional Topics from a TopicSpace not previously supported;

· The NotificationProducer supporting extension Topics to a (new or already supported) TopicSpace, as discussed in the previous section;

· The NotificationProducer ceasing to support Topics previously listed.

This specification does not require a NotificationProducer to support any or all of the types of changes just listed, and does not dictate the set of conditions under which the list of supported Topics will change.

12 Security Considerations

This section deals with the security aspects of WS-Topic. It deals with (a) securing the standard message exchanges defined in this specification, and (b) authorization and denial of service considerations.

12.1 Securing the Message Exchanges

In the Notification pattern, Notifications are sent to a NotificationConsumer, Subscribers exchange SubscriptionRequest and SubscriptionResponse messages with NotificationProducers, and any party with access to a SubscriptionManager endpoint may perform operations on the underlying Subscription resources. In cases where this communication must be secured it is RECOMMENDED that this be done using the mechanisms described in WS-Security.

Communication between a NotificationProducer and NotificationConsumer will typically comprise a number of Notification messages. In cases where this communication must be secure, it is RECOMMENDED that a security context be established using the mechanisms described in WS-Trust [WS-Trust] and WS-SecureConversation [WSSecureConversation] allowing for potentially more efficient means of authentication. Note that the keys used to secure this channel may differ from any keys used in the Subscribe request/response operation that created the associated Subscription.
12.2 Securing Subscriptions and Notifications

Given WS-BaseNotification provides mechanisms for publishing, and subscribing to topics, security policies should be established such that

1. only authorized principals can subscribe to receive Notifications

2. only authorized principals can modify or delete Subscriptions

It is recommended that the authorization policies be specified at the granularity of the Topic, if Topics are supported. It should be noted that even though Subscriptions may be done by authorized principals, the Notifications may be delivered to NotificationConsumers whose identity may be different from the Subscriber. Message protection policies as outlined in the previous section can be used to ensure that sensitive Notifications are not delivered to malicious endpoints. For example, a key may need to be specified or generated during the process of Subscription, so that the Notifications can be encrypted using the key to ensure confidentiality of the messages. The mechanism by which the key is specified is governed by the Subscription policy.

Given that WS-BaseNotification may use WS-ResourceProperties and WS-ResourceLifetime, the security considerations outlined in WS-those specifications need to be taken into account where appropriate. Authorization policies for those Resource Properties should be put in place so that the implications of providing the state information (through GetResourceProperty request messages) or through notification of state change and modification of the resource properties (through SetResourceProperty request messages), are taken into account.

This specification provides a mechanism by which Subscribers can specify a subscription policy. Such a policy may contain security policy about protecting the message exchanges resulting from the Subscription. Security policy for Subscription message exchanges needs to take this into consideration so that the Subscription policies are protected. Also, given this policy may be contained in the resource properties of the subscription maintained by the SubscriptionManager, the resource properties must be appropriately secured.

In addition to the usual concerns of authorization and message integrity which apply to all web services, notification presents issues all its own due to the third-party nature of subscription. Since the NotificationProducer is agreeing to produce Notifications for a consumer based on the requests of a Subscriber, it must assure itself that there is no harm in producing these Notifications. A malicious Subscriber may request Notifications be sent to a party that is not authorized to receive them. It may also mount DOS attacks by requesting large volumes of Notifications be sent to parties that cannot handle them.

The NotificationProducer may address these risks in many different ways, including but not limited to:

· Simply trusting all Subscribers, perhaps because all parties are known to be on a closed, trusted, network, or because the consequences of unauthorized Subscriptions are otherwise known to be negligible.

· Requiring all Subscribers to provide secure credentials proving that they are trusted to make subscriptions.

· Refusing to send notifications to NotificationConsumers that are not known to be authorized.

· Explicitly confirming with NotificationConsumers that they wish to receive the Notifications that the Subscriber has requested.

· Some combination of the above, depending on the identity of the Subscriber and NotificationProducer

NotificationProducers SHOULD advertise, whether through policy assertions or other means, what security measures they take.

13 References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[WS-BaseNotification]
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf
[WS-BrokeredNotification]
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BrokeredNotification-1.2-draft-01.pdf

[WS-Security]
http://www.oasis-open.org/committees/download.php/5531/oasis-200401-wss-soap-message-security-1.0.pdf
[XML]
http://www.w3.org/TR/REC-xml
[XML-Infoset]
http://www.w3.org/TR/xml-infoset/

[XPATH]
http://www.w3.org/TR/xpath

Appendix A. Acknowledgments

 The following individuals were members of the committee during the development of this specification:

Geoff Acton, LSC Group Ltd, Sid Askary, Individual, Jeff Bohren, OpenNetwork, Fred Carter, AmberPoint, Martin Chapman, Oracle, Dave Chappell, Sonic Software, Ugo Corda, SeeBeyond Technology Corporation, Glen Daniels, Sonic Software, John Fuller, Individual, Stephen Graham, IBM, David Hull, Tibco, Anish Karmarkar, Oracle, John Kemp, Nokia, Paul Lipton, Computer Associates, Lily Liu, webMethods, Tom Maguire, IBM, Susan Malaika, IBM, David Martin, IBM, Samuel Meder, Argonne National Laboratory, Jeff Mischkinsky, Oracle, Bryan Murray, Hewlett-Packard, Peter Niblett, IBM, Dave Orchard, BEA Systems, Sanjay Patil, SAP, Greg Pavlik, Oracle, Mark Peel, Novell, Mark Piller, webMethods, Ian Robinson, IBM, Igor Sedukhin, Computer Associates, David Snelling, Fujitsu, Latha Srinivasan, Hewlett-Packard, John Tollefsrud, Sun Microsystems, Steve Tuecke, Globus / Argonne National Laboratory, Jem Treadwell, Hewlett-Packard, William Vambenepe, Hewlett-Packard, Alan Weissberger, NEC

Special thanks to the Global Grid Forum’s Open Grid Services Infrastructure working group, which defined the OGSI v1.0 specification which was a large inspiration for the ideas expressed in this specification.

In addition, the following people who are not members of the committee made contributions to this specification:

Tim Banks (IBM), Nick Butler (IBM), Doug Davis (IBM), John Dinger (IBM), Don Ferguson (IBM), Jeff Frey (IBM), Andreas Koeppel (SAP), Heather Kreger (IBM), Amy Lewis (TIBCO Software), Kevin Liu (SAP), Nataraj Nagaratnam (IBM), Martin Nally (IBM), Jeff Nick (IBM), Jay Parikh (Akamai Technologies), Claus von Riegen (SAP), Rick Rineholt (IBM), John Rofrano (IBM), Shivajee Samdarshi (TIBCO Software), Eugène Sindambiwe (SAP), Jay Unger (IBM), Bill Weihl (Akamai Technologies), Mark Weitzel (IBM), Dan Wolfson (IBM).

Appendix B. XML Schema

The XML types and elements used in this specification are defined in the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>

<!--

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) OASIS Open (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

-->

<xsd:schema

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsrp=

 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"

 xmlns:wsnt=

 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.xsd"

 xmlns:wstop=

 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-01.xsd"

 targetNamespace=

 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-01.xsd"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

<!-- ======================== Imports ============================ -->

 <xsd:import namespace=

 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"

 schemaLocation=

 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"

 />

 <xsd:import namespace=

 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.xsd"

 schemaLocation=

 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.xsd"

 />

<!-- =============== utility type definitions ==================== -->

 <xsd:complexType name="Documentation" mixed="true">

 <xsd:sequence>

 <xsd:any processContents="lax" minOccurs="0"

 maxOccurs="unbounded" namespace="##any"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ExtensibleDocumented" abstract="true"

 mixed="false">

 <xsd:sequence>

 <xsd:element name="documentation" type="wstop:Documentation"

 minOccurs="0" />

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax" />

 </xsd:complexType>

<!-- ================== Topic-Space Related ====================== -->

 <xsd:complexType name="TopicSpaceType">

 <xsd:complexContent>

 <xsd:extension base="wstop:ExtensibleDocumented">

 <xsd:sequence>

 <xsd:element name="Topic" type="wstop:TopicType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:any namespace="##other"

 minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:NCName"/>

 <xsd:attribute name="targetNamespace" type="xsd:anyURI"

 use="required"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:element name="TopicSpace" type="wstop:TopicSpaceType">

 <xsd:unique name="rootTopicUniqueness">

 <xsd:selector xpath="wstop:Topic"/>

 <xsd:field xpath="@name"/>

 </xsd:unique>

 </xsd:element>

<!-- ===================== Topic Related ========================= -->

 <xsd:group name="NonAliasTopicDefinition">

 <xsd:sequence>

 <xsd:element name="MessagePattern"

 type="wsrp:QueryExpressionType"

 minOccurs="0" maxOccurs="1" />

 <xsd:element name="Topic" type="wstop:TopicType"

 minOccurs="0" maxOccurs="unbounded">

 <xsd:unique name="childTopicUniqueness">

 <xsd:selector xpath="wstop:topic"/>

 <xsd:field xpath="@name"/>

 </xsd:unique>

 </xsd:element>

 </xsd:sequence>

 </xsd:group>

 <xsd:complexType name="TopicType">

 <xsd:complexContent>

 <xsd:extension base="wstop:ExtensibleDocumented">

 <xsd:sequence>

 <xsd:choice>

 <xsd:element name="AliasRef"

 type="wsnt:TopicExpressionType"

 minOccurs="1" maxOccurs="1" />

 <xsd:group ref="wstop:NonAliasTopicDefinition" />

 </xsd:choice>

 <xsd:any namespace="##other" minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="name" use="required" type="xsd:NCName"/>

 <xsd:attribute name="messageTypes" default="xsd:any">

 <xsd:simpleType>

 <xsd:list itemType="xsd:QName"/>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="final" type="xsd:boolean"

 default="false"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

<!-- ================ Topic Expression Related =================== -->

 <xsd:simpleType name="FullTopicPathExpression">

 <xsd:restriction base="xsd:token">

 <xsd:annotation>

 <xsd:documentation>

 TopicPathExpression ::= TopicPath ('|' TopicPath)*

 TopicPath ::= RootTopic ChildTopicExpression*

 RootTopic ::= NamespacePrefix? ('//')? (NCName | '*')

 NamespacePrefix ::= NCName ':'

 ChildTopicExpression ::= '/' '/'? (NCName | '*'| '.')

 </xsd:documentation>

 </xsd:annotation>

 <xsd:pattern value=

 "([\i-[:]][\c-[:]]*:)?(//)?([\i-[:]][\c-[:]]*|*)((/|//)([\i-[:]][\c-[:]]*|*|[.]))*(\|([\i-[:]][\c-[:]]*:)?(//)?([\i-[:]][\c-[:]]*|*)((/|//)([\i-[:]][\c-[:]]*|*|[.]))*)*">

 </xsd:pattern>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="ConcreteTopicPathExpression">

 <xsd:restriction base="xsd:token">

 <xsd:annotation>

 <xsd:documentation>

 The pattern allows strings matching the following EBNF:

 ConcreteTopicPath ::= RootTopic ChildTopic*

 RootTopic ::= QName

 ChildTopic ::= '/' NCName

 </xsd:documentation>

 </xsd:annotation>

 <xsd:pattern value=

"(([\i-[:]][\c-[:]]*:)? [\i-[:]][\c-[:]]*)(/ [\i-[:]][\c-[:]]*)*" >

 </xsd:pattern>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="SimpleTopicExpression">

 <xsd:restriction base="xsd:token">

 <xsd:annotation>

 <xsd:documentation>

 The pattern allows strings matching the following EBNF:

 RootTopic ::= QName

 </xsd:documentation>

 </xsd:annotation>

 <xsd:pattern value="([\i-[:]][\c-[:]]*:)?([\i-[:]][\c-[:]]*)" >

 </xsd:pattern>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

Appendix C. Revision History

	Rev
	Date
	By Whom
	What

	wd-01
	2004-06-04
	William Vambenepe
	Initial version created from submission by contributing companies. Minor modifications made to reflect OASIS formatting and namespace URI choices.

	b
	2005-06-27
	Sid Askary
	- Added the Section on security

- Added the section on faults

- Added the concepts from white paper
-Corrected typos
-Removed references to White Paper
- NotificationMessage w/ Notification

- Updated status section
- Replaced Notional Conventions
TODO:

- AI 85

- Rewrite of Chapter 5.

- Incorporate new Namespace in Schema

	
	
	
	

Appendix D. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) OASIS Open (2004-2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Topic Space: “http://example.org/topicSpace/example1”

is alias for

t6

t5

tns:t4

t3

t2

tns:t1

Figure � SEQ Figure * ARABIC �1�: Example topic tree

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 1
2
wsn-WS-Topics-1[1].3-draft-01b.doc

6/27/2005
Copyright © OASIS Open 2004-2005. All Rights Reserved.
Page 38 of 39

