Web Services Reliability Fact Sheet: Interop Demo at XML Conference

Alan J Weissberger

Data Communications Technology

(representing NEC Corp)

ajwdct@technologist.com

I. Why is Reliability important for Web Services?

As Web Services (WS) start to be deployed across enterprise boundaries and for collaborative e-business and e-transaction scenarios, message reliability becomes a critical issue. This is because communications over the Internet (and Intranets) is inherently unreliable, as the “transport protocols” (HTTP, SMTP, and JMS) do not offer any form of guaranteed or ordered delivery. Yet WS messages must be delivered to the ultimate receiver, even in the presence of component, system, or network failures. If a message can’t be reliably delivered, then the user must be so informed.

For Web Services messaging to be robust within an enterprise, or to be used across firewalls, it is imperative that a large amount of control, management, and security related protocol information be delivered over a reliable connection. It is also important to ensure that user data exchanges are similarly delivered in a reliable fashion to the Application entity. A Reliable Messaging sender and receiver must co-operate to achieve this WS Reliability. The “users” of reliable messaging are either other WS protocols (e.g. WS Security) and/or Application layer data exchanges between the end points of the connection.

Accordingly, reliable messaging becomes one of the first problems that need to be addressed for Web Services to become a truly viable software technology [Would you consider sending credit transactions to your bank or placing a stock purchase or sale order over an unreliable web connection?]
II. The WS Reliability Specification

A. Overview

The OASIS WS RM TC is developing an open specification - WS Reliability - for ensuring reliable message delivery for Web Services. Reliability here is defined as the ability to guarantee message delivery to “the users” with a chosen level of protocol capability and Quality of Service (QOS). Again, the users are either other WS protocols (e.g. WS Security, WS Transactions, WS Distributed Management), or Application layer data messages exchanged between the end points of the connection.

To facilitate WS Reliability, there is a need for SOAP based Reliable Messaging Processors (RMPs) - in the sender and in the receiver endpoints* - that work together to ensure that messages are delivered in a reliable manner over a connection that may be inherently unreliable.

The sender and receiver RMPs operate on newly defined SOAP headers that are transmitted as either self contained messages, or they are attached to other WS protocol messages or user data messages (all of which are SOAP/XML encoded). Fault messages may extend to the SOAP message body.

*Intermediaries are considered to be transparent in the WS Reliability specification.

The level of WS Reliability is determined by “the users.” Reliability may include one or more reliable messaging protocol capability for the delivery of WS messages (see II C below for detailed description of these):

A] Guaranteed delivery to the user or Application entity (the message MUST be persisted (i.e. stored in non volatile memory) in the sender RMP until delivery to the ultimate receiver has been acknowledged.

B] Duplicate elimination - Delivery at most once -with duplicates detected and eliminated by the RMP receiver,

C] Guaranteed message ordering - when delivered by the RMP receiver to the user, the messages are properly sequenced. The problem arises when messages are received out of sequence or acknowledgements are lost. The solution is for the RMP transmitter to retransmit unacknowledged messages (after a time-out), and for the RMP receiver to re-order received out of sequence messages so that they are properly delivered to the user (e.g. Application entity)

The users of the WS Reliability protocol may agree upon any or all of the above message delivery capabilities. Different users or applications may choose different protocol capabilities, which are conveyed to the RMP sender and receiver prior to initiating communications. Alternatively, the receiver RMP can determine the protocol capability via explicit parameter values sent in each reliable message request.

For purposes of the WS RM TC, QOS is defined as the ability to determine the following aspects:

-Message persistence (ability to store a message until it is reliably delivered to the Application)

-Message acknowledgement (by the receiver and resending (by sender on No Ack time-out)

-Ordered delivery of messages (by use of Sequence numbers)

-Delivery status awareness for both sender and receiver (via state saving and status check- pointing)

The WS Reliability specification defines extensions to SOAP Headers. It is assumed that the payload (user information) is specified using a WSDL description. [Fault messages may also use the payload to convey fault code information]. While WS Reliability is currently based on SOAP 1.1, it could be updated for use with SOAP 1.2, when it becomes a W3C Recommendation.

B. Reliable Messaging (RM) Model and RM Reply Patterns

In the Reliable Messaging Model described in this specification, the sender node sends a message

directly to the receiver node (i.e., intermediaries are assumed to be transparent in the WS Reliability specification). Upon receipt of the message and at the appropriate time, the receiver node sends back an Acknowledgment message or Fault message to the sender node.

There are three ways for the receiver to send back an Acknowledgment message or a Fault message to the sender. These are referred to as the “RM Reply patterns,” which are defined as follows:

· Response RM-Reply Pattern:

We say that a Response RM-Reply pattern is in use if the outbound Reliable Message is sent in

the underlying protocol request and the Acknowledgment message (or Fault message) is

contained in the underlying protocol response message corresponding to the original request.

· Callback RM-Reply Pattern:

We say that a Callback RM-Reply pattern is in use if the Acknowledgment message (or Fault

message) is contained in an underlying protocol request of a second request/response exchange

(or a second one-way message), operating in the opposite direction to the message containing the outbound Reliable Message. In essence, the Acknowledgement is “piggybacked” onto the second (request/response or one-way) message.

· Polling RM-Reply Pattern:

We say that the Polling RM-Reply pattern is being used if a second underlying protocol request is generated, in the same direction as the one containing the outbound Reliable Message, to act as a “request for acknowledgment.” The Acknowledgment message (or Fault message) is contained in the underlying protocol response to this request. This polling pattern is expected to be used in

situations where it is inappropriate for the sender of reliable messages to receive underlying

protocol requests, i.e. sender behind a firewall.

These three reply patterns are illustrated below in Figures 1-3:

[image: image1]
C. WS Reliability Protocol Capabilities

Three types of message delivery capabilities are defined in the WS Reliability protocol. One or more of these protocol capabilities may be used with each of the RM Reply patterns defined in II. B. above. The selection is dependent on prior end user agreements or explicitly inferred by the receiver RMP from request messages.

· Guaranteed Delivery

To successfully deliver a message from a sender RMP to a receiver RMP without failure; if this is not possible, to report the failure to the sender's application. To realize guaranteed delivery, the message MUST be persisted (i.e. stored) in the sender RMP until delivery to the receiver is acknowledged, or until the ultimate failure is reported to it's requester. [There is a requirement on the underlying transport protocol that the message MUST be transported without corruption.] If message persistence is lost for any reason, it is no longer possible to guarantee message delivery. Since the reliability of message persistence is a property of the system implementation, the conditions under which guaranteed message delivery holds is also a property of the system implementation and is outside the scope of the specification.

Example 1). A PC Server may use a HDD for it's persistent Storage, and those messages

persisted in the HDD are reliably maintained even if the the system software crashes and the

system is rebooted. However, if the HDD itself crashes, it is no longer possible to guarantee

message delivery.

Example 2). A message persisted in a mobile phone may be lost when it's battery is detached. In

this case, message delivery is only guaranteed by proper battery maintenance of the mobile

phone.

· Duplicate Elimination

A number of conditions may result in transmission of duplicate message(s), e.g. temporary downtime of the sender or receiver, a routing problem between the sender and receiver, etc. In order to provide at-most-once semantics, the ultimate RMP receiver MUST eliminate duplicate messages and never present them to the user. Messages with the same Message Identifier value MUST be treated as duplicates and not delivered to the application.

· Guaranteed Message Ordering

Some applications will expect to receive a sequence of messages from the same sender in the

same order those messages were sent. Although there are often means to enforce this at the

Application layer, this is not always possible or practical. In such cases, the Reliable Messaging layer is required to guarantee the message order. This specification defines a model, illustrated in

Figure 3, to meet this requirement.

When the sender application sends three messages (1), (2), and (3) with Guaranteed Message Ordering, the receiver's RMP MUST guarantee that message order when it makes those messages available to the receiver's application (the user). In Figure 3, the receiver's RMP received messages (1) and (3), the receiver's RMP makes message (1) available to the application, but it persists message (3) until message (2) is received. When receiver's RMP receives message (2), it then makes message (2) and (3) available to the application, in that order.

III. WS Reliability demo scenario

A. Overview

A sequence of two banking transactions are executed for BOW (Bank Of the World), using the same Sender and Receiver end-points:

a] The Sender is a branch office of BOW, and will remotely initiate these transactions.

B] The Receiver is a central BOW office where the accounts are managed.

- Transaction 1: moves $10,000 from account A to account B. (two WS operations: debit + credit, achieved by two distinct messages)

- Transaction 2: moves $8,000 from account B to account C. (two WS operations: debit + credit, achieved by two distinct messages)

B. Guaranteed Delivery:

This will guarantee that each of these transactions is fully successful. We want both debit + credit ops to succeed. If one of these two messages was lost, it will be resent until being acknowledged by the receiver RMP.

If successful sending was not possible after a reasonable number of retries, the sender application will be notified, so that it can take action, e.g. undo the transaction by other means.

The recovery mechanism reduces the need for human intervention, and non-recoverable failures are notified without delay.

(Business benefit: Failure rate of transactions is lowered.

Details of Guaranteed Delivery Demo

· In this demo, the sender will try to deposit a check to a bank account. The bank account is an account of the BOW (Bank Of the World). The check could be any bank check: it does not have to belong to the BOW.

· The NTM (Network Trouble Maker) component is a middle-man intercepting messages between the sender and receiver. The NTM would be configured to block the bank operation (deposit of check to a bank account). In the GUI of the NTM, the audience will see that the message was blocked and never reached the RMP receiver.

· Since the message that was sent is not acknowledged, the RMP sender has a built-in mechanism of resending messages that have not been acknowledged. Therefore, the RMP sender will try behind the scene to re-submit the bank operation (check deposit to a bank account). After re-submitting the message, the NTM will not block the message this time, and the message will reach the RMP receiver. The RMP receiver would deliver the message to the BOW, and then send an acknowledgment back.

· In the GUI of the NTM, the audience will then see that the message was sent twice, the first time blocked by the NTM, and the second time it went through, and that the message was acknowledged and delivered to the BOW

C. Duplicate Elimination:

If for some reason, either the debit message or the credit message in one of these transactions, is repeated (e.g. due to resending), the duplicate messages are eliminated, avoiding erroneous account operations.

(Business benefit: Avoids erroneous repeats of the same banking operation, which in turn would require costly adjustments later in terms of overhead, customer satisfaction, delays.

Details of Duplicate Elimination Demo

· In this demo, the sender will submit the same bank operation as in the first demo, namely depositing a check to a bank account.

· The NTM will not block this bank operation, and the BOW, which is the final endpoint, will perform the deposit. This operation will be seen in the GUI of the NTM (that the message was successfully delivered to the BOW).

· From the NTM, we will re-send the same bank operation (simulating a network trouble where a message is duplicated by the network).

· The RMP receiver will detect message duplicate and will not deliver it to the BOW. In the GUI of the NTM, the audience will see that the second time (that is the duplicate message), the message is not delivered to the BOW.

D. Guaranteed Message Ordering:

The two transactions described above, operate on a common account (B). One is crediting B, the other is debiting B. It is critical that they are executed in order, so that B will not incur penalties if debited before being credited.

Guaranteed ordered delivery will guarantee that even if the debit message for (B) is received before the credit message, it will not be delivered to the Application until the credit message has been delivered.

(Business benefit: Avoids problems that would be created by unpredictable communication problems, which would have resulted in costly adjustments and would otherwise lower customer satisfaction.

Details of Message Ordering Demo

· In this demo, the sender will perform two separated bank transactions. In the first transaction, the sender will submit a “deposit a check to a bank account” operation. In this operation, the sender is crediting his bank account at the BOW. In the second transaction, the sender will make a money transfer from his account at the BOW to another bank account such as a Citibank account for example.

· The NTM would be configured to switch the order of these two bank transactions (simulating a network trouble where messages are not delivered in the right order in which they were initially sent). The NTM would send the second bank transaction to the RMP receiver before sending the first bank transaction.

· In the GUI of the NTM, the audience will see that RMP receiver did not delivered the second transaction to the BOW until it received the first transaction, and that it the two transactions were delivered to the BOW by the RMP receiver in the correct order.

Below is an illustration of the GUI window of the NTM that shows what is happening both at the network level as well as at the RMP receiver and BOW:

Notes for the GUI window illustration:

· Bank Operation #: is message identifier that uniquely identifies the bank operation that is submitted.

· Seq #: is the sequence number of the SOAP message representing the bank operation

· Blocked: is a check box that when checked indicates that message was blocked by the NTM at least once.

· Sent: this column contains a positive integer (1, 2, 3, 4, etc …) indicating how many times that SOAP message was submitted by the RMP sender (since the RMP sender has built-in retry mechanism, a SOAP message may be submitted by the RMP sender multiple times).

· Acknowledged: this column is a checkbox that indicates whether the RMP receiver has sent an acknowledgement or not.

· Received By App: this column contains a positive integer (0, 1, 2, 3, 4, etc…) indicating how many times that message was delivered to the BOW. Here “App” is the BOW. When number “0” is displayed in this column, it means that the BOW did not yet received the bank operation. If number “1” is displayed, it means that the BOW has received the bank operation once. If number “2” is displayed, it means that the BOW has received the bank operation twice (with duplicate elimination working correctly, this should not be the case).
[image: image2.png]Nodes:

Network Recelver _Help

~=lolx|

] outiook view

o B

Bank Operation #

Blocked

Acknowledged

Received By App

Readh

IV. Frequently Asked Questions

1. Who is participating in the OASIS WS-RM TC and how often do they meet?

A variety of companies are active in the WS-RM TC. The members include: Booz Allen Hamilton, Cyclone Commerce, France Telecom, Fujitsu (3), Hewlett-Packard, Hitachi(3), NEC Corporation(2), Nokia(2), Oracle (2), SAP, See Beyond, SUN Micro (2), University of Hong Kong. There are also many observers. Membership in OASIS is required to participate in the WS-RM TC. Telecon meetings are held weekly and face –to-face meetings are held about every two or three months.

2. When will the WS Reliability spec be completed and what is it based on?

Agreement has been reached in Nov 2003 on an interim draft spec (v0.52), which is being implemented in the demo. We are expecting to generate a more mature spec after our mid January 2004 meeting and vote on a committee draft shortly thereafter. Note that the specs are based on Requirements issues that have been compiled for the committee’s internal use (over 100 requirements have been identified).

(An OASIS standard could be approved in the 1st Quarter of 2004, after public review.

3. Who is participating in this demo of WS Reliability?

Fujitsu, Hitachi, NEC, Oracle, and SUN Micro. The demo is based on v0.52 of the spec.

4. Who will benefit from the completed WS Reliability spec?

· WS middleware companies that implement the spec will benefit because it will be universally interoperable. Initial testing can be done with any company that implements it. The license to implement the spec is royalty free.

· Application program developers will also benefit, as their web based applications will be reliable and robust, operating over WS Reliability middleware. Using the implemented middleware will also be royalty free.

· WS End users will benefit in accordance with their application requirements. For example, “at most once delivery” implies duplicate elimination. This is important for placing orders, banking transactions, and insurance claims processing. If an end user is sending a Purchase Order, for example, he wants to know it actually arrived at the destination and it arrived exactly once (not multiple times). This is particularly vital for financial applications.
5. Who will generate application specific profiles for the WS Reliability spec?

WS-I will most likely develop such profiles. The WS-I Requirements Working Group has already discussed doing this upon completion of the spec.
 (Acknowledgment or Fault)

 (Acknowledgment or Fault)

 (Acknowledgment or Fault)

(PollRequest)

(Reliable Message)

(Reliable Message)

(Reliable Message)

Figure 3

Figure 2

Underlying protocol Request

Underlying protocol Request

Underlying protocol Response

Underlying protocol Request

Callback Messaging Model

Underlying protocol Request

Application

Layer

Application

Layer

Receiver’s

RMP

Sender’s

RMP

Figure 1

Poll Messaging Model

Request/Response Messaging Model

Application

Layer

Application

Layer

Receiver’s

RMP

Sender’s

RMP

Underlying protocol Response

Underlying protocol Request

Application

Layer

Application

Layer

Receiver’s

RMP

Sender’s

RMP

PAGE
10

