
8 Faults
Faults are based upon the WS-BaseFault model [WS-BF], taking on some of the lessons
of [Loughran02], namely that extra information such as hostname and process is
invaluable for locating which process among many has failed on a clustered system.

Faults are raised in response to errors either at the remote endpoint, in the local
framework, or between the remote endpoint and other parts of the distributed system.
They can be returned to callers in response to a an operation on an endpoint, or sent as
part of a notification event.

All faults that will be explicitly sent are derived from WS-BaseFault faults. Service
implementations may implicitly raise SOAPFault faults, as that is inherent in most
implementations.

8.1 Fault Categories

8.1.1 Service Faults
These are the faults that are raised by the service. They are categorized into a hierarchy of
WS-BaseFault faults. There is a base fault class DeploymentFault, from which all others
are derived.

All Service interfaces must declare that they raise these DeploymentFault instances, rather
than list the specific faults. This is to provide forward extensibility.

The API lists specific subclassed faults of DeploymentFault that may be generated by a
service or received by a client. These faults represent some of the faults that a service
implementation may send.

If an implementation has a fault state whose meaning matches that of the predefined fault,
the predefined fault must be thrown. If this predefined fault has standard elements for
embedded fault information, the implementation should fill them in. The implementation
may add implementation-specific data within the extra-data element of the fault, to
supplement this information. This extra data must not add new types to the XML
namespaces of this deployment data. The XML schema and semantics of this extra data
should be documented.

If an implementation creates new fault types for new fault states, these must extend the
existing fault types which operations are declared as throwing. Again, these must not
change the XML schemas of the deployment API; they must be in a new namespace. The
new faults and XML content should be publicly documented.

8.1.2 Transport faults
Transport faults will inevitably be raised as the appropriate fault for the system. For
example, the Apache Axis SOAP client raises AxisFault faults for all SOAP events,
wrapping stack trace and even HTTP Fault data within the fault as DOM elements. .NET
WSE has a similar fault class.

8.1.3 Relayed Faults
Relayed faults are those received by the far end and passed on. They may be WS-
BaseFault Faults; HTTP error codes, SOAP faults, native language faults wrapped as
SOAPFaults, or predefined deployment faults.

WS-BaseFault uses fault nesting for relaying faults; however, all faults must be a
derivative of WS-BaseFault. This is addressed by defining a new WS-BaseFault
derivative, a WrappedSOAPFault. This type is actually an extension of DeploymentFault.
This fault can nest any received SOAPFault, with an element containing the received
XML data. Well-known elements in this fault data (such as the Apache Axis stack trace
and HTTP fault code) should be copied into any fields in the main fault which fill the
same role.

8.2 Fault Security
Sites offering deployment services, may, for security reasons, wish to strip out some
information, such as stack trace data. Implementations should provide a means to enable
such an action prior to transmitting faults to callers.

Hostname and process information may be viewed as sensitive, yet again, this is
exceedingly useful to operations. Implementations may provide a means to disguise this
information, so that it does not describe the real hostname or process ID of a process, but
instead pseudonyms that can still be used in communications with any operations team.

8.3 Internationalization
The WS-BaseFault specification makes no statement upon which language error
descriptions are in.

If an implementation can return descriptions in one language, it must use xml:lang
attributes to indicate the language of a description. Multiple descriptions, in different
languages may be included. The client application should extract the description(s) whose
language is the nearest match to that of the client.

8.4 Extending Faults
If an implementation adds new operations or properties at the existing endpoints, these
new operations may raise whatever faults they see fit, within the constraints of the WS-
BaseFaults specification. The implementation must not add new types to the deployment
API namespace. If possible, faults raised from these new endpoints should extend the
api:DeploymentFault type, or extended types if appropriate.

Implementations may extend the faults defined in the deployment API, following the
procedure defined in the WS-BF specification. Such extended types must not be declared
within the namespace of the deployment API. The extended information must be
informative, to the extent that an caller that only knows the base types must still be able
take appropriate action on the failure.

Client applications must be written expecting such extensions.

8.5 Fault Type Declarations
The fault hierarchy is shown in Figure 3.

8.5.1 DeploymentFault
This type represents any fault thrown during deployment. All endpoint operations must
declare that they throw this fault, and must not declare that they throw any derivative
fault.

Element Type Meaning
Host xsd:string Hostname or pseudonym
Process xsd:string Any process identifier suitable for

diagnostics
Extra-data xsd:any Extra fault data

Figure 3 Fault Hierarchy

DeploymentFault
base for all faults in the API

Host: xsd:string
Process: xsd:string (0..1)
Extra-data: xsd:any (0..1)
Component: xsd:string (0..1)
Stacktrace: xsd:string (0..1)

WS-BaseFault

Timestamp: xsdDateTime
OriginatorReference: wsa:EPR
ErrorCode: xsd:string
Description: xsd:string
FaultCause: wsbf:BaseFault

WrappedSoapFault
converts SOAPFault to WS-BF

SoapFaultCode: env:FaultCode
SoapFaultRole: xsd:anyURI

LanguageFault
Fault in the language where file+line
provide information

File: xsd:string
Line: xsd:integer

Element Type Meaning
Component xsd:string Path to component raising the fault
StackTrace xsd:string Stack trace of fault

Implementations must include a component reference if it is known. Implementations
should include hostname and process information.

8.5.2 LanguageFault
A language fault represents any fault in language processing for which a file and line
number are relevant.

Element Type Meaning
File xsd:string Filename/URI of file at fault
Line xsd:integer Line number within the file

This information must be included if it is known.

If a deployment request includes the deployment descriptor inline, the file and line info is
missing/wrong. What to do?

8.5.3 WrappedSOAPFault
This type represents a mapping of a classic W3C-style SOAPFault [SOAP1.2] to a WS-
BaseFault, as an extension of DeploymentFault. It adds two new elements to contain data
unique to SOAPFaults.

Element Type Meaning
SoapFaultCode env:FaultCode Fault code information
SoapFaultRole xsd:anyURI Role of sender

The normative mapping of SOAPFault elements to WrappedSOAPFault elements is as
follows:

SOAP1.2 WrappedSOAPFault
/env:Code /api:SoapFaultCode

/env:Role /api:SoapFaultRole

/env:Detail /api:ExtraData

/env:Reason/env:text /wsbf:Description

Any text elements under env:Reason must be converted into separate description elements
in the fault; all xml:lang attribute must be preserved.

Detail from SOAP stacks with well-known fault fields, such as the Apache Axis stack
trace, may be imported into appropriate fields in the DeploymentFault.

An example mapping for this is shown in the following table, a table in which the
namespace axis is http://xml.apache.org/axis/ :

Axis1.2 WrappedSOAPFault
/env:Detail/axis:stackTrace /api:StackTrace

/env:Detail/axis:hostname /api:Host

/env:Detail/axis:HttpErrorCode (unmapped)

The Axis bindings are purely an implementation specific feature, and currently
documented only in the Axis source (in AxisFault.java and Constants.java). However,
as Apache Axis is a common SOAP implementation in the Java community,
implementations should extract the data if it is present, and map it into the appropriate
fields.

8.6 Fault Error Codes
Specific fault error codes, and their meaning, are covered in a separate document.

Every unique fault will be described by its own fault code. Deployment faults that are part
of the API specification will all be in the namespace http://X/Y/Z with their code value
described in the CDDLM Fault Specification.

TODO: Fault Specification, namespace
Implementations may add new fault codes in different namespaces. They must not add
new fault codes to the primary fault namespace of the deployment API.

