WSIA - WSRP Interface Specification
Version 1.0
7/15/2002

WSIA - WSRP Core Interface Specification
Version 0.21

Revision History

Please use change marks if adding comments to this document.

	Date
	Version
	Description
	Author

	6/03/2002
	0.1
	Initial Draft
	Rich Thompson

	6/04/2002
	0.1.1
	Worked in some additional WSRP requirements
	Carsten Leue

	6/05/2002
	
	Added exemplary section to overview
	Rich Thompson

	6/06/2002
	
	Added request data to getFragment and invokeAction
	Carsten Leue

	6/06/2002
	0.1.2
	Added cloneEntities() & descriptive text
	Rich Thompson

	7/09/2002
	0.2
	Modified as per face-2-face discussions
	Alan Kropp,

Rich Thompson

	7/10/2002
	0.21
	Refactored data objects
	Rich Thompson

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

51.
Introduction

52.
Overview

62.1.
Exemplary Scenarios

6Simple Producer (no conversational state)

7Simple Producer (conversational state)

7Sophisticated Producer (conversational state, configurable)

7Sophisticated Consumer/Sophisticated Producer

8Sophisticated Consumer/Simple Producer

83.
About this Specification

94.
General Interface Design Issues

94.1.
Security

94.2.
Data Objects

94.3.
Persistence and statefulness

104.4.
Two-phase protocol

105.
Self-description

116.
Life Cycle States

11Assumptions:

11State 0: Producer Unknown

11State 1: Producer Known

11State 2: Producer Active

117.
Lifecycle Interfaces

117.1.
Types of Stateful Information

127.2.
Information Passing Mechanisms

127.3.
Registration

137.4.
Entities

158.
Generating Markup and Processing Interactions

158.1.
Single Page / no Interactions

168.2.
No local state

178.3.
Local state

189.
Transparent State

2110.
Security

2110.1.
Authentication

2110.2.
Confidentiality

2110.3.
Integrity

2210.4.
Message Replay

2210.5.
Missing Message

2210.6.
Protocol

23Security and Lifecycle States

23Transport-based Mechanisms

24Document-based Mechanisms

27Access control

27User profiles

2711.
Markup

2711.1.
URL Encoding

2711.2.
Namespace Encoding

2711.3.
Markup Fragments

2812.
Appendix A – Data Structures.

1. Introduction

This specification provides an straw man for the joint WSIA/WSRP interfaces. It is based on the embedded use case requirements gathered in the WSIA committee and the requirements gathered by the WSRP committee and on the concrete proposals to both committees.

2. Overview

Both Web Services for Interactive Applications (WSIA) and Web Services for Remote Portals (WSRP) are standards for visual, user-facing web services components. Both WSRP and the embedded use case of WSIA focus on plug-and-play services that enable Producer independent intermediary web applications (such as portals) that aggregate content or applications from different sources. As such, this specification is designed to enable businesses to provide content or applications in a form that does not require any manual content or application specific adaptation by consuming intermediary applications. This specification allows Producers to determine how their content and applications are visualized for End-Users and to which degree adaptation, transcoding, translation etc may be allowed.

Producer services MAY be published into public or corporate service directories (such as UDDI) where they can be discovered by intermediary applications. Web application deployment vendors can wrap and adapt their middleware for publishing as compliant services. Vendors of intermediary applications can enable their products as Consumers of these services.

Consumers can easily integrate content and applications from many internal and external Producers. The administrator of the Consumer simply picks the Producers and integrates them; no programmers are required to tie new content and applications into a page of the resulting web application.

To accomplish these goals, this standard defines a web services interface description using WSDL and all the semantics and behavior that Producer web services and Consumer applications must comply with in order to be pluggable. In addition the standard details on how information describing the service can be acquired: as metadata that SHOULD be provided when publishing services into UDDI directories and is also available via self-description operations.

The standard accounts for the fact that Producer services may be implemented on very different platforms, be it as a Java/J2EE
 based web service, a web service implemented on Microsoft's .NET
 platform or a portlet published directly by a portal. Special attention has been taken to ensure this language independence. The standard enables use of generic adapter code to plug any Producer service into intermediary applications rather than requiring Producer specific proxy code.

These services are built on standard technologies including SOAP
, UDDI
, and WSDL
.

2.1. Exemplary Scenarios

This specification needs to support Consumers and Producers of various levels of sophistication interacting with one another. Examples include:

· SimpleProducer: Does not support registration or persistence. May only expose 1 type of entity.

· SophisticatedProducer: Requires Consumers to register and the returned reference is all future invocations. Publishes a refined WSDL that declares properties for interacting with the base service. Supports a number of entities, some of which publish a refined WSDL that declare supported markupTypes and properties for interacting with the entity.

· SimpleConsumer: Does not persist any registration/entity information. Have explicit declarations for binding to and interacting with Producer services.

· SophisticatedConsumer: Supports persisting Producer, Consumer and End-User related data. Supports Single Sign On for its End-Users (may require End-User to trust Consumer with sign-on data). May support discovery of new Producers by either Administrators and/or End-Users.

How do these varying levels of sophistication interact?

In the diagrammatic representations below, the variations for the simple Producer and Consumer reduce to removal of all the persistent calls. This implies the Consumer does not support the concept of a Page Designer (page designs are effectively declared in code … possibly declarative code). For a SophisticatedConsumer to use a SimpleProducer, the detection of what the Producer is willing to persist results in the Consumer persisting everything. All the steps related to creating / updating persistent entities get dropped for the case of a SimpleConsumer interacting with a SophisticatedProducer. In addition, the SimpleConsumer should release the consumerHandle at the end of the interaction since it does not support persisting it and failing to release it would result in dead handles continuing to consume resources at the Producer.

Simple Producer (no conversational state)

	Producer
	
	Consumer
	
	End-User

	
	
	A new Producer service is located and selected for use
	
	

	
	
getMarkup(null)
	The Consumer wants to render the first (probably only) page of output.
	
	

	
	returns markup
	renders page
	
	

Simple Producer (conversational state)

	Producer
	
	Consumer
	
	End-User

	
	
	A new Producer service is located and selected for use
	
	

	
	
getMarkup(null)
	The Consumer wants to render the first page of output.

	
	

	serializes state to markupParams
	returns markup,

markupParams
	renders first page
	
	

	
	getMarkup(null, markupParams)

	refresh/post;

continues to prior step.
	
	

Sophisticated Producer (conversational state, configurable)

	Producer
	
	Consumer
	
	End-User

	
	
	A new Producer service is located and selected for use
	
	

	Validate info, generate new Handle
	
registerConsumer(…)
	[optional]
	
	

	
	createEntity(consumerContext,

entityProperties)
	Signal Producer that it wants to initiate a conversation with one of its services.
	
	

	Creates entity
	returns entityHandle
	
	
	

	Configures entity
	setProperties(consumerContext,

entityProperties)
	Optionally configure the entity
	
	

	generates markup, updates state
	getMarkup(consumerContext, requestContext, null, null)
	Invoke
	
	

	
	returns markup, markupParams, sessionID
	
	
	

Sophisticated Consumer/Sophisticated Producer

The Consumer manages multiple service interactions, some with potential side effects.

	Producer
	
	Consumer
	
	End-User

	
	
	A new Producer service is located and selected for use
	
	

	Validate info, generate new Handle
	
registerConsumer(…)
	[optional]
	
	

	
	createEntity(consumerContext,

entityProperties)
	Signal Producer that it wants to initiate a conversation with one of its services.
	
	

	Creates entity
	returns entityHandle
	
	
	

	Configures entity
	setEntityProperties(consumerContext,

entityProperties)
	Optionally configure the entity
	
	

	generates markup
	getMarkup(consumerContext, requestContext, null, null)
	Invoke
	
	

	
	returns markup, markupParams, sessionID
	renders first page
	
	

	
	performAction(consumerContext, requestContext, sessionID, interactionParams)
	Consumer initiates two-phase invocation
	
	invokes action on the service

	updates state
	
	
	
	

	
	getMarkup(consumerContext, requestContext, sessionID, markupParams)
	Consumer continues two-phase invocation, for other services
	
	

	Generates markup
	return markup, markupParams, sessionID
	renders page
	
	continues…

Sophisticated Consumer/Simple Producer

Same as above, but Producer is serializing state instead of passing a sessionID.

3. About this Specification
This document, along with its normative references, includes all the specification necessary for the implementation of interoperable applications. The following key words are used throughout the document and have to be read as interoperability requirements. This specification uses words as defined in RFC2119
 for defining the significance of each particular requirement. These words are:

MUST or MUST NOT

These words, or the adjective "REQUIRED", mean that the item is an absolute requirement of the specification.

SHOULD or SHOULD NOT

These words, or the adjective "RECOMMENDED", mean that there may exist valid reasons in particular circumstances to ignore this item, but the full implications should be understood and the case carefully weighed before choosing a different course.

MAY

This word, or the adjective "OPTIONAL", means that this item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because it enhances the product, for example; another vendor may omit the same item.
4. General Interface Design Issues

The major design goals of this specification are simplicity, extensibility and efficiency.

4.1. Security
To ensure security during the transfer of data the Producer may expose its entry point via SSL with appropriate indications in its WSDL bindings.

It is also envisioned that document level security standards that are now being developed will apply to this specification, but their use is not included as several important standards are not yet available (in particular, security policy declarations).

4.2. Data Objects

It is often necessary to pass data to operations. Wherever possible this specification defines typed data objects as the transport mechanism of such data. Property lists are also defined for vendor or application specific data extensions. Producers employing these extensions SHOULD provide typing information for the extended data items. This allows Consumers to provide type checking outside of that done by typical interface layers. See Appendix A for more details on data objects.

4.3. Persistence and statefulness

This specification makes no assumption about the existence of persistence mechanisms at either the Producer or the Consumer. In the getMarkup and performInteraction calls, the markup parameters (interaction parameters) represent serialized conversational state if the Producer operates without local state. If the Producer utilizes local state, then it stores the conversational state (actual mechanism is out of scope), and returns an opaque sessionID to the Consumer for use during the lifetime of the session.

If the Consumer is operating in a stateless manner, then it may choose to employ standard HTTP mechanisms (cookies or URL-rewriting) to push the markup parameters or sessionID out to its client. If operating in a stateful manner, the Consumer may employ any number of persistence/caching mechanisms of varying degrees of sophistication.

The nature of the conversation between the client and the Consumer, for purposes of this section, is considered to be out of scope. This should not be taken to mean that information about the client, including user profile data, is opaque to the Producer. There are many use cases for which user identity must be conveyed to the Producer. Also, a stateful Producer can be expected to relate its private conversational state with the specific client.

4.4. Two-phase protocol

This specification attempts to account for both isolated interactions between a Consumer and a Producer, and also those interactions that may cause state changes in other entities the Consumer aggregates from the same Producer. Common causes of such shared state include use of a common backend system (eg. database) and Producer mediated sharing. For these reasons, there is a “two-phase” capability built into the protocol. Use of this capability is optional and entirely dependent on the Consumer’s ability and desire to take advantage of it.

In a two-phase interaction, the Consumer first invokes the entity at the Producer, which the client directly interacted with through the performInteraction interface, and MAY block until receipt of a response. Those Consumers interacting with the transparent state of an entity MAY further update the entity’s state. The Consumer MAY then invoke those entities it is aggregating through the getMarkup operation.

Interaction semantics are well defined across the spectrum of interaction styles supported in the protocol. In other words, the results of the Consumer invoking a Producer, regardless of whether it may have side effects in other entites, is well-defined regardless of whether the performInteraction invocation is blocking or non-blocking, and regardless of the order in which the Consumer does the getMarkup invocations.

Side-effects that may cross Producer boundaries are out of scope for this version of the specification, though mechanisms to standardized such interactions are intended for future versions.

5. Self-description

A Producer may be discovered in many ways. Some of these (eg. UDDI
 or WSIL
) provide a means by which the capabilities of the service may also be discovered. Other discovery mechanisms (eg. emailed URL to a properly enabled browser) do not expose these capabilities. This operation provides a means by which a Consumer MAY discover those capabilities in a discovery mechanism agnostic way. It also provides the means by which a Producer MAY provide information about its capabilities in a context-sensitive manner (eg. registration may be required to discover the full capabilities of a Producer).

serviceDescription = getServiceDescription(handle);

Where:

· handle is an opaque reference that sets the context for the returned description. This handle may refer to the Consumer’s registration with the Producer or even a particular configured entity. If the supplied handle references an entity, the Producer MUST return the service description for that entity. If the supplied handle references a Consumer registration, the Producer MUST return the service description for access to itself within the context of that Consumer registration. If a null handle is supplied, the Producer MUST at least return the information required of a Consumer in order to register.

· serviceDescription is an extensible data structure described in Appendix A. This includes various descriptive elements relevant to the supplied handle.

For Producers managing access to a set of entities, this operation MUST return the appropriate WSDL document for interacting through the supplied handle. In all cases, passing a null handle returns the WSDL for the base Producer service appropriate for an unregistered Consumer. [R300] [R301][R303].

6. Life Cycle States

Assumptions:

In general the Producer is a web service endpoint exposing for one or more entities that generate markup and handle actions resulting from interactions with that markup. How these entities are implemented and managed is not defined by this specification, though it is anticipated that the model of how requests are conveyed to the entities by the Producer will be strongly influenced by this specification.

State 0: Producer Unknown

The Consumer has no knowledge that the Producer exists. From this state the Consumer transitions to the Known state via discovery; namely by learning the location of the Producer.

State 1: Producer Known

In this state the Consumer knows the location of the Producer. From this state the Consumer can transition back to the Unknown state, but typically transitions to the Active state through a process called registration. Additionally, this is the earliest state at which the Consumer MAY request a Producer to describe itself. This ability is present in all states other than Unknown.

State 2: Producer Active

Most of the interesting things happen while the Producer is in the Active state. This is where both page designers and users can interact with the Producer.

7. Lifecycle Interfaces

7.1. Types of Stateful Information

Because WSIA - WSRP are connectionless interfaces (as are all Web service interfaces), the Producer must be able to return information to the Consumer, with the understanding that this information will be sent back to it. Two types of stateful information exist:

1. Conversation related: Stateful information whose scope is related to some scope of the conversation (set of web service invocations) between the Consumer and Producer. This stateful information may be represented in two ways:

a. Consumer stored: The actual state is returned to the Consumer as an opaque string this specification refers to as markupParams.

b. Producer stored: A reference to this information is returned by the Producer, which expects to get it back for all operations within this scope. This specification refers to this type of information as a Session and the opaque reference as a sessionID.

Example: The page the user is viewing. The row in the table the user scrolled to. In essence, any information typically stored in App Server “session” objects by web applications.

2. Entity specific: Information that a Producer uses to connect a Consumer to a known entity. This may vary from a set of data to a reference to a particular ‘object’ the Producer is managing in addition to a set of data for that object’s use. The Producer may be willing to persist some subset of this stateful information and should indicate what belongs to that subset. The Consumer may exert control over the use of this stateful information such that it is scoped to the page, the End-User, the Consumer or to a persistent model. This specification refers to this type of information as an Entity and the opaque reference as an entityHandle.

Note that the above indicates neither the mechanism nor the amount of information to be passed between Producer and Consumer.

7.2. Information Passing Mechanisms

All information passing enabled by this specification is between exactly one Producer and one Consumer. Any sharing of information within a particular Producer service is outside the scope of this specification. If the Consumer wants the information to be shared by multiple Producer services, the Consumer must “mediate” this sharing (again, using means that are outside the scope of this version of the specification).

7.3. Registration

Registration describes the transition between Producer state 1 (known) and state 2 (active), the Consumer actively establishes a relationship with the Producer. This relationship will be referenced via an opaque handle in subsequent invocations the Consumer makes of the Producer within this relationship. Both the Consumer and the Producer are free to end this relationship at any time. The Consumer MAY end the relationship via an explicit call to releaseHandles() method, whereas the Producer MAY end the registration by invalidating the registration identifier.

consumerContext = registerConsumer(registrationData);
Where:

· registrationData provides the means for the Consumer to supply the data required for registration. This extensible data structure is defined in Appendix A.

· consumerContext is an extensible data structure defined in Appendix A. In particular, this includes an opaque reference consumerHandle to the established relationship. This data structure MUST be supplied in subsequent invocations.

The returned consumerContext is used in all subsequent invocations to reference this registration. If the Producer does not support registration, it returns null. It is then valid to pass such null to subsequent methods that require a consumerContext. If the registration fails for other reasons (e.g. authentication)
a fault message MUST be thrown indicating this to the Consumer.

After releasing the consumerHandle all handles created within the context of the consumerHandle become invalid. [R500][R501][R503]

The Consumer must persistently store the consumerHandle. If the Consumer cannot persist the handle it must release the consumerHandle using the releaseHandles() method when exiting the current conversation.

One Consumer can register itself multiple times to a particular Producer with potentially different settings (eg. security settings) resulting in multiple consumerHandles. [R351]

consumerContext = modifyConsumer(consumerContext, registrationData);
This operation provides means for the Consumer to modify a relationship with a Producer where:

· consumerContext A context for an already existing registration. [R353]
· registrationData provides the means for the Consumer to supply the modified data. The base for this extensible data structure is defined in Appendix A.

· A consumerContext is returned since the Producer MAY store state for this registration in this structure for the Consumer to supply on future invocations. The Producer MUST NOT modify the consumerHandle contained within this data structure.
7.4. Entities

Producers MUST expose 1 or more logically distinct ways of generating markup and dealing with interaction with that markup. This specification calls these Entities. The Producer MUST declare the entities it is exposing in its service description. This declaration contains a number of descriptive parameters, in particular it includes an entityHandle that Consumers may use to refer to this “ProducerOfferedEntity”.
In addition to the ProducerOfferedEntitys, a Consumer MAY request a unique configuration of one of these entities either in an opaque manner (eg. the ‘edit’ button common on portal pages which invokes an entity generated page for setting the configuration) or use property definitions found in the entity’s metadata to configure it in a transparent manner.

This operation provides means for the Consumer to request the creation of an entity the Producer has indicated it exposes for interaction for the purpose of generating a new configuration of that entity.

entityContext = createEntity(consumerContext,

 entityHandle,

 entityProperties);
Where:

· consumerContext is an extensible data structure (defined in Appendix A) which carries contextual information the Producer MAY use when establishing the new entity. For example, this includes references to the Consumer registration that may be useful for access control purposes.
· entityHandle is an opaque reference to an entity, either as offered by the Producer or one the Consumer has configured previously. The initial state of the new entity MUST be equivalent to the state of the entity this handle references.
· entityProperties allows the Consumer to immediately modify the state of each newly created entity. This extensible data structure is defined in Appendix A.

· entityContext is an extensible data structure defined in Appendix A which will provide, among other things, the opaque reference the Consumer MUST use to refer to the newly configuration.

The returned entityContext is available for use in subsequent invocations to identify the configured entity. No relationship between the entities so created is defined by this specification, though they all MUST be scoped by the consumerHandle supplied in the consumerContext of this invocation. When necessary throughout this specification, the entity a Consumer configures through use of this operation will be referred to as a “ConsumerConfiguredEntity”.

This operation provides means for the Consumer to request modification to the state of a configured entity.

entityContext = modifyEntity(consumerContext,

 entityContext);
Where:

· consumerContext is an extensible data structure (defined in Appendix A) which carries contextual information.
· entityContext contains an entityHandle as a reference to the ConsumerConfiguredEntity which this invocation seeks to modify. It also contains an array of properties the Consumer is supplying in order to modify the state of the entity.
· The returned entityContext is an extensible data structure, defined in Appendix A, which includes the opaque reference (entityHandle) the Consumer MUST use to refer to the configuration. The Producer MAY NOT generate a new entityHandle as a result of processing this invocation.

This operation provides a means for the Consumer to request a Producer release a set of handles, in which case the Producer may dispose of any related resources and invalidate the handles.

releasedHandles[] = releaseHandles(handles[]);

Where:

· handles[] is an array of references the Consumer will no longer use and is therefore requesting the Producer to invalidate.

· releasedHandles[] is an array of references the Producer has actually released.

The Producer should be aware that in some cases the Consumer may not invoke releaseHandles() (for example, if the Consumer application is abruptly terminated) and should implement a destruction mechanism for transient resources based on a timeout. The Producer MUST handle cases where the Consumer has included a handle in the passed array that was released in some other manner (eg. a timeout mechanism released it) without generating an error.

For efficiency reasons this operation takes an array of handles to be destroyed and returns an array of handles that have actually been destroyed. The returned array may be larger than the input array due to the implicit deletion of subordinate entities (e.g. releasing a consumerHandle leads to the releasing of all associated entity handles). To make sure that all handles that have been passed as parameters have been released the Consumer must check if the output array includes all handles from the input array. Processing the array of handles MUST NOT generate an error unless the Consumer does not have the authority to release handles which were included in the array (this statement does not exclude the possibility of general runtime errors that may occur on any SOAP invocation).

8. Generating Markup and Processing Interactions

As user facing web services, the core aspect of a WSIA or WSRP compliant service includes the generation of markup which is to be used to represent the current state of an entity to an End-User and the processing of interactions with that markup.

This specification includes several signatures for these operations in order to support Producers of varying sophistication.

8.1. Single Page / no Interactions

This signature is useful when a Producer only exposes a set of entities which maintain no state at all (ie. publish only 1 page with no user interactions).

markup= getMarkup(consumerContext,

 entityHandle);
Where:

· consumerContext is an extensible data structure, defined in Appendix A, with a set of references the Producer MAY use for generating the markup.

· entityHandle is an opaque reference to the entity the Producer MUST use for generating the markup.

· markup is the generated page.

8.2. No local state

These signatures are useful when a Producer only exposes a set of entities which maintain no local state (ie. any state is pushed to the Consumer as markup parameters).

markupParams = performInteraction(consumerContext,

 entityContext,

 interactionParams);

Where:

· consumerContext is a data type defined in Appendix A with a set of references the Producer MAY use when generating the markup.
· entityContext is an extensible data structure, defined in Appendix A, which includes a reference to the entity the Producer MUST use for generating the markup.
· interactionParams is an opaque string encoded when the markup was generated which an End-User interaction has caused to be sent to the Consumer.

· markupParams is an opaque string that provides the state information the entity uses to generate markup. It is the Consumer’s responsibility to supply this string both when requesting the entity initially generate a page and on page refresh.

 markupResponse= getMarkup(consumerContext,

 entityContext,

 markupParams);

Where:

· consumerContext is a data type defined in Appendix A with a set of references the Producer MAY use when generating the markup.
· entityContext is an extensible data structure, defined in Appendix A, which includes a reference to the entity the Producer MUST use for generating the markup.

· markupResponse is an extensible data structure, defined in Appendix A, which includes:
· markupParams: an opaque string that provides the state information the entity uses to generate markup. It is the Consumer’s responsibility to supply this string both when requesting the entity initially generate a page and on page refresh.

· markup: the generated page.
[YT] I think getMarkup should also return markupParams, Since there is no way we can say that the state is constant between different calls to getMarkup (for example the state can hold the last time getMarkup was called. Wasn’t markupParams supposed to be a DataObject? Otherwise it is a markupParam (in singular)… I will make more use of this below.
[YT] I also don’t see why the above methods do not receive the requestContext. I don’t think it is needed only if there is a local state.
8.3. Local state

These signatures are useful when a Producer exposes entities which do maintain local state (ie. sessions) and therefore only push an opaque ID for looking up this state to the Consumer.

interactionResponse = performInteraction(consumerContext,

 entityContext,

 requestContext)
Where:

· consumerContext is a data type defined in Appendix A with a set of references related to the Consumer which the Producer’s entities MAY use for generating the markup.

· entityContext is an extensible data structure, defined in Appendix A, which includes a reference to the entity the Producer MUST use for processing the interaction.

· requestContext is a data type defined in Appendix A with a set of references related to the current request which the Producer MAY use when processing the interaction.
· interactionResponse is an extensible data structure, defined in Appendix A, which includes:
· sessionID: the handle the Producer uses for looking up local state. This will be null until the Producer has a need for such local state. The invocation triggering that need will generate an ID and return it to the Consumer. The Consumer MUST supply this ID on subsequent invocations.

· markupParams: an opaque string that provides the state information the entity uses to generate markup. It is the Consumer’s responsibility to supply this string both when requesting the entity initially generate a page and on page refresh.

markupResponse = getMarkup(consumerContext,

 entityContext,

 requestContext);
Where:

· consumerContext is a data type defined in Appendix A with a set of references the Producer MAY use for generating the markup.

· entityContext is an extensible data structure, defined in Appendix A, which includes a reference to the entity the Producer MUST use for generating the markup.
· requestContext is a data type defined in Appendix A with a set of references related to the current request which the Producer MAY use for generating the markup.

· markupResponse is an extensible data structure, defined in Appendix A, which includes:

· sessionID: the handle the Producer uses for looking up local state. This will be null until the Producer has a need for such local state. The invocation triggering that need will generate an ID and return it to the Consumer. The Consumer MUST supply this ID on subsequent invocations.

· markupParams: an opaque string that provides the state information the entity uses to generate markup. It is the Consumer’s responsibility to supply this string both when requesting the entity initially generate a page and on page refresh.

· markup: the generated page.
[YT] It is not clear where the consumer sends the sessionID back to the producer. I believe that 8.3 and 8.2 can be folded into one case, and the sessionID is just another property in the markupParams.
9. Transparent State

All state in the previous operational signatures was opaque to the Consumer (eg. either as markupParams or a sessionID). In addition, this specification includes means by which a Producer MAY publish information about state in an entity specific manner. This is enabled through Properties which are declared in the metadata specific to an entity. Each property declaration includes a name, datatype (default = xsd:string) and a scope (default = Session). The following operations enable the Consumer to interact with this transparent portion of an entity’s state.

This first set of signatures apply when a Consumer wishes to set properties related to the configuration or personalization of the entity (eg. scope was specified as Entity). Since these properties do not require the existence of a session, one is not supplied.

property[] = setProperties(consumerContext,

 entityContext);
[RT: distinction between this signature and modifyEntity?]

Where:

· consumerContext is a datatype defined in Appendix A with a set of references the Producer MAY use for locating the current state of an entity. This includes a flag indicating whether or not the Consumer is interested in receiving back the current transparent state of the entity as a property array.

· entityContext is an extensible data structure, defined in Appendix A, which includes a reference to the entity the Consumer is setting properties on as well as the properties being set.
· property[] is an array of properties. If the flag in the consumerContext parameter indicates the Consumer is interested in the current transparent state settings, the entity will return these as a property array.

property[] = getProperties(consumerContext,

 entityContext,

 name[]);

Where:

· consumerContext is a datatype defined in Appendix A with a set of references the Producer MAY use for locating the current state of an entity.

· entityContext is an extensible data structure, defined in Appendix A, which includes a reference to the entity for which the Consumer is requesting current property settings.

· name[] is the array of property names the Consumer is requesting. A null array MUST be treated as a request to enumerate the current transparent state of the entity.

· property[] is an array of properties.
[RT]Note: The following need further discussion as to whether they are to be included in this specification.

The following enable setting transparent runtime state on an entity.

interactionResponse = setProperties(consumerContext,

 entityContext,

 requestContext);
Where:

· consumerContext is a datatype defined in Appendix A with a set of references the Producer MAY use for locating the current state of an entity. This includes a flag indicating whether or not the Consumer is interested in receiving back the current transparent state of the entity as a property array.

· entityContext is an extensible data structure, defined in Appendix A, which includes a reference to the entity the Producer MUST use for processing the invocation.

· requestContext is a data type defined in Appendix A with a set of references related to the current request which the Producer MAY use for processing the request.

· interactionResponse is an extensible data structure, defined in Appendix A, which includes:

· sessionID: the handle the Producer uses for looking up local state. This will be null until the Producer has a need for such local state. The invocation triggering that need will generate an ID and return it to the Consumer. The Consumer MUST supply this ID on subsequent invocations.

· markupParams: an opaque string that provides the state information the entity uses to generate markup. It is the Consumer’s responsibility to supply this string both when requesting the entity initially generate a page and on page refresh.

· properties: an array of property settings for the entity.
property[] = getProperties(consumerContext,

 entityContext,

 requestContext,

 name[]);

Where:

· consumerContext is a datatype defined in Appendix A with a set of references the Producer MAY use for locating the current state of an entity. This includes a reference to the entity whose properties are being requested.

· entityContext is an extensible data structure, defined in Appendix A, which includes a reference to the entity the Producer MUST use for processing the request.

· requestContext is a data type defined in Appendix A with a set of references related to the current request which the Producer MAY use for processing the request.

· name[] is the array of property names the Consumer is requesting. A null array MUST be treated as a request to enumerate the current transparent state of the entity.

· property[] is an array of properties. As a parameter, this array allows the Consumer to pass state to the entity. If the flag in the consumerContext parameter indicates the Consumer is interested in the current transparent state settings, the entity will return these as a property array.

interactionResponse = performInteraction(consumerContext,

 entityContext,

 requestContext)
Where:

· consumerContext is a data type defined in Appendix A with a set of references related to the Consumer which the Producer’s entities MAY use for generating the markup. This includes a flag indicating whether or not the Consumer is interested in receiving back the current transparent state of the entity as a property array.

· entityContext is an extensible data structure, defined in Appendix A, which includes a reference to the entity the Producer MUST use for processing the interaction.
· requestContext is a data type defined in Appendix A with a set of references related to the current request which the Producer MAY use for processing the interaction.

· interactionResponse is an extensible data structure, defined in Appendix A, which includes:

· sessionID: the handle the Producer uses for looking up local state. This will be null until the Producer has a need for such local state. The invocation triggering that need will generate an ID and return it to the Consumer. The Consumer MUST supply this ID on subsequent invocations.

· markupParams: an opaque string that provides the state information the entity uses to generate markup. It is the Consumer’s responsibility to supply this string both when requesting the entity initially generate a page and on page refresh.

· properties: an array of property settings for the entity.

propertyDescription = getPropertyDescription(handle);

Where:

· handle provides a context the Producer MAY use to determine which set of properties are to be described.

· propertyDescription provides the metadata described in Appendix A for each of the properties scoped by the supplied handle.

10. Security

Note: This section does not yet reflect the decision from the Face to Face to focus on transport level security until appropriate standardization of how document level security standards should be used in a SOAP environment AND how to specify exchanging security policies, capabilities and requirements.

For a good summary of security concerns, reader is referred to the Security and Privacy Considerations document produced by the XML-Based Security Services Oasis TC. The following summary may also be useful.

10.1. Authentication

Authentication is the ability of a party to a transaction to determine the identity of the other party in the transaction. In general this may be accomplished either at a transport level using SSL/TLS or IPSEC or at a document level using XML Digital Signatures

10.2. Confidentiality

Confidentiality means the contents of a message may only be by the desired recipients of the message and not others who may happen to receive it. This may be accomplished to a certain extent using transport layers such as SSL/TLS, but in general the message must then be readable at the Consumer in order to properly route it to the correct Producer. Message level confidentiality may be achieved using XML Encryption. Properly done, this CAN provide client-Producer confidentiality.

10.3. Integrity

Integrity means that the contents of a message have not been altered by any unauthorized parties during transmission. In a two party transaction, this means that the message was not altered between the time it left the sender and the time it arrived at the receiver. In a transaction where the message is also processed by one or more intermediaries as part of an overall business process, integrity means that no alterations were made to the message other than those specifically intended as part of the business process. Integrity can be assured through the use of secure transport when no intermediaries are involved. XMLDigital signatures on the message documents provide a means of verifying integrity when intermediaries are involved.

10.4. Message Replay

Message replay is a very basic form of a Denial-of-Service attack. The key to its success is when the cost to process a message is larger than the cost to send the message. The original message may have been a properly secured (eg. encrypted and signed) message that has been intercepted and is being sent to the Producer repeatedly. Producers concerned with this type of attack may want to consider an incrementing counter that can be checked prior to processing the content of a message. Note that transport layer security measures MAY be slightly better than message level techniques at denying message replay attacks.

10.5. Missing Message

This is related to the ability of a party on the network to intercept and delete a message (either request or response). Client code may attempt to recover from such an attack by detecting that no response was received for a request. Reliable transport mechanisms such as HTTPR may also be employed to mitigate these attacks.

10.6. Protocol

WSRP-based systems will be exposed to many of the same security issues that today’s web services-based systems are facing; see Appendix B for a summary description of some of the most commonly discussed security concerns. It is the goal within WSRP to leverage existing standards efforts focusing on web services security as much as possible, and to identify solutions that provide the broadest possible interoperability based on widely used infrastructure components.

Existing approaches and standards for addressing security issues can be divided into two primary categories: transport-level mechanisms and document-level mechanisms. The table below gives a summary of the standards in each area that are most relevant to WSRP, and the types of security issues each helps to address. It is important to note that the mechanisms described by these standards are typically used in combination in order to provide needed protection against the variety of possible security threats.

	Applicable Standard
	Security issue(s)

	Transport
	

	SSL/TLS(RFC2246)
	authentication, confidentiality, integrity;

	client certificates(x.509v3)
	authentication

	HTTP-Basic
	authentication(basic)

	Document
	

	WS-Security
	authentication, confidentiality, integrity

	XML-Signature
	integrity, authentication

	XML Encryption
	confidentiality, integrity

	SAML
	authentication, integrity, access control

Security and Lifecycle States

Section 4 of this document describes lifecycle states for WSRP services. Security mechanisms overlay these states as follows:

State 0: Unknown: no security mechanisms are involved at this point

State 1: Known: in this state, two security-related transactions MAY occur:

· A Consumer MAY obtain the service description. The service description includes information about the security mechanisms the Consumer needs to support in order to interact with the Producer. This information includes types of authentication tokens, signature algorithms, and encryption algorithms that are employed by the Producer. More details on these are given later in this section.

· A business relationship is established between the Producer and Consumer organizations. During the establishment of this business relationship, the Producer organization provides the Consumer organization with a unique Consumer name and credential (password or certificate). This exchange takes place outside the scope of the WSRP protocol. This credential is used for subsequent transactions in the Active state.

State 2: Active: Consumer registers and makes service requests. Security mechanisms used in this state MAY include:

· Transport-layer authentication of Consumer by Producer

· Transport-layer encryption of messages transmitted between producer and consumer(no intermediaries)

· Document-level authentication of Consumer by Producer using token in the SOAP header.

· Request messages digitally signed by the Consumer, validated by Producer

· Response messages digitally signed by Producer, validated by Consumer

MC: is the above going to be a common scenario? If this is supported, then registration must support ability for Consumer to identify to the Producer the signature algorithms it supports.CL: agree, a corresponding field is added to the consumerDataObject

· Parameter or personal data contained in request messages encrypted by the Consumer, unencrypted by the Producer

· Markup contained in response messages encrypted by the Producer, unencrypted by the Consumer

MC: Issue: if this above usage is supported, the registration operation will need to support the ability for the Consumer to identify to the Producer the encryption/decryption algorithms it supports.

CL: agree, a corresponding field is added to the consumerDataObject

The service description includes the necessary information to employ these mechanisms.

Transport-based Mechanisms

While SOAP messages(and by extension the WSRP protocol) may be carried over a variety of transport mechanisms, HTTP over SSL/TLS provides a high degree of interoperability as well as security and therefore will be given special consideration in this specification.

SSL/TLS
WSDL defines transport binding extensions which specify how SOAP messages are carried over HTTP, and the soap:address element defines the location of the service. An https address MAY be specified to indicate use of a secure connection. The underlying handshake protocol SSL/TLS executes handles server certificate exchange and is transparent to the WSRP protocol and service description.

SSL/TLS with Client Certificates

 Client certificates MAY be used with WSRP services. When a Producer requires a client certificate to establish an SSL/TLS connection, the handshake protocol SSL/TLS executes explicitly includes a server request for the client certificate. Client certificates are obtained during the establishment of business relationship between producer and consumer, and are deployed for use by the container hosting the Consumer application. This is transparent to the WSRP protocol and service description.

Note that client certificates MAY also be used in document-level mechanisms, for example with digital signatures. The use of that mechanism is discussed below.

HTTP Basic Authentication

Producers MAY authenticate Consumers via HTTP Basic authentication. When used with SSL/TLS, HTTP Basic provides an authentication solution that is protected from malicious tampering. To use HTTP Basic authentication, the Consumer’s WSRP proxy component needs to include user/password in the HTTP request header with all service requests. The user/password values are obtained during the establishment of business relationship between Producer and Consumer.

[CL: can this be done easily using standard SOAP stacks? The HTTP request is normally issued by the SOAP implementation.]

The Consumer is responsible for managing HTTP Basic auth credentials and the relationship between a set of auth credentials and a WSRP service. This mechanism is transparent to the WSRP protocol and service description.

Other Transport Mechanisms

While WSRP transactions may be executed over other transport mechanisms, the security implications of such configurations are beyond the scope of this document.

MC: question/issue: don’t currently have metadata for Producer to direct Consumer to use SSL/TLS for Consumer<-> client connections. Though this can’t be enforceable, it’s still probably a good idea to have in the service metadata. Need to further explore implications of this on the Consumer.

Document-based Mechanisms

Current Standards

WSRP Services MAY use document-based techniques for achieving security objectives. The current document-based standards which are most applicable to WSRP are:

1. XML-Signature provides a standard method to create a digital signature over contents of an XML document and to include an XML representation of that signature in the document. In the case of WSRP, the document of interest is a SOAP message containing a WSRP request or response.

2. XML Encryption provides a standard method to encrypt elements or element data within an XML document, and to include an XML representation of the encrypted data within the document(again, a WSRP SOAP message).

3. WS-Security provides the following:

a. A mechanism for including security information in the header of a SOAP message which can be targeted at a specific receiver. This is important for supporting WSRP scenarios where intermediaries are involved.

b. specific security token element definitions(UsernameToken, Binary tokens, token references)

c. ‘profile’ for applying XML-Signature and XML Encryption to SOAP messages

These standards predominantly involve the attachment of additional security-related elements to the header of WSRP SOAP messages and therefore do not directly interact with the WSRP protocol itself. While XML Encryption replaces data objects passed over the WSRP protocol with encrypted versions of those data objects, it does not have a direct impact on the protocol and only requires that the message recipient decrypt the data before it can be processed. Recommendations/constraints are given below which are aimed at maximizing the use of existing SOAP infrastructure, simplifying the use of these mechanisms, and therefore encouraging more rapid adoption of WSRP.

In order for these standards to be used with WSRP, the following are required:

- the Producer and Consumer MUST be capable of processing WS-Security elements in SOAP headers

- the Producer MUST describe the information it expects the Consumer to place in the security header

[CL: how?]

- the Producer MUST describe the data objects it expects to be encrypted

[CL: how? Should this be on a per request basis or part of the metadata? There are maybe applicable standards upcoming.]

- the Producer MUST describe the algorithms it supports for signature and encryption

[CL: is it sufficient to do this during the registration step as proposed by this spec?]

- the Producer and Consumer MUST have a common set of algorithms/capabilities for exchanging signed & encrypted data that complies with XML-Signature and XML Encryption.

Since there are no current standards for describing the above types of policy information, WSRP defines basic extensions to WSDL that will capture this information and in some cases constrain the use of these mechanisms. In the event that a standard emerges for this need, WSRP will consider it for adoption.

Service Description Extensions

The following describes service-level capabilities which MAY be included as part of the WSRP service description:

- <Signature> element: since there are many possibilities for signing elements of a WSRP message and due to the lack of a standard description mechanism, the use of this mechanism is limited to signing of the Body element of the WSRP SOAP message. When a service specifies <signature> in its service description, a Consumer MUST include a XML-Signature compliant digital signature in a <wsse:security> block in the SOAP header of a WSRP service request.

- <SignatureAlgorithms> lists signature algorithms supported by the Service. XML-Signature provides identifier URIs for required/recommended algorithms. The Consumer may select from this list of algorithms to create the signature.

- <EncryptionAlgorithms> lists encryption algorithms supported by the Service. XML Encryption provides identifier URIs for required/recommended algorithms. The Consumer selects from this list when encrypting property/parameter data.

[CL: do you see this as part of the metadata, aka extension to the service’s WSDL file or as part of the data object that is returned from the self description methods? Or both?]

MC: Issue: how does producer declare or constrain key requirements? Or is that even necessary? As long as the signer provides suitable key info or reference with the signature, is anything more required? I.e. signer may include and reference a certificate for the key, with no required directive from the service description.

MC: question: outside the context of support for digital signatures and encrypted parameter data, what support for the other WS-Security tokens is required and how to describe? (i.e. UsernameToken, BinarySecurityToken, etc…

MC: is this going to be overly constraining? Other approaches that would allow greater flexibility?

MC: issue: need to examine scenario where Producer signs Response back to the Consumer..

The following describes property/parameter-level capabilities which MAY be included as part of the WSRP service description

- @Encrypt: this is an optional attribute that may be attached to the property metadata element. When this attribute is present, Consumer MUST encrypt the element data for the given property. In addition, the Consumer MUST include the encryption method in the encrypted data element so that the Producer will know how to decrypt the data.

[CL: is there the assumption that all properties will have to be defined in the metadata?]

MC: issue: similar key issue here as with signatures

MC: question: any issues to discuss regarding interaction between encryption processing and signature processing?

MC: issue: need to examine scenario where producer encrypts response markup…

Access control

Roles

WSRP Standard Role Definitions

Custom Role Definitions

User profiles

11. Markup

11.1. URL Encoding

Note: This needs to reflect the face to face decision to carry both Consumer URL rewriting and Producer dynamic URL writing (scenarios 2&4) from the related email threads.

11.2. Namespace Encoding

11.3. Markup Fragments

12. Appendix A – Data Structures.

It is often necessary to pass data to operations. Wherever possible this specification defines a typed data object as the transport mechanism for such data. Extensibility elements are also provided for vendor or application specific data extensions.

In order to allow extensibility of any data object we define a base class for all data objects that simply includes an untyped property list and a security modifier.

Optional parameters are marked with [O], required parameters with [R]

The defined data structures passed in messages to operations are:

[RT: Do these want to be written in this OO style (allows any of this first set to be passed to releaseHandles()) or a more IDL format that fully specifies the data members of each structure?]

Handle extends String

ConsumerHandle extends Handle

EntityHandle extends Handle

ProducerOfferedEntityHandle extends EntityHandle

ConsumerConfiguredEntityHandle extends EntityHandle

SessionID extends Handle

Property

[R] String
name

[O] String
datatype

[O] String
value

[O] String
scope

[O] boolean
required

Members:
name
Name of the property, must not be null

datatype
Definition of the Property’s datatype (default is “xsd:string”). This data member SHOULD only be specified in the metadata that describes a property to the Consumer and not on any invocation that sets properties.

value
String representation of the property’s value. The interpreter is responsible for serializing and deserializing the correct value type.

scope
Scope for this property. Default value is “Session”.

required
Boolean to indicate whether this property is required. Default value is “false”.

DataObject

[O] Property[]
properties
Members:
properties
List of WSRP-WSIA properties. The list is open ended and may be null. The names of the properties included in this list MUST be unique. [R357][R360]

RegistrationData

[R] Property
(name = consumerName)

[O] Property
(name = consumerVendor)

[O] Property[]
registrationProperties
Members:
consumerName
Globally unique name that identifies the consumer. [R355]

consumerVendor
Name and version of the portal vendor. [R356]

registrationProperties
List of registration properties. The names of these properties MUST be from the set declared in the RegistrationData array from the Producer’s service description.

ConsumerContext extends DataObject

[R] Handle
consumerHandle

[O] String
consumerState

[O] int
expires

[O] boolean
sendTransparentState

Members:
consumerHandle
An opaque reference to the Consumer-Producer relationship. This opaque reference is generated by the registerConsumer() operation. [R355]

consumerState
An opaque string the Producer MAY use to store the state for this Consumer registration.

expires
An int value for the number of seconds before the state will be “timed out” by the Producer and the resources reclaimed. A value of –1 means the Producer does not time out this state.
[YT] This should be a timestamp rather than a int. Otherwise we have network latency effects, and also when the consumer sends it back to the producer, it can no longer know since when this number is.

sendTransparentState
This boolean allows a Consumer to indicate that it is interested in the transparent state of the entity. When set to true, the Producer SHOULD include the transparent state of the entity in any return messages that permit its inclusion. Default value is false.

EntityContext extends DataObject

[R] Handle
entityHandle

[O] Property[]
entityProperties

[O] String
entityState

[O] int
expires

[O] boolean
modifiedProperties

Members:
entityHandle
An opaque reference to the entity targeted by the invocation. This may either be a ProducerOfferedEntity or a ConsumerConfiguredEntity.

entityProperties
List of entity properties. The names of these properties MUST be from the set declared in the entityProperties array from the EntityType data element in the service description.

entityState
An opaque string the entity MAY use to store its entire state.
[YT] This means the consumer MUST persist this information right? If this is true than we need to implicitly declare this in the spec.

expires
An int value for the number of seconds before the state will be “timed out” by the Producer and the resources reclaimed. A value of –1 means the Producer does not time out this state.

modifiedProperties
A boolean a Consumer MUST set if supplying modified values in the properties field. If set to true, the Producer MUST process the supplied properties as if modifyEntity() had been invoked immediately before the current invocation.

EntityProperties

[R] Property[]
entityProperties

Members:
entityProperties
List of entity properties. The names of these properties MUST be from the set declared in the entityProperties array from the EntityType data element in the service description.

RequestContext extends DataObject

[R] Handle
userHandle

[R] String
sessionGroupID

[R] String
userAgent

[R] String
deviceInfo

[R] String
locale

[O] String
markupParams

[O] Integer
currentMode

[O] Integer
previousMode

[O] Integer
windowState

[O] String

characterSet

[O] String
markupType

[O] Property[]
mimeHeaders

[O] Property[]
clientParameters

[O] ClientData
clientData

[O] String
uploadData

[O] boolean
secureClientCommuncations

Members:
userHandle
An opaque reference to the End-User’s profile (separately supplied).
[YT] We still need to define where and when this profile is sent. Maybe it should even be part of this structure. (not the full profile but the specific needed properties).

sessionGroupID
An reference supplied by the Consumer which the Producer MAY use when establish a session for an entity storing local state. This reference MAY be the same for several entities. In this case the Producer SHOULD establish a session with both private and shared areas for the entity’s use.
[YT] This wording seems to indicate that since consumers MAY send this, producers MUST implement this feature, which I think is unreasonable. I think we should change it to something like: “the Producer MAY establish…”. The producer may also be required to indicate this beahviour in its metadata.

userAgent
String identifying the UserAgent of the End-User.

deviceInfo
Type of device rendering the markup to the End-User.

locale
Locale to generate the markup for.
[YT] Aren’t the last three part of the user’s profile actually? Some consumers may take the user’s language not from the HTTP request but from his profile definitions.

markupParams
Opaque state for this entity from the immediately preceeding invocation of the Producer.

currentMode
The mode the entity should render its output for (e.g. view, edit, config, help, design, preview). See definition of these constants elsewhere in this appendix.

previousMode
The previous mode (if any) the entity rendered its output for.

windowState
The state of this entity’s virtual window relative to other entities on the aggregated page (e.g. normal, minimized, maximized). See definition of these constants elsewhere in this appendix.

characterSet
characterset used for encoding (e.g. UTF8, maybe different from the character set used for the transport.

markupType
Markup type to generate (e.g. HTML, XHTML, cHTML).
[YT] Should we have this explicitly? Isn’t it a factor of the userAgent, deviceInfo, and mimeHeaders?

mimeHeaders
Mime headers of the initial request.
[YT] Shouldn’t this be httpHeaders?

clientParameters
Request parameters of the initial request. Name/value pairs from a client post are parsed into this list of properties.

clientData
Data defining the current client.

uploadData
Data blob if a file is to be uploaded [CL: Axis limits soap messages to 500K.]

secureClientCommunications
Is the client-Consumer connection secured?

[YT] Should we have this explicitly? Isn’t it a factor of the mimeHeaders?

InteractionResponse extends DataObject

[O] String
markupParams

[O] String
sessionID

[O] int
expires

[O] int
newWindowState

[O] int
newMode

[O] String
redirectURL

Members:
markupParams
Opaque respresentation of state which the entity is returning to the Consumer. The Consumer MUST supply this on the next invocation such that the correct state of the entity is used when processing that invocation.

sessionID
Opaque handle to Producer stored state for the entity.

expires
An int value for the number of seconds before the state represented by markupParams or SessionID will be “timed out” by the Producer and the resources reclaimed. A value of –1 means the Producer does not time out this state.

newWindowState
The window state the entity needs for its next markup generation.
[YT] Do we allow the producer to change its window state? Isn’t that a consumer decision? Should we at least write that this is only a “recommendation” by the producer to the consumer? What does JSR 168 say?

newMode
The mode the entity needs for its next markup generation.

redirectURL
As a result of processing this interaction, the entity is redirecting the Consumer to a different URL.
[YT] I am not sure we are clear on the implications of allowing this. What happens on refresh? Once again, is this supported in JSR 168?
MarkupResponse extends InteractionResponse

[O] String
markup

Members:
markup
The markup to be used for visualizing the current state of the entity.

Description extends DataObject

[R] DocFragment
wsdldescription

ServiceDescription extends Description

[R] EntityType[]
entities

[O] Property[]
registrationData

EntityDescription extends Description

[R] EntityType
entity

EntityType extends DataObject

[R] String

name

[R] Handle

entityHandle

[O] URL

wsdlURL

[O] String[]

locales

[O] String[]

description // per locale

[O] String[]

titles // per locale

[O] String[]

roles

[O] String[]

keywords

[O] String[]

markupTypes // XHTML, WML, VoiceML, …

[O] Integer

modes

[O] Integer

viewStates

[O] boolean

cacheability

[O] Property[]

entityProperties

Members:
name
The name for the entity (e.g. “Stock Quote”). This is the name passed into either of the createEntities() operations.

entityHandle
The handle by which Consumers MAY refer to this offered entity.

wsdlURL
The URL for the WSDL description of this entity.

locales[]
The list of locales supported by the entitiy.

description[]
Descriptions of the entity for all supported locales. This SHOULD be displayed on selection dialogs, etc.

titles[]
Title for the entity for all supported locales.

roles[]
List of roles the entity can manage. Note: This support MAY be provided by the Producer service on behalf of the entity. The entity can freely define any role it wants, however there exists a set of predefined roles in this appendix. [R416]

keywords[]
Key words describing the entity which can be used for search, etc.

markupTypes[]
The different markup languages supported by the entity, e.g. HTML, XHTML, WML, VoiceXML, cHTML, …

modes
The modes that are supported by the entity (e.g. view, edit, config, help, design, preview). Mode constants are defined elsewhere in this appendix as factors of 2 such that this integer may represent the full set of supported modes as a bit-vector.
[YT] This is not extendable. This should be a String[] with some predefined constant values.

viewStates
The viewStates that are supported by the entity (eg. minimized, normal, maximized, …). These constants are is defined elsewhere in this appendix as factors of 2 such that this integer may represent the full set of supported viewStates as a bit-vector.

cacheability
Information on how caching may be applied, including expiry times and indication on whether content is personal or shared.[RT: Either this needs to become a structure of its own or the description changed to indicate it only reflects whether the document fragments may be cached at all]

entityProperties
List of properties the entity exposes as its transparent state.

(The complete list will have to be worked out by the markup subcommittee and may have to be in sync with the description that goes to UDDI directories).

MetaData

These can be placed in the WSDL description of the service/entity using the tag <wsia:metadata>. Child elements MAY include:

<wsia:roles>

<wsia:entity>

…

[RT: Do the metadata items from the structures above want to also be explicit element types here?]

Roles

	User
	Need some semantic definitions!

	Administrator
	

	PageDesigner
	

	
	

Constants

	1
	VIEW_MODE

	2
	EDIT_MODE

	4
	CONFIG_MODE

	8
	HELP_MODE

	16
	DESIGN_MODE

	32
	PREVIEW_MODE

	
	

	1
	VIEW_NORMAL

	2
	VIEW _MINIMIZED

	4
	VIEW_MAXIMIZED

	
	

	
	

	
	

	
	

� � HYPERLINK "http://java.sun.com/j2ee/" ��http://java.sun.com/j2ee/�

� � HYPERLINK "http://www.microsoft.com/net/" ��http://www.microsoft.com/net/�

� � HYPERLINK "http://www.w3.org/TR/SOAP/" ��http://www.w3.org/TR/SOAP/�

� � HYPERLINK "http://www.uddi.org/specification.html" ��http://www.uddi.org/specification.html�

� � HYPERLINK "http://www.w3.org/TR/wsdl" ��http://www.w3.org/TR/wsdl�

� http://www.ietf.org/rfc/rfc2119.txt

� � HYPERLINK "http://www.uddi.org/specification.html" ��http://www.uddi.org/specification.html�

� � HYPERLINK "http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html" ��http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html�

� � HYPERLINK "http://lcweb.loc.gov/standards/iso639-2/langcodes.html" ��http://lcweb.loc.gov/standards/iso639-2/langcodes.html�

�May return null

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Alternatively we could omit the security dependency here and define it only on the DataObject level

�Only one method is required here (the consumer just registers once).

Page 32 of 33

