
Naming in Distributed Systems
OGSA Naming Design Team working note OGSA-Naming-02.

December 10, 2004
Andrew Grimshaw

(Edited by Dave Snelling)

Introduction
The objective of this working note is to begin the discussion on a “WS-Naming” standard.
To stimulate discussion, and provide background, we begin with a short section on terms
and desirable properties in a classic two-level name scheme – abstract names to addresses.
This document serves a second purpose in providing input to the OASIS/WSRF TC with
respect to requirements for the proposed Renewable References specification. It is
understood Renewable References address only a subset of the full requirements set for
Naming, but the requirements addressed by Renewable References may come very close,
hence this full set of requirements for naming is being presented to the WSRF TC.
Naming in distributed systems has a rich history and literature – and the basics are well
understood. At the end of the document are references to a set of extant naming schemes.
It is important to understand those schemes because it is likely that one of these can be
adopted.
Traditional distributed systems often have a three layer naming scheme. Human names1
such as paths or attributes are mapped to abstract names, which are then mapped to some
form of address. In this document we are not concerned with human names. Rather we
are interested in the abstract name to address mapping.

Terms
Resource – A resource is a namable entity that accepts a set of method calls specified in
an IDL such as WSDL. A resource may be an instance of some class or template (itself a
resource) – but this is not required. How resources come into existence is not an issue for
the purposes of naming. Resources may have metadata or attributes associated with them.
It is useful if resources have a set of common basic methods such as get_name, get/set

1 In general "Human Names" will be human readable, but human names are not
synonymous with "printable names." By human names we typically mean names
assigned and understood by humans. This implies printable, but also assumes some
semantic content within the name, which is meaningful to humans within some context.

David Snelling ! 10/12/04 18:06

David Snelling ! 10/12/04 18:07

David Snelling ! 10/12/04 18:08

David Snelling ! 10/12/04 18:37

Deleted: very

Deleted: other

Deleted: simply

Deleted: that

attribute, and get_interface. The distinction between stateful and stateless services is
irrelevant in naming schemes – though it may impact the implementation of services.2

Abstract resource name: an abstract name should not rely on any location, type,
implementation, or number information. This ensures that the abstract name can persist
across resource migration, container restart, etc.
Resource Address: A resource address can be used directly to communicate with the
resource using some protocol. A resource address refers to a particular communication
endpoint and may include or imply the protocol to use. In this document we will assume
that the “address” is an EPR as defined in the WS-Addressing standard.
Resource identity. An identity not only uniquely identifies a resource – as does a
resource address, an identity also has authentication properties that permit verification
(usually via cryptographic means) of the entity. Note that the notion of identity is
orthogonal to that of naming, but is defined here for clarity.
Human names. The two most frequently used examples of human names are paths such
as /home/grimshaw/datafile, and properties (a.k.a. attributes and metadata), e.g., “invoice
where modification date=9-15-03 and value<$45.00”.

Binding scheme: The mechanism that “binds” abstract names to resource addresses, i.e.,
given an abstract name the binding scheme returns a resource address that can be used to
communicate with the resource.
Bind time: The point at which an abstract name is bound to a resource address. Note that
this can happen at many different times, e.g., at compile time, at program load time, at
first use in a program, on failure of an old binding, and/or on every use. For all but the
last case, on every use, we assume that the binding may be cached somehow in the callers
context. In some schemes, binding can be an expensive operation, thus there is a trade-off
in bind time decisions between performance and dynamics.
Name granularity: This defines what the named entities are, e.g. large (whole files), small
(fields in a data base or member variables in a class), or somewhere in between. The
granularity should be as large as possible (for effeciency) but small enough to support
desired application semantics.

Motivation
Distributed systems research has a rich literature. In the literature virtualization of
resources and objects is a common solution to many problems. Naming is essential to the
creation of virtualization. This virtualization results in a “transparency”. Nine of these
show up again and again, and have been called the “nine golden transparencies”. They
are used with respect to accessing a remote service or object. In all cases the intent is that

2 The WSRF WS-Resource specification defines Resource normatively in the context of
the Resource Access Pattern, see http://docs.oasis-open.org/wsrf/2004/09/wsrf-WS-
Resources-1.2-draft-01.pdf. The above definition is consistent with this definition.

David Snelling ! 10/12/04 18:39

David Snelling ! 10/12/04 18:45

David Snelling ! 10/12/04 18:49

David Snelling ! 10/12/04 20:16

David Snelling ! 10/12/04 20:16

David Snelling ! 10/12/04 20:17

David Snelling ! 10/12/04 20:17

David Snelling ! 10/12/04 20:18

Formatted: Title page info description
David Snelling ! 10/12/04 18:34

Deleted: include

Deleted: in this case

Deleted: cost

Deleted: is

Deleted: address space

Deleted: Binding

Deleted: What are the named entities?

Deleted: L

the programmer/user need not know about or deal with an object or entity, but can do so
if they want to. These transparencies are:

Access. The mechanism used for a local invovation is the same as for a remote invocation.
Many have argued this is a special case on location transparency.
Location. The caller need not know where the object is located, California or Virginia it
makes no difference.

Failure. If the object or service fails the caller is unaware. Somehow the requested
service or function is performed, the object is restarted, or whatever is needed.

Heterogeneity. Architecture and OS boundaries are invisible. Objects can migrate without
limitation due to system architecture or operating environment. At a bare minimum
communication with objects on other architectures requires no explicit data coercion.
Migration. The caller need not know whether an object has moved since they last
communicated with it.
Replication. An object or service's function can be provided by one or many instances
without the caller being aware - the same name applies to any and all instances
simultaneously. The caller need not know about nor deal with coherence issues.

Concurrency. The caller need not be aware of other callers invocating operations on a
given object or service.
Scaling. An increase or decrease in the number of servers requires no change in the
software. Naturally performance may vary.
Behavioral. Whether an actual object or a simulation of the object is used is irrelevant to
the caller. Similarly – the existane an object or service is immaterial as one may be
created as needed.

Use Cases
Several of the transparencies are non-controversial and are captured by existing Web
Services best practices, e.g., behavioral, heterogeneity, and concurrency. Persistent or
abstract naming are required to provide other transparencies. The following use cases
highlight these issues.
Migrate closer to a heavy user. Suppose that a client application is making intense use of
a service or resource, and that the client and resource are widely separated, inducing a
large latency. For example, an application in California reading and modifying a file in
New York that other clients may need to continue to access – though less intensely. One
would like to be able to migrate the file resource from New York to California without
any interruption in service.
Migrate away from failing or overloaded resource. Consider a service or resource
executing on a host that is heavily loaded (either the host, or perhaps the network into the
site where the host is located). We would like to be able re-schedule the execution to
another host without interrupting the service and without disrupting on-going interactions
with this and other services and resources. Similarly, it may be known that a host is going
to “go down” soon, either because of maintenance, or perhaps problems with the physical

David Snelling ! 10/12/04 22:23

David Snelling ! 10/12/04 22:24

David Snelling ! 10/12/04 22:24

David Snelling ! 10/12/04 22:24

David Snelling ! 10/12/04 22:28

David Snelling ! 10/12/04 22:32

David Snelling ! 10/12/04 22:33

David Snelling ! 10/12/04 22:34

David Snelling ! 10/12/04 22:34

David Snelling ! 10/12/04 22:35

David Snelling ! 10/12/04 22:36

David Snelling ! 10/12/04 22:36

David Snelling ! 10/12/04 22:37

David Snelling ! 10/12/04 22:40

Deleted: something

Deleted: The

Deleted: call

Deleted: call

Deleted: cannot

Deleted: Is there one object or many objects
behind the name?

Deleted: or

Deleted: Are there other concurrent users of
an object?

Deleted: of them.

Deleted: Is it live or is it Memorex?

Deleted: is there

Deleted: there at all

Deleted: – or is

Deleted: CA

environment (power shortage, air conditioning failure, etc.). Once again we want to be
able to migrate the service to another location without interrupting on-going interactions.

Recovery from a failed resource. Consider a stateful resource that has failed (either due to
underlying hardware failure, or perhaps a software failure) and needs to be restarted –
perhaps on a different physical resource. We want to be able to “migrate” the active
instance to a different location or machine.3

Replica management and usage. Some resources may have multiple “back-ends”,
endpoints that can each perform the service as well as the other. We would like to be able
to dynamically select which replica to use. For example, one replica may be closer (in
network terms) than another. Or, one may offer better QOS in some dimension (e.g.,
performance).

Desirable properties of abstract naming and binding
scheme.
Required:
The following are required by many Grid like use cases similar to the above. There is
some expectation that all of these might be met by current proposals for Renewable
References.

Unique – If two names are the “same”, they refer to the “same” resource. “Sameness” is
defined by the semantics of the service that the resource provides. Further, names must be
unique in space and time, and therefore names cannot be reused.
Persistent – The name for a resource is valid as long as the resource exists.

Location portable – An abstract name can be used anywhere and will refer to the same
resource from any context.
Support the usual transparencies – Location, migration, failure, replication, and
implementation.

Extensible – To accommodate future requirements a naming scheme should be extensible.
High-performance – Low performance naming schemes prevent scalability and usability.
If the scheme is too slow, it will not be used, defeating the purpose.
Dynamic binding – Binding an abstract name to an address is not static, i.e., it can
change. The speed at which re-binding takes place is critical – if it takes hours to rebind,
then resource mobility is highly constrained.

Scalable binding – We expect the scale of future distributed systems to be very large. The
binding scheme must scale with the system. Often this can be achieved with caching.
However, caching must be balanced against the need to have dynamic bindings.

3 How the state management between the failed instance is kept synchronized with the
replica is not the issue here. There are many well-known techniques, periodic checkpoints,
message logging, etc. The important fact is that naming facilitates this process.

David Snelling ! 10/12/04 22:43

David Snelling ! 10/12/04 22:46

David Snelling ! 10/12/04 22:46

David Snelling ! 10/12/04 22:46

David Snelling ! 10/12/04 22:46

David Snelling ! 10/12/04 22:48

David Snelling ! 10/12/04 22:48

David Snelling ! 10/12/04 22:49

David Snelling ! 10/12/04 23:04

David Snelling ! 10/12/04 23:06

David Snelling ! 10/12/04 23:06

David Snelling ! 10/12/04 23:09

David Snelling ! 10/12/04 23:08

David Snelling ! 10/12/04 23:09

David Snelling ! 10/12/04 23:11

Deleted: (How the state management
between the failed version is kept
synchronized with the replicant is not the issue
here. There are many well-known techniques,
periodic checkpoints, message logging, etc.)

Deleted:

Deleted: (Once again we ignore here the
issue of state consistency between replicants.
There are well-known techniques.)

Deleted: nt

Deleted: nt

Deleted: they

Deleted: should

Deleted: . Thus,

Deleted: implementation

Deleted: name

Deleted: Nobody wants a low

Deleted: (

Deleted: ,

Deleted:)

Deleted: ’s performance (e.g., bindings per
second or time to bind)

Language neutral. Some naming schemes were developed specifically to support
particular programming languages.

Concurrent name generation. This is an aspect of scalability. It must be possible to
partition the name space, and generate names concurrently.
Large name-space. Running out of names is not acceptable.

Desirable:
Identity – The name can also act as an identity.

Authentication – Mutual authentication between two named resources without requiring a
trusted third party has advantages, particularly with respect to scalability.

Comparable – Given two different names – it is possible to determine equality, ideally
without having to contact either the resource or some other third party.

Widely adopted – The usefulness of a naming scheme increases when it is widely used.
Not require trust – Schemes that do not require a trusted third party are, all else being
equal, preferred over those that do require a trusted third party.
Free. The Grid community expects open software license with no license fee.

Human readable and printable. Often it will be necessary to print a name.

Naming schemes in the recent past
Note that it may be possible to use an existing scheme rather than invent a whole new one.
Some existing schemes, which address some or all of these requirements, include:

OGSI (GSH-GSR).
WS-Addressing – http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

DNS – http://www.ietf.org/rfc/rfc1034.txt?number=1034
Handle.net – http://www.handle.net/

SGNP – http://www.globalgridforum.org/Meetings/ggf4/bofs/SGNP%20-%20GWD-
R%202002.02.05.pdf

LSID
WSRF and RR
URI/URN/URL
JXTA

David Snelling ! 10/12/04 23:12

David Snelling ! 10/12/04 23:13

David Snelling ! 10/12/04 23:03

David Snelling ! 10/12/04 23:15

David Snelling ! 10/12/04 23:16

David Snelling ! 10/12/04 23:16

Deleted: Efficient/concurrent

Deleted: You don’t want to run

Deleted: have

Deleted: Whom do you trust?

Deleted: Open software license with no
license fee

Deleted:

