
WSIA - WSRP Joint Specification

Version 1.0

8/15/2002

[image: image1.png]OASIS

WSIA - WSRP Joint Specification
Working Draft 0.4, 15 August 2002

Document identifier:

Draft-WSIA-WSRP_Core_Interface-v0.4 (Word)

Location:

http://www.oasis-open.org/committees/wsia
http://www.oasis-open.org/committees/wsrp
Editors:

Alan Kropp, Epicentric, Inc. <akropp@epicentric.com>

Carsten Leue, IBM Corporation <cleue@de.ibm.com>

Rich Thompson, IBM Corporation <richt2@us.ibm.com>

Contributors:

Chris Braun, Novell <cbraun@silverstream.com>

Jeff Broberg, Novell <jbroberg@silverstream.com>

Mark Cassidy, Netegrity <mcassidy@Netegrity.com>

Thomas Schaeck, IBM Corporation <schaeck@de.ibm.com>

Gil Tayar, WebCollage <Gil.Tayar@webcollage.com>
Abstract:

Integration of content and application into portals has been a task requiring significant custom programming effort. Typically, portal vendors or organizations running portals had to write special adapters to allow portals to communicate with applications and content providers to accommodate the variety of different interfaces and protocols those providers used. The OASIS Web Services for Remote Portals (WSRP) standard simplifies integration of remote applications and content into portals to a significant degree. Portal administrators can now pick from a rich choice of remote content and applications and integrate it in their portal simply with a few mouse clicks, without any programming effort.

To achieve this, the WSRP standard defines the new notion of pluggable, user-facing, interactive web services with a common, well-defined interface and protocol for processing user interactions and providing presentation fragments suited for mediation and aggregation by portals as well as conventions for publishing, finding and binding such services. By virtue of the common, well-defined WSRP interfaces, all web services that implement WSRP plug into all WSRP compliant portals without requiring any service specific adapters – few generic adapters on the portal side is sufficient to integrate any WSRP service.

Redevelopment of user interfaces for every integrator of a web service has also been a significant custom programming effort. The OASIS Web Services for Interactive Applications (WSIA) standard simplifies this integration effort through a standard set of web service interfaces allowing integrating applications to quickly exploit new services as they become available. The joint authoring of these interfaces by WSRP and WSIA allows maximum reuse of user facing, interactive web services while allowing the consuming applications to access a much richer set of standardized web services.

This joint standard layers on top of the existing web services stack, utilizing existing web services standards and will leverage the emerging web services standards (such as security) as they become available. The interfaces are defined using the Web Services Description Language (WSDL). Metadata and conventions for publishing services to UDDI directories and finding them in UDDI directories are also defined.

Status:

This draft is still at the level of an expert group spec. Various concepts continue to be debated. Points needing clarification as this evolves into the final specification are much appreciated and may be emailed to Rich Thompson.
If you are on the wsia@lists.oasis-open.org or wsrp@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the wsia-comment@lists.oasis-open.org or wsrp-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to wsia-comment-request@lists.oasis-open.org or wsrp-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

The errata page for this specification is at http://www.oasis-open.org/committees/xxx/yyy.

Copyright (C) OASIS Open (2002). All Rights Reserved.

Table of Contents

61
Introduction

61.1
Motivation

81.2
Portlets

91.3
Web Services

101.4
Web Services for Remote Portlets

121.5
WSRP Use Cases

121.5.1
Content Providers publishing WSRP Services

131.5.2
Portals publishing local Portlets for remote use

131.6
Exemplary Scenarios

131.6.1
SimpleProducer

141.6.2
SophisticatedProducer

141.6.3
SimpleConsumer

141.6.4
SophisticatedConsumer

141.6.5
Interaction between levels of sophistication

192
Terminology

193
General Interface Design Issues

193.1
Related Standards

193.1.1
Existing Standards

193.1.2
Emerging Standards

203.2
Data Objects

203.3
Types of Stateful Information

203.4
Information Passing Mechanisms

213.5
Event Handling

213.6
Persistence and statefulness

213.7
Two-phase protocol

223.8
Lifecycles

223.9
Scopes

223.10
Producer Mediated Sharing

233.10.2
Sessions

233.11
Interaction Lifecycle States

233.11.1
Assumptions:

233.11.2
State 0: Unknown

233.11.3
State 1: Known

243.11.4
State 2: Active

244
Self-description Interface

254.1
Relationship to UDDI

255
Lifecycle Interfaces

255.1
Registration

265.2
Entities

275.3
Environment Initialization

285.4
Releasing Resources

296
Markup Related Interfaces

296.1
Operations

316.2
Stateful Entity Scenarios

316.2.1
No State

316.2.2
Navigational State Only

326.2.3
Local state

326.3
Modes

326.3.1
VIEW Mode

326.3.2
EDIT Mode

336.3.3
HELP Mode

336.3.4
CONFIG Mode

336.3.5
DESIGN Mode

336.3.6
PREVIEW Mode

336.3.7
Custom Modes

336.4
Window States

336.4.1
MINIMIZED Window State

336.4.2
NORMAL Window State

336.4.3
MAXIMIZED Window State

336.4.4
Custom Window States

347
Published State Interfaces

368
Security

369
Markup

369.1
Encoding

369.2
URL Considerations

389.2.1
Consumer URL Writing

399.2.2
Producer URL Writing

399.3
Namespace Encoding

409.3.1
Producer Namespace Writing

409.3.2
Consumer offered resources

419.4
URL Writing Semantics

419.5
Markup Fragment Rules

419.5.1
HTML

429.5.2
XHTML

429.5.3
XHTML Basic

439.5.4
VoiceML

439.6
CSS Style Definitions

439.6.1
Links (Anchor)

439.6.2
Fonts

449.6.3
Messages

449.6.4
Sections

449.6.5
Forms

449.6.6
Menus

459.6.7
Entity

4510
User Information

4510.1
Default User Attributes

4610.2
Custom User Attributes

4611
Data Structures.

4711.1
Handle Types

4711.2
Property Type

4711.3
RegistrationData Type

4811.4
ConsumerContext Type

4911.5
EntityContext Type

4911.6
Markup Types

5111.7
Interaction Types

5211.8
Entity Metadata Types

5411.9
Description Types

5411.10
MetaData

5511.10
Roles

5511.11

5511.12
Constants

5612
Using UDDI

5612.1
Publishing WSRP Services to UDDI

5612.1.1
Public UDDI

5612.1.2
Private UDDI

5612.2
Finding WSRP Services in UDDI

5612.2.1
Public UDDI

5612.2.2
Private UDDI

5613
WSDL Interface Definition

6714
References

6714.1
Normative

70Appendix A. Use Cases

7014.1.1
Simple Service – View only

7114.1.2
Interactive Service with Persistent Entity State

7114.1.3
Interactive Service with both Entity and Session State

7214.1.4
WSRP Service with Registration / Deregistration

7314.2
WSRP Life Cycles

74Appendix B. Glossary

75Appendix C. Acknowledgments

77Appendix D. Revision History

78Appendix E. Notices

1 Introduction

Both Web Services for Interactive Applications (WSIA) and Web Services for Remote Portals (WSRP) are standards for user-facing, interactive presentation oriented web services. This specification defines the joint WSIA/WSRP interfaces. It is based on the requirements gathered by both committees and on the concrete proposals to both committees. The following section gives an overview of the applicability of the standard in a portal server environment. A similar overview applies outside the portal environment (typical for the WSIA use cases), but is omitted here due to nearly complete overlap of concepts and issues.

The standard accounts for the fact that Producer services may be implemented on very different platforms, be it as a Java/J2EE
 based web service, a web service implemented on Microsoft's .NET
 platform or a portlet published directly by a portal. Special attention has been taken to ensure this language independence. The standard enables use of generic adapter code to plug any Producer service into intermediary applications rather than requiring Producer specific proxy code.

These services are built on standard technologies including WSDL
, SOAP
, and UDDI
 and will leverage future Web Service standards, such as WS-Security and WS-Policy.

1.1 Motivation

Portal servers (portals) provide personalized access to information, applications, processes and people. Typically, portals get information from local or remote data sources, e.g. from databases, transaction systems, syndicated content providers, or remote web sites. They render and aggregate this information into composite pages to provide information to users in a compact and easily consumable form. In addition to pure information display, many portals also include interactive applications such as e-mail, calendar, organizer, banking, bill presentment, host integration, etc.

Different rendering and selection mechanisms are required for different kinds of information or applications, but all of them rely on the portal’s infrastructure and operate on data or resources owned by the portal, like user profile information, persistent storage or access to managed content. Consequently, most of today’s portal implementations provide a component model that allows plugging components, referred to as portlets, into the portal infrastructure. Portlets are user-facing, interactive web application components rendering markup fragments to be aggregated and displayed by the portal. Figure 1 shows the example of a portal page:

[image: image2.png]| ¢Back v = v @ [A | @search GdFavorites PBHistory | S =f v H D

| address [&1 rtp:/wwwr.yahoo.com/

=) YaHoO!

shan

% ?

Emall Mssengs Heln

& Yahoo! Movies - In Theaters: Austin Powers, Road to Perdition, Stuart Litfle 2, Country Bears, more.

,7 S » advanced search
= most popular
Sign up for Fantasy Football - Play Toki Toki Boom
Auctions, Autos, Classifieds, Real Estate, Shopping, Travel

Careers, Maps, People Search, Personals, Yellow Pages

Connect Chat, GeoCities, Greetings, Groups, Mail, Messenger, Mobile

Organize Addresses, Briefcase, Calendar, My Yahoo!, PayDirect, Photos

Games, Horoscopes, Kids, Movies, Music, TV

Finance, News, Sports, Weather More Yahool...

>

Yahoo! Personals
Meet millions of people: Find a
Match, Post a Free Ad

Personal Assistant sign out
Wwelcome, thomas_schaeck Acct. Info
Mail - calendar - Addresses

1:43pm, Sun Jul 28

* Rescuers find all nine coal miners
alive

Over One Million Home Listings

« Find a Real Estate Agent
+ Get a Home Loan

« Find an Apartment

+ Crash at Ukrainian air show kills
dozens

« Clintons seek reimbursemert of legal
fees

+ Hawaii's Kilauea voleano pours ot
lava

* Thousands of squid wash ashore in
Calif,

[[[ntermet

Figure 1: Example of a portal page that aggregates multiple portlets

Often, content is provided by external services and displayed by specific local portlets running on the portal. While this approach is feasible for establishing base functionality of a portal, it is not well suited to enable dynamic integration of business applications and information sources into portals.

As an example, let us consider the following scenario: An employee portal manager wants to include a human resources service calculating variable pay for employees and an external weather service providing weather forecasts. One solution for this scenario is depicted in Figure 2 – a human resources portlet and a weather portlet run locally on the portal server and access remote web services to obtain the required information.

[image: image3.wmf]Weather

Web Service

Employee

Portal

Weather

Portlet

HR

Portlet

HR

Web Service

Figure 2: Local portlets using a remote web services

The HR portlet uses a HR web service to calculate the variable pay. By default, it displays a form to query the required input data, e.g. the employee’s position. When the employee provides the data to the HR portlet, it invokes the HR web service to calculate the variable pay based on that data. It receives the result from the web service and integrates it into some markup appropriate to display to the End-User. The weather portlet by default displays weather forecasts for configurable locations and allows the user to select locations in an edit mode. When the weather portlet is invoked during page aggregation, it requests the most recent forecasts for the selected locations from the weather web service and renders markup that displays those forecasts.

This approach only works if all portlets are physically installed at the employee portal; the process of making new portlets available is tedious (for the administrator in terms of time and maintainability) and expensive (for the developer). To integrate HR information in the portal using local portlets as described above, either the HR department would implement the HR portlet and give it to one of the administrators of the employee portal to install it, or an employee portal developer would implement the HR portlet according to the interface description of the HR web service. A similar effort would be required for the weather portlet. In each case, there is significant cost and loss of time.

Obviously, it would be much more convenient if the HR and weather web services would include application and presentation logic and then produce markup fragments through a standard interface that enables easy aggregation at the consuming portal, as shown in
Figure 3

.

[image: image4.wmf]Weather

Web Service

Employee

Portal

Portlet

Proxy

Portlet

Proxy

HR

Web Service

Weather

Portlet

HR

Portlet

Figure 3: A Portal using Remote Portlet Web Services

Instead of just providing raw data or single business functions that still require special rendering on the portal side, Web Services for Remote Portals are user-facing, interactive web services including presentation. They are easy to aggregate and can be invoked through a common interface using generic portlet proxy code on the portal side. No special portlet code needs to be installed on the portal at all. The use of generic portlet proxies consuming all remote portlet web services conforming to the common interface eliminates the need to develop service-specific portlets to run on the portal.

The task of the administrator is made much easier because portlets can be added dynamically to the environment, and users benefit by having more services made available to them in a timely manner. Administrators can integrate remote portlet web services into a portal very easily by using their portal’s administration user interface for finding them and binding to them with a few mouse clicks. As a result, the portal creates a new, generic portlet proxy instance bound to the remote portlet web service so that remote portlet web services appear to portals just like local portlets and can be managed and used by users of the portal as easily.

1.2 Portlets

Portlets are user-facing, interactive web application components designed to be aggregated in portals and communicate with users not directly, but mediated by their hosting portal servers. Typically, portal servers maintain a catalog of available portlets and allow End-Users to select portlets from this catalog for instantiation on portal pages, resulting in unique, configurable portlet instances to be created and referenced from the respective pages.

All portlets support a View Mode in which they provide their primary functionality. The provided markup may range from some static page fragments to a highly interactive application with a sophisticated screen flow. In addition, portlets may support an Edit Mode that provides a portlet specific UI to edit the portlet’s instance data, a Config Mode that provides a portlet specific UI to configure the portlet, a Help Mode that explains how the portlet should be used, a Design Mode that provides a portlet specific UI for changing the appearance of the portlet, and a Preview Mode that renders a smaller preview of the portlet. The view, edit, help, and preview mode are typically exposed to end users of portals while the config and design modes are typically available to administrators only. In addition to the different modes, portlets can typically be displayed in different sizes like Minimized, Normal, and Maximized (window states).

A typical example for a portlet with multiple views that can be rendered in varying sizes is the market report portlet depicted in Figure 4. In the view mode in normal size, by default it displays stock quotes for a list of stock symbols; if the user wants to view details, she clicks on the “Market Details” link which results in another screen that also belongs to the view mode. In the edit mode, which the End-User accesses by clicking on the Edit button, End-Users may customize the list of stock for which they want quotes. In the help mode, which the End-User selects by clicking on the question mark, the portlet returns markup that informs the End-User how the portlet works. By clicking on the Minimize or Maximize buttons, the End-User can switch the portlet to minimized or maximized mode, respectively.

[image: image5.png]1BM Intranet

-osoft Internet Explorer
| Fle Edt Vew Favortes Took Hep

| ®Back v 2 ~ @ [&| Qsearch GiFavorites Bistory | B & =1 5 9

| address [&1 rttp:/wabm.com/eworkplace/ome Jsp

ESSENTIAL LINKS gt

Customer Reference
Materials

EMEA intranet

1BM Germany Homepage
1BM Global Campus

1BM SiteSery

IBM Standard Software
Installer

1BM Travel

Team Central

Welcome to the IBM Intranet
B BluePages

29 Jul 2002, Hello Thomas Schaeck

HelpNow

emerging business
opportunities
developing the next ‘next thing*
[read]

Top Stories

Play to Wi

or data solution?
store. [Software Group] [read]

Europe/Middle East/Africa 2002 Scorecard

2 29% decline in actual terms

Business Urit Performance
By the numbers

Sam Palmisano to host live employee broadcast
Wednesday, July 31, 11 am Eastern Time

N

Perspectives

300mm fabs: moving targets
Not every fab is set to go [Technology Group] [read]

= HE dumps Dell: No printers for the space invader

= Read more reviews and the week's news articles

campaign focuses on IBM industry exper
Ads for automotive, banking and retail customers address industry-specific
business challenges. Drive to web component lands on new pages where
customers can profile themselves by job role. [Seling for 18M] [read]

Snapshot: Microsoft and Hailstorm. Proprietary scheme

Microsoft is relentlessly pursuing its goal of creating calls a universal data

Our revenue was down 7% in constant currency compared to the same quarter in
2001, Taking the eura's strength against the dollar into account, this represents

= Game-changing cell chip: Sony, 18M & Tashiba aim to leapfrog consoles

= A0L says interoperability now IM-possible: Next big thing to stay that way

News About IBM

IBM to deliver IT services in China
e-business-on-demand will start soon [South
China Morring Post]

IBM and Linux our biggest threats: Microsoft
Microsoft acknowledges the BM/Linux
combination keeps it up nights

Hertz extends IT outsourcing contract with
1M

Firm says lang-standing relationship is
unusual, compliments 18M

service. [Computerworld]

IBM Gets The Message--Instantly
Sametime popular at corporations, including
1BM. [Forbes]

IDC: Exchange tops e-mail seats, Lotus
‘gamers most revenue
Battle continues [CRN]

MyNews

Professional Careers
Consultant Profession Development Forum
Replay altemnatives

All of today's News

Bl Feedback

Edit Homepage Layout | Profile Settings | Sign Out | Help

SEARCH 2i-

@ BluePages - dvanced
€ w3 - advanced
€ ibm.com - Advanced

Can't find what you're looking for? Go to the Search
help page.

MARKET REPORT it

Quoted at 12:49 PM, EDT on 29 Jul. Refresh

Symbol Gurrent +/-
181 70.33 +3.93
ORCL 959 +0.26
PSFT 17,69 +0.87
58P 1817 +1.22
SUNW 400 +0.22

Market details

FORUMS Edit 121

Ask questions, get answers, join discussions. Using
forums, thousands of participants share interests by
engaging in hundreds of business and job related
topics.

Get Started with Forums and Edit your Forums Link
List,

SCORECARD 2i-i0

Economist Intelligence Unit releases global 2002 e-
readiness rankings

IBM's Institute for Business Yalue advises EIU to
expand criteria of "e-ready"

EU challenges US
in e-readingss

IBM announces second-quarter 2002 results

[[[nternet

Figure 4: Example of a Portlet

Portlets may be local or remote to a portal server. We envision that typically, portals will use a mixture of local and remote portlets – depending on individual tradeoffs between proximity to the portal server and ease of integration. Local portlets are usually tightly integrated with portal servers and typically run on the same physical server or cluster of servers. Remote portlet web services run on remote servers at other places in the intranet or the Internet and are loosely coupled to the portal server.

1.3 Web Services

From a portal perspective, we can differentiate between two different kinds of web services – the “traditional” data oriented web services and presentation oriented, user-facing, interactive web services (see Figure 5).

[image: image6.wmf]Data

-

oriented Web Service

100

101

96

100

100

101

96

100

100

101

96

100

Presentation

Layer

Presentation

-

oriented Web Service

100

101

96

100

100

101

96

100

100

101

96

100

Presentation

Layer

Figure 5: Data-oriented Web Services compared to Presentation-oriented Web Services

Data-oriented web services are web services that receive requests and return data objects encoded in XML documents in the response. The signatures of their operations as well as the structure and semantics of the returned data are typically service type-specific. It is the responsibility of the service consumer to process the received data in a service-specific manner and generate any required presentation. While this is a good approach for applications that require specific data and know how to consume and process this data, it is not appropriate for portals that need to be able to quickly integrate content and applications form various different sources.

User-facing web services include presentation as a part of the service itself; i.e. they don’t just provide raw data to be processed and turned into a presentation by the consumer but instead they themselves can produce markup for easy aggregation by portals. User-facing web services may also include user-interaction. User-facing, interactive web services are well suited for integration and use in portals, since they can be aggregated by portals and participate in user action processing in a generic way – no service-specific presentation code is required on the consumer’s side.

1.4 Web Services for Remote Portlets

In order to allow for dynamic integration in portals, remote portlets can be provided as user-facing, interactive web services conforming to a well-defined, common interface description. This description is published in WSDL and specifies a set of operations and signatures the portal will use to access the portlets. Such remote portlets may be implemented in any programming languages as long as they adhere to the common interface description.

When invoking a remote portlet at runtime, portals may use a generic proxy to invoke the user-facing, interactive web service. The portal invokes this proxy exactly as if it were a local portlet. The proxy internally marshals all the parameters into a request and sends it to the server hosting the remote portlet. Since all remote portlet web services adhere to the same interface definition, the same proxy class can be used for all of them. The remote portlet web service unmarshals all parameters in the incoming request and invokes the remote portlet’s implementation.

[image: image7.wmf]Aggregation

User

‘

s Client

Portlet API

Portlet API

Portlet

Proxy

Portlet

Proxy

WSRP Service 1

(includes data and

presentation)

WSRP Service 2

(includes data and

presentation)

SOAP

SOAP

WSRP

API

WSRP

API

Figure 6: Portal consuming WSRP Services using Generic Portlet Proxies

The result is then marshaled into a response and returned to the proxy which then unmarshals the response and returns a result object to the portal engine, just like a local portlet would.

The big difference between WSRP services and data-oriented web services is that they are user-facing, interactive services that include presentation and all have one common interface. This means that they can be integrated in portal servers in a plug and play fashion and do not require any remote portlet specific code to run on the consuming portal.

The WSRP standard enables all content and application providers to offer services that can be easily plugged into any compliant portals without portal programming effort. Portal administrators can find and integrate WSRP services with just a few mouseclicks.

[image: image8.wmf]Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Users

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Users

Portals

WSRP

Services

Portals

Portals

Portals

Portals

Clients

Clients

Portals

Portals

Registry

Portals

Portals

Portals

Publish

Find

WSRP

Services

Portals

Portals

Bind

WSRP

Services

Figure 7: A Portal using Remote Portlet Web Services

Portals act as intermediaries between End-Users and WSRP services to aggregate and potentially coordinate services from different providers. They enable offloading significant traffic from content and application providers by caching content, when possible. This enables providers to disseminate content to a huge number of users with little IT infrastructure.

1.5 WSRP Use Cases

In this section we give some application examples that show how the capabilities of WSRP can be exploited.

1.5.1 Content Providers publishing WSRP Services

Today, many content providers still publish their content live on the Internet using HTTP or FTP servers or they provide client software that replicates and caches content via proprietary protocols. In each case, integrating content into a portal is a difficult task. While portals may provide some portlets supporting particular content sources out of the box, it is typically necessary to develop and install additional portlets for the remaining content sources, i.e. the party that sets up the portal needs to spend a lot of money and effort in order to integrate a rich set of content from different sources. This is not only expensive for portal owners, but also limits the business growth of content providers. It also limits the content provider’s capability to exercise some control over the way their content is rendered by the subscriber's portal.

[image: image9.wmf]Aggregated

HTML, WML, VoiceXML,

... over HTTP

Mark

-

Up Fragments

Transferred via SOAP

Portal

WSRP Service

WSRP Service

WSRP Service

WSRP Consumer

WSRP Producer

Figure 8: Content/Application Providers providing WSRP services

In order to allow for easy integration of their content in portals without any programming or service effort, content providers can use WSRP to surface their content as remote portlets and publish them as WSRP services into the public, global UDDI directory.

In order to provide this value add to customers, the content provider serves remote portlets via the desired bindings in addition to the classical content server. Once the content provider has published a WSRP service in UDDI, administrators of portals who wish to use content from the content provider can simply look up the content provider’s business entry in the UDDI directory and bind to the WSRP service that provides the desired content. The portlets on the content provider’s server become available immediately without any programming or installation effort and can be used by the portal users.

1.5.2 Portals publishing local Portlets for remote use

While portals initially have been operated in isolation from each other, now the demand for cooperation between portals has started to rise in larger corporations. Corporate portals need to cooperate with supplier or customer portals, so ultimately portals will need to cooperate over the Internet as well as within intranets. In the introduction we have already described a scenario where an employee portal consumes a service provided by the HR function within a corporation.

[image: image10.wmf]Server

Portal

Portals

Huge number

of users

Portals as Intermediaries,

Caching offloads requests

from WSRP provider

Publishing Portal

WSRP

Wrapper

Portals

Portals

Portal

Portlet

Portlet

Portlet

WSRP Consumer

WSRP Producer

Figure 9: Portal sharing portlets as WSRP services

Now let’s assume HR runs a portal that provides various HR related portlets. Some are only intended for use by HR staff, like a Payroll Portlet. However, there are some portlets that are of interest to all employees, e.g. a Variable Pay Portlet that calculates variable pay based on company and employee factors.

Assuming that the corporation has its own corporate UDDI directory only accessible from the intranet, an HR portal administrator would use a portal server’s publish function to create remote portlet web service entries for the Variable Pay Portlet in the corporate UDDI directory. This portlet is then available for integration by other portals in the corporation – e.g. the administrator of the corporation’s employee portal can find the remote portlet’s web service with a UDDI browser and integrate it into the portal quickly.

1.6 Exemplary Scenarios

This specification supports Consumers and Producers of various levels of sophistication interacting with one another. Examples include:

1.6.1 SimpleProducer

[TS: Are these reasonable names for these scenarios?]

Does not support registration or persistence. May only offer 1 type of entity.

Examples:

· A flight schedule display that is publicly available. Neither user registration nor persistent state is required. The service may however maintain interaction state using a WSRP session.

· News feed service that allows the user to browse predefined news topics.

1.6.2 SophisticatedProducer

Requires Consumers to register and the returned reference is required for all future invocations. Provides metadata relevant for interacting with the service. Supports a number of entities, which publish metadata declaring supported markupTypes and properties for interacting with the entity.

Examples:

· Portal server that exposes portlets available through a WSRP service endpoint. Each portlet may contain End-User specific settings and information that are persisted on the portal server.

1.6.3 SimpleConsumer

Does not persist any registration/entity information. Have explicit declarations for binding to and interacting with a set of Producer services.

1.6.4 SophisticatedConsumer

Supports persisting Producer, Consumer and End-User related data. Supports Single Sign On for its End-Users (may require End-User to trust Consumer with sign-on data). May support discovery of new Producers by either Administrators and/or End-Users.

Examples:

· Typical portal server that access WSRP services for content aggregated onto pages.

1.6.5 Interaction between levels of sophistication

The following illustrate how the interaction between the various parties (End-Users, a Consumer and a Producer) might flow for each combination of these exemplary cases.

[MF & TS: Would it make more sense to readers to invert the order of these?]

1.6.5.1 Sophisticated Consumer / Sophisticated Producer (stateful +configurable)

	User Agent
	
	Consumer
	
	Producer

	
	
	Consumer Administrator registers
	
registerConsumer()
	Supports registration

	
	
	Consumer stores the registration (cc) for use later.
	
consumerContext
	Returns new handle in consumerContext

	
	
	
	
	

	
	
	Page Designer looks up Producer Offered Entites … clones one
	
cloneEntity()
	Clones a new entity from supplied reference

	
	
	Adds new Entity into the Designer’s toolbox
	
entityContext
	Applies changes and returns new handle in entityContext

	
	
	Page Designer adds Entity to page
	
	

	
	
	
	
	

	User directs browser to the Consumer’s URL
	
http get ….
	Get markup from Entity
	
getMarkup()
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	User interacts with the markup
	
http post ….
	Consumer determines correct Producer/entity
	
performInteraction()
	Referenced entity handles logical interaction

	
	
	Store navigationalState for use on a page refresh
	
navigationalState
	Returns modified navigational state

	
	
	Request new markup
	
getMarkup()
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	
	
	
	
	

	
	
	Consumer Administrator deregisters
	
releaseHandles()
	Producer releases resources

1.6.5.2 Sophisticated Consumer / Simple Producer (stateful)

	User Agent
	
	Consumer
	
	Producer

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	Page Designer looks up Producer Offered Entites … clones one
	
cloneEntity()
	Clones a new entity from supplied reference

	
	
	Adds new Entity into the Designer’s toolbox
	
entityContext:
	Applies changes and returns new handle in entityContext

	
	
	Page Designer adds Entity to page
	
	

	
	
	
	
	

	User directs browser to the Consumer’s URL
	
http get ….
	Get markup from Entity
	
getMarkup()
	Request handled by the referenced entity

	Render returned page
	
Page
	Wrap markup into a valid page
	
markup
	Return generated markup

	User interacts with the markup
	
http post ….
	Consumer determines correct Producer/entity
	
performInteraction()
	Referenced entity handles logical interaction

	
	
	Store navigationalState for use on a page refresh
	
navigationalState
	Returns modified navigational state

	
	
	Request new markup
	
getMarkup()
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	
	
	
	
	

	
	
	Consumer Administrator deregisters
	
releaseHandles()
	Producer releases resources

1.6.5.3 Simple Consumer / Simple Producer (no state)

	User Agent
	
	Consumer
	
	Producer

	User directs browser to the Consumer’s URL
	
	Get markup from a Producer Offered Entity
	
getMarkup()
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

1.6.5.4 Simple Consumer / Simple Producer (with state)

	User Agent
	
	Consumer
	
	Producer

	User directs browser to the Consumer’s URL
	
	Get markup from a Producer Offered Entity
	
getMarkup()
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	User interacts with the markup
	
http post ….
	Consumer determines correct Producer/entity
	
performInteraction()
	Referenced entity handles logical interaction

	
	
	Store navigationalState for use on a page refresh
	
navigationalState
	Returns modified navigational state

	
	
	Request new markup
	
getMarkup()
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

1.6.5.5 Simple Consumer / Sophisticated Producer (stateful +configurable)

	User Agent
	
	Consumer
	
	Producer

	User directs browser to the Consumer’s URL
	
http get ….
	Consumer attempts to register
	
registerConsumer()
	Supports registration

	
	
	Consumer stores the consumerContext for use later.
	
consumerContext
	Returns new consumerHandle in Consumer Context

	
	
	Get markup from a Producer Offered Entity
	
getMarkup()
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	User interacts with the markup
	
http post ….
	Consumer determines correct Producer/entity
	
performInteraction()
	Referenced entity handles logical interaction

	
	
	Store navigationalState for use on a page refresh
	
navigationalState
	Returns modified navigational state

	
	
	Request new markup
	
getMarkup()
	Request handled by the referenced entity

	Render returned page
	
page
	Wrap markup into a valid page
	
markup
	Return generated markup

	User stops interacting
	
Session w/Consumer times out
	Consumer deregisters
	
releaseHandles()
	Producer releases resources

2 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119].

Compliance: Mandatory – relevant to legal rules, regulations or laws. Compliancy is the act of complying with a specification and/or standard. Example: ISO 9001. IEEE defines as complying with laws and regulations.

Conformance: Not mandatory – ISO/IEC Guide 2 defines conformance or conformity as fulfillment of a product, process or service of specified requirements. Note that many times providers use “comply” to a standard to sidestep because they don’t actually “conform” to a standard because either the standard is not approved yet OR the product does not actually conform.

Cross references to the requirements developed by both the WSIA and WSRP technical committees [RT: should make this a footnoted hyperlink] are designated throughout this specification in square brackets where the enclosed number is a requirement number (eg [A100]).

3 General Interface Design Issues

The major design goals of this specification are simplicity, extensibility and efficiency.

3.1 Related Standards

As this specification seeks to leverage both existing and emerging web service standards, the following are particularly noted as relevant standardization efforts.

3.1.1 Existing Standards

· WSDL – Defines how abstract interfaces and their concrete realizations are defined.

· SOAP – Defines how to invoke remote interfaces.

· UDDI – Defines how web services are published, queried and found using standardized directories.

· SSL/TLS – Defines secure transport mechanisms.

· URL – Defines URI (includes URL) syntax and encoding

· Character set encoding

· XML Digital Signatures – Defines how portions of an XML document are digitally signed.

· SAML – Defines how authentication and authorization information may be exchanged.
· P3P – Defines how interacting parties may cooperative to enforce End-User privacy preferences.

3.1.2 Emerging Standards

· XML Encryption – Defines how to encrypt/decrypt portions of an XML document.

· WS-Security – Defines how document level security standards apply to SOAP messages.

· XACML – Defines a syntax for expressing authorization rules.

· RLTC – Defines a syntax for expressing authorization rules.

· XCBF – Defines how to exchange biometric data.

3.2 Data Objects

It is often necessary to pass data to operations. Wherever possible typed data objects are defined as the transport mechanism. Property arrays are included in each data structure for vendor or application specific data extensions. Producers/entities employing these extensions SHOULD provide typing information for the extended data items. This allows Consumers to provide type checking outside of that done by typical interface layers. See Section 11 for more details on data objects.

3.3 Types of Stateful Information

Because WSIA and WSRP are connectionless protocols, the Producer must be able to return information to the Consumer, with the understanding that this information will be sent back to it [A200]. Three types of stateful information exist:

1. Navigational state: This is the state that allows the current page to be correctly generated, including on a page refresh. Web applications typically store this type of state in the URL so that both page refresh and bookmarked pages will generate approximately what the End-User expects. The Producer returns this state to the Consumer such that it may satisfy these expectations of the End-User. To supply the bookmarking capability End-Users expect, the Consumer may store this state, or a reference to it, in the URL. The Consumer may also choose to not supply this functionality to its End-Users.

2. Transient state: This is state stored on the Producer related to a sequence of operations (for example, an eCommerce site may store a shopping cart in its transient state). Once this type of state is generated, the Producer returns a reference to it and the Consumer MUST return this reference on future invocations. This type of state will be referred to as a Session (similar to http) and an opaque reference to one as a sessionID.

3. Persistent state: This is state that the Producer persists until either the Consumer or Producer explicitly discards it. This specification defines two kinds of persistent state:

a.
Consumer Registration: Represents a relationship between a Consumer and Producer. Data that is part of the consumer registration state impacts all invocations within the scope of the registration. The reference to consumer registration state is referred to as a consumerHandle.
b.
Entity: In addition to the entities a Producer offers for all Consumers to use, the ability of a Consumer to create a unique configuration of one of those entities for its own use is defined. The reference to a configured entity is referred to as an entityHandle.

3.4 Information Passing Mechanisms

All information passing enabled by this specification is between exactly one Producer and one Consumer. Any sharing of information within a particular Producer service is outside the scope of this specification. If the Consumer wants the information to be shared by multiple Producer services, the Consumer must “mediate” this sharing (again, using means that are outside the scope of this version of the specification).

3.5 Event Handling

Event handling is explicitly not part of this version of the specification. It might be included in a future version of WSRP.

3.6 Persistence and statefulness

This specification makes no assumption about the existence of persistence mechanisms at either the Producer or the Consumer [A201]. In the getMarkup() and performInteraction() calls, the navigationalState field provides the means for the state necessary for the entity to render the current markup to be returned to the Consumer. This enables the Consumer to reasonably support page refresh and bookmarking by the End-User. If the Producer utilizes local state, then it stores the conversational state (actual mechanism is out of scope), and returns an opaque sessionID to the Consumer for use during the lifetime of the session.

If the Consumer is operating in a stateless manner, then it may choose the way to achieve this. In the case of an HTTP transport the Consumer may employ standard HTTP mechanisms (cookies or URL-rewriting) to push the navigational state or sessionID out to its client. If operating in a stateful manner, the Consumer may employ any number of persistence/caching mechanisms [A202].

The nature of the conversation between the client and the Consumer, for purposes of this section, is out of scope [A304]. This does not mean that information about the client, including user profile data, is opaque to the Producer. There are many use cases for which user identity must be conveyed to the Producer [A606]. Also, a stateful Producer can be expected to relate its private conversational state with the specific client.

3.7 Two-phase protocol

This specification attempts to account for both isolated interactions between a Consumer and a Producer, and also those interactions that may cause state changes in other entities the Consumer aggregates from the same Producer [A503]. Common causes of such shared state include use of a common backend system (eg. database) and Producer mediated data sharing. For these reasons, there is a “two-phase” capability built into the protocol. Use of this capability is optional and entirely dependent on the Consumer’s ability and desire to take advantage of it.

In a two-phase interaction, the Consumer first invokes the entity at the Producer, whose markup the End-User interacted with, through the performInteraction() operation, and MUST block until receipt of a response. Those Consumers interacting with the published state of an entity MAY further update the entity’s state. The Consumer then invokes getMarkup()on those entities it is aggregating.

Interaction semantics are well defined across the spectrum of interaction styles supported in the protocol. In other words, the results of the Consumer invoking a Producer, regardless of whether it may have side effects in other entites, is well-defined regardless of the order in which the Consumer does the getMarkup() invocations.

Side-effects that may cross Producer boundaries are out of scope for this version of the specification, though mechanisms to standardize such interactions are intended for future versions.

3.8 Lifecycles

There are several different types of lifecycle included in this specification:

Deployment: Deployment is the process by which a particular application becomes available for interactions. Various data items have their lifecycle governed by the deployment. Examples include the registrationData for a Producer and ProducerOfferedEntities.

Persistent: This lifecycle starts with an explicit operation to create the item and ends only with an explicit operation to destroy the item. Examples include the consumerHandle and ConsumerConfiguredEntities.

Transient: This lifecycle can either start with an explicit operation OR as a side effect of some other operation [A204]. The item created is transient and no explicit operation is required to destroy it. This specification generally includes an expires element (a duration in seconds) whenever such an item may be created so that any resources consumed relating to the item may be reclaimed at an appropriate time. An example of this is session creation.

3.9 Scopes

There are several scopes referred to in various places in this specification.

Consumer scope: This scope is initiated when a Consumer registers with a Producer and ends when the handle referring to that registration is explicitly released. As such it encompasses any entities the Consumer configures and any interactions with the entities of the Producer.
Entity scope: This scope is initiated when an entity is created and ends when the reference to the entity is released. As such it encompasses all interactions with the entity.
Session scope: This scope is initiated when the entity needs to store local state and ends when the session holding that state is released (either via an explicit operation OR via a timeout mechanism). As such it encompasses a set of operation invocations in which the Consumer has supplied the handle to the session.
3.10 Producer Mediated Sharing

Producers MAY implement a sharing mechanism through techniques such as a shared area within sessions established for entities to use. The Consumer indicates to the Producer which entities could share such data areas via the groupID parameter. The Producer is not required to establish a shared data area for each groupID, but if the Producer provides shared data areas, this parameter SHOULD be used as a Consumer hint as to which entities could be grouped together. The groupID is scoped to the consumer context. Therefore only entities in the same consumer context with the same groupID SHOULD have access to a common shared data area and thereby be shielded from other possible shared data areas.

[AK: I think we’ll need a lot of meta-data support to make Consumer-specified portlet sharing possible. The Producer needs to elaborate in the meta-data the different shared scenarios it exposes for specific combinations of its portlet services. The Consumer can only select from those the Producer allows.]

[AK: There is one form of Consumer-mediated sharing, however, that the Producer cannot specify in advance, but that is absolutely required to support typical portals. That is, the Consumer must group together in the same shared context all of the portlets that it is aggregating on behalf of a single End User session. This is because, in the JSR168 case for example, a JSR168 Producer/Container implements its portlets with the implicit assumption that all of the portlets have available a shared scope within the session. The WSRP session semantics must preserve this assumption, or else the implicit shared scope will be broken for remote consumers, and the portlets may not function as intended by the implementation. I wonder if the session group ID is the mechanism we can overload to enable this End-User context sharing…or is that the explicit session initialization?]

3.10.1.1 Implementation hints

Shared data areas introduce implementation challenges in clustered environments. In such an environment multiple concurrent requests may be routed to different cluster nodes. The Producer must ensure that entities with a common shared data area have access to the shared data even in such situations. Possible implementation choices include:

· The Producer stores the shared data in a database and accesses the same database from all cluster nodes.

· In the case of HTTP transport, a J2EE Producer can use HTTP sessions to store the shared data. It must implement a mechanism that ensures only one shared HTTP session is established for each groupID, even for concurrent requests.

3.10.2 Sessions

In addition to any shared data area, each entity may use a private data area (Session). An entity may establish such a session, and return a sessionID to reference it, in operations such as getMarkup(), performInteraction() and setProperties(). The Consumer MUST send this sessionID back in subsequent requests to the entity. Other entities will not have access to the corresponding session and Consumers MUST NOT pass this sessionID to invocations on other entities.

3.11 Interaction Lifecycle States

This section defines the state transitions for the relationship between a Producer and a Consumer.

3.11.1 Assumptions:

In general the Producer is a web service endpoint exposing one or more entities that generate markup and handle interactions with that markup. How these entities are implemented and managed is not defined by this specification, though it is anticipated that the model of how requests are conveyed to the entities by the Producer will be strongly influenced by this specification.

3.11.2 State 0: Unknown

The Consumer has no knowledge that the Producer exists. From this state the Consumer transitions to the Known state via discovery; namely by learning the location of the Producer. Examples of mechanisms for accomplishing this discovery include UDDI query, WSIL declarations or other ad hoc mechanisms.

3.11.3 State 1: Known

In this state the Consumer knows the location (i.e. its access point and at least the WSDL of the self description method) of the Producer. From this state the Consumer can transition back to the Unknown state, but typically transitions to the Active state through a process called registration. Additionally, this is the earliest state at which the Consumer MAY request a Producer to describe itself. This ability is present in all states other than Unknown.

3.11.4 State 2: Active

Most of the interesting things happen while the Producer is in the Active state. This is where both page designers and users can interact with the Producer. It is possible to transition back to the Known state by deregistering. The Consumer is free to perform this state transition multiple times.

4 Self-description Interface

A Producer may be discovered through mechanisms such as UDDI
 or WSIL
, which provide the capabilities of the service also. Other discovery mechanisms (eg. emailed URL to a properly enabled browser) do not expose these capabilities. The getDescription() operation provides a discovery mechanism agnostic means for a Consumer to discover a Producer’s capabilities [A110]. This operation allows a Producer to provide information about its capabilities in a context-sensitive manner (eg. registration may be required to discover the full capabilities of a Producer) [R303].

description = getDescription(consumerContext, handle, userRoles);

Where:

consumerContext is an extensible data structure defined in Section 11. It is supplied here to provide additional contextual information in case the Producer subsets the descriptive information based on the relationship. It will be null until a relationship is established between the Consumer and Producer. This structure includes:

consumerHandle: An opaque reference to the established relationship.

consumerState: An opaque string which the Producer MAY use to push a serialized form of state for this registration to the Consumer for persistence. If this field is set, the Consumer MUST return it on future invocations requiring a consumerContext.

userID: The Consumer’s id for the End-User.

sendPublishedState: A boolean indicating whether the Consumer is interested in receiving back the published portion of the entity’s state as a property array.

handle is an opaque reference that sets the context for the returned description. This handle may refer to the Consumer’s registration with the Producer or even a particular configured entity. If the supplied handle references an entity, the Producer MUST return the service description for that entity. If the supplied handle references a Consumer registration, the Producer MUST return the service description for access to itself within the context of that Consumer registration. If a null handle is supplied, the Producer MUST at least return the information required of a Consumer in order to register [R300].

userRoles is an array of Strings indicating what user roles the Producer MAY use to provide descriptions for only those entities the user in one of these roles can access. When this parameter is null, the Producer MUST return descriptions relevant to all supported roles [A605].

description is an extensible data structure described in Section 11. This has various descriptive elements relevant to the supplied handle, including:

wsdl: A document fragment corresponding to the WSDL for the supplied handle

entities: If the supplied handle refers to a Consumer registration, this array supplies information about the entities the Producer offers.

registrationData: is an extensible data structure described in Section 11. If the supplied handle is null or refers to a Consumer registration, this includes an array of property descriptions for the data that either must or may be supplied as part of a registerConsumer() invocation.

entity: If the supplied handle refers to an entity, this structure supplies information about the referenced entity.

For Producers managing access to a set of entities, this operation MUST return the appropriate WSDL document for interacting through the supplied handle. In all cases, passing a null handle returns the WSDL for the base Producer service appropriate to register a Consumer. [R300] [R301][R303].

4.1 Relationship to UDDI

5 Lifecycle Interfaces

Life cycle interfaces define all operations on the Producer that instantiate or release objects, including:

· Consumer context

· Consumer configured entities

5.1 Registration

Registration describes the transition between Producer state 1 (known) and state 2 (active). The Consumer establishes a relationship with the Producer that will be referenced via an opaque handle in subsequent invocations the Consumer makes of the Producer within this relationship [R362]. Both the Consumer and the Producer are free to end this relationship at any time. The Consumer MAY end the relationship via an explicit call to releaseHandles() method, whereas the Producer MAY end the registration by invalidating the registration identifier.

consumerContext = registerConsumer(registrationData);

Where:

registrationData provides the means for the Consumer to supply the data required for registration. This is an extensible data structure described in Section 11

 and whose content SHOULD be guided by the Producer response to a getDescription() invocation.

consumerContext is an extensible data structure defined in Section 11. This data structure MUST be supplied in subsequent invocations.

The returned consumerContext is used in all subsequent invocations to reference this registration. If the Producer does not support registration, it returns null. It is then valid to pass null to subsequent methods that require a consumerContext. If the registration fails for other reasons (e.g. failed authentication),
a fault message MUST be thrown indicating this to the Consumer [R363].

After releasing the consumerHandle all handles created within the context of the consumerHandle become invalid. [R500][R501][R503] If the Producer does not support Consumer registration, then the Consumer MUST invoke releaseHandles() individually for each handle that would have been scoped by a non-null consumerHandle.

[TS: Do we really need to allow Producers that do not support registration to support cloneEntities()? It raises the complexity for the Consumer in a non-trivial way.]

The Consumer SHOULD persistently store the consumerContext. If the Consumer cannot persist the context, it must release the consumerHandle using the releaseHandles() method when exiting the current conversation.

A Consumer MAY register itself multiple times to a Producer with potentially different settings (eg. security settings) resulting in multiple consumerHandles [R351]. Different registration contexts must be identified by different consumerHandles.

This operation provides means for the Consumer to modify a relationship with a Producer [R353].

consumerContext = modifyConsumer(consumerContext, registrationData);

Where:

consumerContext A context for an already existing registration. [R353]

registrationData provides the means for the Consumer to supply the modified data. The base for this extensible data structure is defined in Section 11.

A consumerContext is returned since the Producer MAY store state for this registration in this structure for the Consumer to supply on future invocations. The Producer MUST NOT modify the consumerHandle contained within this data structure.

5.2 Entities

Producers MUST expose 1 or more logically distinct ways of generating markup and dealing with interaction with that markup [A205], referred to as Entities. The Producer declares the entities it exposes through its description [A104]. This declaration contains a number of descriptive parameters; in particular it includes an entityHandle that Consumers may use to refer to, the so-called “ProducerOfferedEntity”. These entities are pre-configured and non-modifiable by Consumers.

In addition to the ProducerOfferedEntitys, a Consumer MAY request a unique configuration of one of these entities either in an opaque manner (eg. the ‘edit’ button common on aggregated pages which invokes an entity generated page for setting the configuration) or use property definitions found in the entity’s metadata to configure it in a transparent manner [A501][A503]. Such an entity is called a “ConsumerConfiguredEntity”. The supplied referenced to an entity may either be a ProducerOfferedEntity or a previously cloned ConsumerConfiguredEntity.

The cloneEntity() operation allows the Consumer to request the creation of a new entity from an existing entity.
entityContext = cloneEntity(consumerContext, entityHandle, entityProperties);

Where:

consumerContext is an extensible data structure (defined in Section 11) which carries contextual information the Producer MAY use when establishing the new entity. For example, this includes references to the Consumer registration that may be useful for access control purposes.

entityHandle is an opaque reference to an entity, either as offered by the Producer or one the Consumer has configured previously. The initial state (prior to applying the supplied entityProperties) of the new entity MUST be equivalent to the state of the entity this handle references.

entityProperties allows the Consumer to immediately modify the state of the new entity. This array of properties MUST match that returned from a getDescription() invocation supplying the entityHandle.

entityContext is an extensible data structure defined in Section 11 which includes:

entityHandle: An opaque reference to the entity.

entityProperties: If sendPublishedState in the consumerContext structure was set to true, this property array will contain the current values for the published state of the entity.

entityState: This opaque string provides the means for a Producer to push a serialized form of the state of an entity to the Consumer for persistence. If a Producer sets this field, the Consumer MUST return the supplied value on future invocations.

modifiedProperties: A boolean used only when a Consumer is supplying a changed set of properties as an input parameter of an invocation.

The returned entityContext is available for use in subsequent invocations to identify the configured entity. No relationship between the supplied entity and the new entity is defined by this specification, though they all MUST be scoped by the consumerHandle supplied in the consumerContext of this invocation. The handle of the new ConsumerConfiguredEntity must be persisted by the Consumer and released when it is no longer needed. If the Consumer is unable to persist the entity it must release it before the conversation ends.

This operation provides means for the Consumer to request modification to the state of a configured entity [A501].

entityContext = modifyEntity(consumerContext, entityContext);

Where:

consumerContext is an extensible data structure (defined in Section 11) which carries contextual information

entityContext contains an entityHandle as a reference to the ConsumerConfiguredEntity which this invocation seeks to modify. It also contains an array of properties the Consumer is supplying in order to modify the state of the entity.

The returned entityContext is an extensible data structure, defined in Section 11, which includes the opaque reference (entityHandle) the Consumer MUST use to refer to the configuration. The Producer MUST NOT generate a new entityHandle as a result of processing this invocation.

5.3 Environment Initialization

In general, the Producer implicitly manages its own environment. There are cases, however, when assistance from the Consumer in initializing the environment is useful. One such example is when the Producer is running in a load-balanced environment. Initializing any Producer mediated sharing prior to (potentially concurrent) requests for markup can greatly simplify the Producer’s complexity in managing the environment. This optional operation (exists in a separate portType) indicates the Producer is interested in this assistance from the Consumer:

void initEnvironment(consumerContext, groupID);

Where:

consumerContext is an extensible data structure (defined in Section 11) which carries contextual information the Producer MAY use when establishing the new entity. For example, this includes references to the Consumer registration that may be useful for access control purposes.

groupID is an indicator of how the Consumer will request entities be grouped for any Producer mediated data sharing.

In the simplest Consumer-Producer interactions, for example a single entity from the Producer being represented on the page, implicit environment initialization will suffice even when the Producer indicates it is interested in Consumer assisted environment initialization.

An example of a more complex case is a portal page with multiple entities from a Producer involved in a series of interactions, all tied to a single groupID (ie. may be involved in Producer mediated data sharing). Since portals usually issue concurrent requests to each of the entities represented on the page, the complexity of properly initializing the Producer’s environment is significant. If the Producer exposes this operation, then the Consumer SHOULD assist the Producer by invoking this operation once per groupID. Failure to do so will often result in the entities not interacting with each other in the expected manner.
5.4 Releasing Resources

The releaseHandles() operation allows the Consumer to request the release of a set of handles [R500][R501][R502]. The Producer may dispose of any related resources and invalidate the handles.

releasedHandles[] = releaseHandles(handles[]);

Where:

handles[] is an array of references the Consumer will no longer use and is therefore requesting the Producer to invalidate.

releasedHandles[] is an array of references the Producer has actually released.

The Producer should be aware that in some cases the Consumer may not invoke releaseHandles() (for example, if the Consumer application is abruptly terminated) and should implement a destruction mechanism for transient resources based on a timeout. The Producer MUST handle cases where the Consumer has included a handle in the passed array that was released in some other manner (eg. a timeout mechanism released it) without generating an error.

For efficiency reasons this operation takes an array of handles to be destroyed and returns an array of handles that have actually been destroyed. The returned array may be larger than the input array due to the implicit deletion of subordinate entities (e.g. releasing a consumerHandle leads to the releasing of all associated entity handles). The Producer’s processing the array of handles MUST NOT generate an error unless the Consumer does not have the authority to release handles which were included in the array (this statement does not exclude the possibility of general runtime errors that may occur on any invocation).

[AK What is the rationale behind returning successfully released handles? I believe the thinking is that the producer can tell the consumer of any dependent entities that have been released. But are there actually any cases where the consumer doesn't know what the dependent entities are? If not, it seems like the method should instead throw an exception containing handles that have _failed_ to be released. This seems like a more straightforward way of letting the Consumer handle errors.]
6 Markup Related Interfaces

As user facing web services, the core aspect of a WSIA or WSRP compliant service includes the generation of markup which is to be used to represent the current state of an entity to an End-User and the processing of interactions with that markup [A300]. This section both explains the signatures for the operations related to markup generation and processing interactions and how the concepts of mode and window state impact the generation of the markup.

6.1 Operations

The Consumer requests the generation of markup by invoking:

markupResponse = getMarkup(consumerContext, entityContext, markupContext);

Where:

consumerContext is a data type defined in Section 11 with a set of references the Producer MAY use for generating the markup.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity the Producer MUST use for generating the markup [A305]. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

markupContext is a data type defined in Section 11 with a set of references related to the current request which the Producer MAY use for generating the markup [A500][A501]. These include:

groupID: This parameter allows the Consumer to provide a hint to the Producer about which entities should be involved in any data sharing the Producer mediates. Only entities with identical groupID fields SHOULD be placed in the same shared data area.

sessionID: Once the Producer has returned a sessionID to the Consumer, this field MUST be where that value is supplied back to the Producer on subsequent invocations [A206].

clientData: A data type defined in Section 11 for data items related to the client device in use by the End-User.

locale: The locale for the End-User.

navigationalState: The navigational state this entity last sent to the Consumer for this End-User.

currentMode: The current mode (explained further in Section 6.3) for displaying the entity’s markup.

previousMode: If the mode has changed, this indicates its previous value; otherwise this value equals that of currentMode.

windowState: The current window state (explained further in Section 6.4) for displaying the entity’s markup.

characterSet: The character set for the aggregated page.

markupType: The markup type the Consumer would like the entity to generate.

httpHeaders: Transport level name/value pairs.

secureClientCommunications: A boolean indicating whether the End-User to Consumer communications are secured (eg. by SSL/TLS).

markupResponse is an extensible data structure, defined in Section 11, which includes:

sessionID: the handle the Producer uses for looking up local state. This will be null except when the entity is establishing a new session. This can either be reflecting the first need for a session or that the session previously in use had timed out and a new one is replacing it. The Consumer MUST supply this ID on subsequent invocations [A205].

expires: The number of seconds that must elapse between invocations on the entity before the session referred to by sessionID will be timed out and its resource released by the Producer. This is provided as a hint for when the Consumer MAY also cleanup resources related to this sessionID.

markup: the generated fragment.

End-User interactions with the generated markup may result in invocations for the entity to respond to the interactions [A400]. In the case where these may change the navigationalState or some data the entity is storing in a shared data area (including a database), a blocking call is needed to process the interaction prior to markup being generated for a page refresh to the End-User. The operation enabling this is:

interactionResponse = performInteraction(consumerContext,

 entityContext,

 interactionContext)

Where:

consumerContext is a data type defined in Section 11 with a set of references related to the Consumer which the Producer’s entities MAY use for generating the markup.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity the Producer MUST use for processing the interaction [A305]. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer [A205].

interactionContext is a data type defined in Section 11 with a set of references related to the current request which the Producer MAY use when processing the interaction. It includes:

groupID: This parameter allows the Consumer to provide a hint to the Producer about which entities should be involved in any data sharing the Producer mediates. Only entities with identical groupID fields SHOULD be placed in the same shared data area.

sessionID: Once the Producer has returned a sessionID to the Consumer, this field MUST be where that value is supplied back to the Producer on subsequent invocations [A206].

locale: The locale for the End-User.

currentMode: The current mode (explained further in Section 6.3) for displaying the entity’s markup.

previousMode: If the mode has changed, this indicates its previous value; otherwise this value equals that of currentMode.

windowState: The current window state (explained further in Section 6.4) for displaying the entity’s markup.

httpHeaders: In addition to URL type parameters, transport level name/value pairs are often supported. These are collected into this property array named as per a commonly used transport (http).

clientParameters: This includes all parameters on the URL whose activation caused this invocation. These both include parameters related to the navigational state of the entity and parameters to this particular invocation.

uploadData: This opaque string permits the passing of large amounts of data (eg. uploading a file) to the invocation .

secureClientcommunications: A boolean indicating whether the End-User to Consumer communications are secured (eg. by SSL/TLS).

interactionResponse is an extensible data structure, defined in Section 11, which includes:

sessionID: the handle the Producer uses for looking up local state. This will be null except when the entity is establishing a new session. This can either be reflecting the first need for a session or that the session previously in use had timed out and a new one is replacing it. The Consumer MUST supply this ID on subsequent invocations [A205].

expires: The number of seconds that must elapse between invocations on this entity before the session referred to by sessionID will be timed out and its resource released by the Producer. This is provided as a hint for when the Consumer MAY also cleanup resources related to this sessionID.

navigationalState: An opaque string that provides the state information the entity uses to generate markup. It is the Consumer’s responsibility to supply this string both when requesting the entity initially generate a page and on page refresh.

6.2 Stateful Entity Scenarios

There are several common scenarios for entities with varying needs regarding statefulness. This section explains how they map into the operational signature above. [RT: well the mapping is missing, but the intent is here.]
6.2.1 No State

This type of entity maintains no state, but encodes everything required to generate the markup on the URL causing the invocation of getMarkup() [A201]. Often these entities involve only a single page, but could provide links on that page that cause the generation of a completely different markup due to the parameters passed when the link is activated.

Note: Invocations of performInteraction() MAY happen in this scenario if the entity impacts some backend system as a result of the invocation as this impact could change the markup some other entity will generate.
6.2.2 Navigational State Only

This type of entity does not maintain state at the Producer, but does push navigational state out to the Consumer. Both to support these entities and to assist Consumers in properly supporting End-User page refreshes and bookmarks, entities are allowed to return their navigational state (navigationalState field) back to the Consumer. It is then the responsibility of the Consumer to retransmit the navigationalState to the Producer with each request [A206].

A stateless Consumer can store the navigationalState for all of its aggregated entities by encoding them into the URL and returning it to the client. Since this implementation option requires the URL to be generated before the output stream is opened, the navigationalState of all entities must be known before the Consumer begins generating the output stream. In order to allow the Consumer to open the output stream before it has collected markup from all entities aggregated on the page, a getMarkup() invocation is not allowed to modify the navigationalState. Only an invocation of performInteraction()is allowed to modify the navigationalState of an entity.

6.2.3 Local state

Entities storing state locally on the Producer establish a Session and return an opaque reference (a sessionID) the Consumer is then required to return on all subsequent invocations on the entity for this End-User. These entities MAY also push navigational state to the Consumer such that an End-User may bookmark some portion of the state for use in later conversations. The means by which the Consumer enables this functionality for the End-User is a Consumer implementation choice [A304].

6.3 Modes

An entity should render different content and perform different activities depending on its current state, the operation (with parameters) currently being processed and the functionality requested by the End-User. A base set of functions are defined which reflect those common for portal-portlet interactions. They are referred to as modes.

An entity must support the modes VIEW, EDIT, and HELP, and may support the modes, CONFIG, DESIGN and PREVIEW. During getMarkup() and performInteraction() invocations the Consumer indicates to the entity its current mode via the markup of interaction context data structure.

6.3.1 VIEW Mode

The expected functionality for an entity in VIEW mode is to render markup reflecting the current state of the entity. The VIEW mode of an entity will include one or more screens that the End-User can navigate and interact with or it may consist of static content devoid of user interactions.

The behavior and the generated content of an entity in the VIEW mode may depend on configuration, personalization and all forms of state.

All entities must support the VIEW mode.

6.3.2 EDIT Mode

Within the EDIT mode, an entity should provide content and logic that let a user customize the behavior of the entity. The EDIT mode may include one or more screens which users can navigate to enter their customization data.

Typically, entities in EDIT mode will set or update entity state by making these changes permanent for the entity.

6.3.3 HELP Mode

When in HELP mode, an entity may provide a simple help screen that explains the entity and its expected usage. Some entities will provide context-sensitive help based on the markup the End-User was viewing when entering this mode.

6.3.4 CONFIG Mode

6.3.5 DESIGN Mode

6.3.6 PREVIEW Mode

6.3.7 Custom Modes

The extensible registrationData structure, defined in Section 11, provides a field for Consumers to declare additional custom modes. An entity that does not support one of these custom modes MUST map the unsupported custom mode to VIEW mode.

6.4 Window States

Window state is an indicator of the amount of page space that will be assigned to the content generated by an entity. This hint is provided by the Consumer for the entity to use when deciding how much information to render in the generated markup.

An entity SHOULD support the following window states: MINIMIZED, NORMAL, and MAXIMIZED.

6.4.1 MINIMIZED Window State

When the window state is MINIMIZED, the getMarkup() method MUST NOT be invoked and the aggregated page MUST NOT display content for the entity. However, the Consumer MAY render the title, controls and decorations related to the entity.

6.4.2 NORMAL Window State

The NORMAL window state indicates the entity is likely sharing the aggregated page with other entities. It MAY also indicate that the target device has limited display capabilities. Therefore, an entity SHOULD restrict the size of its rendered output in this window state.

All entities MUST support the NORMAL window state.

6.4.3 MAXIMIZED Window State

The MAXIMIZED window state is an indication the entity is likely the only entity being rendered in the aggregated page, or that the entity has more space compared to other entities in the aggregated page. An entity SHOULD generate richer content when its window state is MAXIMIZED.

6.4.4 Custom Window States

The extensible registrationData structure, defined in Section 11, provides a field for Consumers to declare additional custom window states. An entity that does not support one of these custom window states MUST map the unsupported custom window state to the NORMAL window state.

7 Published State Interfaces

All state in the previous operational signatures was opaque to the Consumer (eg. either as navigationalState or a sessionID). In addition, means are defined by which a Producer MAY publish information about state in an entity-specific manner. This is enabled through Properties that are declared in the metadata specific to an entity. Each property declaration includes a name, datatype (default = xsd:string) and a scope (default = Entity) [A505][A507]. The following operations enable the Consumer to interact with this published portion of an entity’s state.

This first set of signatures apply when a Consumer wishes to set properties related to the configuration or personalization of the entity (eg. scope was specified as Entity). Since these properties do not require the existence of a session, one is not supplied [R604].

property[] = setProperties(consumerContext, entityContext);

[RT: distinction between this signature and modifyEntity? I suggest this signature be dropped.]

Where:

consumerContext is an extensible data structure defined in Section 11 with a set of references the Producer MAY use for locating the current state of an entity. This includes a sendPublishedState flag indicating whether or not the Consumer is interested in receiving back the current published state of the entity as a property array.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity the Consumer is setting properties on as well as the properties being set. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

property[] is an array of properties. If the sendPublishedState flag in the consumerContext parameter is ‘true’, the entity will return these in this property array.

property[] = getProperties(consumerContext, entityContext, name[]);

Where:

consumerContext is an extensible data structure defined in Section 11 with a set of references the Producer MAY use for locating the current state of an entity.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity for which the Consumer is requesting current property settings. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

name[] is the array of property names the Consumer is requesting. A null array MUST be treated as a request to enumerate the current published state of the entity.

property[] is an array of properties.

[RT]Note: The following need further discussion as to whether they are to be included in this specification.

The following enable setting published runtime state on an entity.

interactionResponse = setProperties(consumerContext,

 entityContext,

 markupContext,

 properties);

Where:

consumerContext is an extensible data structure defined in Section 11 with a set of references the Producer SHOULD use for locating the current state of an entity. This includes a sendPublishedState flag indicating whether or not the Consumer is interested in receiving back the current published state of the entity as a property array.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity the Producer MUST use for processing the invocation. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

markupContext is a data type defined in Section 11 with a set of references related to the current request which the Producer MAY use for processing the request.

properties is an array of properties that are to be used to modify the published portion of the entity/session state.

interactionResponse is an extensible data structure, defined in Section 11, which includes items such as sessionID and an array of properties for when the Consumer indicates it is interested in receiving back the published state of the entity.

property[] = getProperties(consumerContext,

 entityContext,

 markupContext,

 name[]);

Where:

consumerContext is an extensible data structure defined in Section 11 with a set of references the Producer MAY use for locating the current state of an entity.

entityContext is an extensible data structure, defined in Section 11, which includes a reference to the entity the Producer MUST use for processing the request. It also contains that entity’s state in the case where the entity chooses to push this state to the Consumer.

markupContext is an extensible data structure, defined in Section 11, with a set of references related to the current request which the entity MAY use for processing the request.

name[] is the array of property names the Consumer is requesting. A null array MUST be treated as a request to enumerate the current published state of the entity.

property[] is the returned array of properties.

propertyDescription = getPropertyDescription(consumerContext, handle);

Where:

consumerContext is an extensible data structure defined in Section 11 with a set of references the Producer MAY use for locating the current state of an entity.

handle provides a context the Producer MAY use to determine which set of properties are to be described.

propertyDescription provides the metadata described in Section 11 for each of the properties scoped by the supplied handle.

8 Security

To ensure security during the transfer of data the Producer may expose its entry point via SSL with appropriate indications in its WSDL bindings.

It is also envisioned that document level security standards that are now being developed will apply to this specification. Their use is not included in this version of the specification as several important standards are not yet available (in particular, security policy declarations). To the extent that Producers and Consumers use document level security, we encourage adherence to established standards (or emerging ones when none has been established yet). It should also be noted that use of document level security restricts the reusability of an entity by compliant Consumers.

9 Markup

A variety of concerns related to entity’s generating markup that Consumers can safely aggregate into a page and then properly process End-User interactions are addressed by this section.
9.1 Encoding

The Consumer MUST indicate to the entity the preferred character encoding, using the characterSet field of the markupContext structure. It is up to the entity to generate markup that complies with this encoding. The Consumer may choose to support character set conversion. This is indicated to the Producer by setting the charcterSetConversion field within the RegistrationData structure to true. If this field is “true” then the entity is free to use any of the standard character set codes.

9.2 URL Considerations

As part of its content, an entity will often need to create URLs that reference the entity itself. For example; when an End-User activates one of these URLs, by clicking a link or submitting a form, the result should be a new request targeted to the entity. This section deals with the different possibilities for how the entity can encode these URLs in its markup [A300][A301].

URLs embedded in a markup fragment often cannot (or should not) be direct links to the Producer for a number of reasons:

· URLs the entity writes in its markup will be invoked or accessed by the End-User operating on the client. In the general case however it is only guaranteed that the client has direct access to the Consumer; the Producer may be shielded from the client via a firewall. So the Consumer needs to intercept URLs and route them to the Producer

· The Consumer may want to intercept URLs to perform additional operations, enrich the request with context information or do some book keeping

· The client might not be able to directly invoke the Producer, e.g. if the client is a browser that cannot issue SOAP requests to the Producer but can only talk HTTP to the Consumer. In this case the Consumer must translate the request into the correct protocol.

This implies that URLs must be encoded so that the Consumer intercepts them and re-routes them to the correct entity at the Producer, including the proper context. Because the same entity can be instantiated more than once in a single page, encoded URL’s will have to allow the Consumer to track the entity instance to which the request is targeted. The problem is that the Producer requires Consumer dependent information to write such a link. In principle there exist two options to make the encoded URLs point back to the Consumer and consist of all necessary information for the Consumer:

· The Consumer can pass information on its context to the entity. The entity exploits this information during URL encoding so the resulting URL can be passed without further modification to the client. The advantages of this technique are efficiency and exploitation of these settings, even in client-side scripting. The disadvantage is that the entity will not be able to serve static content as the content depends on Consumer runtime settings.

· The entity can use a special syntax to encode its URLs. It is then the task of the Consumer to detect URLs in the markup and modify them according to its requirements. The markup generated by the entity is now Consumer independent, allowing the entity to exploit caching mechanisms or even serve static content. However, the Consumer will be more complex as it needs to parse the markup to locate and rewrite the URLs, requiring extra processing time. Consumers SHOULD seek to minimize this impact on performance by using efficient encoding and parsing mechanisms (for example, the Boyer-Moore algorithm).

 As there is no clear advantage to either technique, both styles of URL encoding are supported. This facilitates both the capabilities of the Producer and Consumer with regards to the ability to adapt the generated markup.

Note: In principle it would not be necessary to mark URLs in a special way. The Consumer could always analyze the markup semantically and syntactically, detect URLs and rewrite them. This approach however would be very difficult and time consuming to implement for the Consumer, for reasons that include such a rewriting algorithm being dependent on the markup type and version. Therefore both the Consumer and the Producer URL writing scenarios are introduced for convenience.

We recommend [TS: Is recommend strong enough?] that entities adopt the following convention for including non-ASCII characters within URLs.

1. Represent each character in UTF-8 (see [RFC2279]) as one or more bytes.

2. Escape these characters with the URI escaping mechanism (i.e., by converting each byte to %HH, where HH is the hexadecimal notation of the character value).

This procedure results in a syntactically legal URI (as defined in [RFC1738], section 2.2 or [RFC2141], section 2) that is independent of the character encoding to which the document carrying the URI may have been transcoded.
[RT: Make the RFC references hyperlinks.]

9.2.1 Consumer URL Writing

All URLs the Consumer needs to write are demarcated by a token (wsia:QXqKYZJVUWj7G) both at the start (with a ‘?’ appended to clearly delimit the start of the name/value pairs) and end (preceded by a ‘/’ to form the end token) of the URL declaration. This syntax helps the Consumer to exploit efficient URL rewriting mechanisms as this token has been chosen to consist of a sequence of characters that are unlikely to occur in “normal” markup. The Consumer will have to locate the start and end token in the markup stream and use the information between the tokens to write the URL correctly. Details on this URL writing process are Consumer specific and out of scope for this specification. The content between this pair of tokens follows the pattern of a querystring (name/value pairs separated by ‘&’ characters) with several well-known parameter names specifying what the Consumer needs in order to both correctly write the URL and then process it when an End-User activates it. This results in an URL declaration of the form:

wsia:QXqKYZJVUWj7G?name1=value1&name2=value2 .../wsia:QXqKYZJVUWj7G

Where the following well-known names are defined:

wsia:urlType: This controls how the resulting URL is processed when activated. The following values are defined:

Action:

Activation of the URL will result in invoking processInteraction().
Render:

Activation of the URL will result in invoking getMarkup().
Resource:

Activation of the URL will result in the Consumer fetching the underlying resource, possibly in a cached manner, and returning it to the End-User. For the http protocol this maps to a “get” on the underlying resource.

Namespace:
This tells the Consumer that what it is writing is a name that needs to be unique on the aggregated page. While this is not technically a URL, providing this functionality in this manner keeps the performance impacts of the Consumer parsing to a single pass of the markup.

ConsumerResource: _____

wsia:resource: When urlType is ‘Resource’, this specifies the underlying resource.

wsia:name: When urlType is ‘Namespace’, this specifies the name to be processed.

wsia:navigationalState: What should be returned to the entity in the navigationalState field.
wsia:rewriteResource: This boolean informs the Consumer that the resource needs to be parsed for URL rewriting. Normally this means that there are names that will be cross referenced between the markup and this resource (eg. javascript references). Note that this means the Consumer needs to deal with rewriting unique ‘namespaced’ names in a set of documents rather than treating each individually. Consumers MAY want to process such resources in a manner that allows caching of the resulting resource by the End-User’s browser.

[RT: Didn’t the markup subgroup decide that only resource served through getMarkup() would participate in such a set of documents. Does a writeup about attachments need to proceed this so that verbiage can be added regarding this decision?]
9.2.2 Producer URL Writing

Entities often are willing to properly write URLs for the Consumer as this decentralizes the preparation of the page for rendering and thereby may provide better page load performance to the End-User. To enable entities to offer this service, several properties are defined by which the Consumer MAY indicate how it needs URLs formatted in order to process them properly. These properties all take the form of a simple template, namely:

 http://www.Consumer.com/path?wsia:sessionID={sessionID}&{clientParameters}

Where:

{parameterName} These designate a value the entity is to replace. If there is no value for the defined parameter, the empty string MUST be used as the replacement value. The curly brace characters and the enclosed parameter name MUST be replaced with the appropriate value. Defined parameter names include:

navigationalState: This parameter is used upon URL activation to provide the navigational state needed by the entity in order to process the request.

sessionID: This parameter specifies the sessionID to be used to lookup the local state that was used to generate the markup.

clientParameters: This parameter allows the specification of any additional parameters the entity chooses to place on the URL. These should follow the pattern of a querystring (name/value pairs separated by the ‘&’ character).
All content outside the {} pairs MUST be treated by the entity as constants the Consumer wishes to receive when the URL is activated.

Properties of this type are defined with the following names:

wsia:ActionTemplate:
Activation of the URL will result in invoking processInteraction().
wsia:RenderTemplate:
Activation of the URL will result in invoking getMarkup().
wsia:ResourceTemplate:
Activation of the URL will result in the Consumer fetching the underlying resource, possibly in a cached manner, and returning it to the End-User. For the http protocol this maps to a “get” on the underlying resource.

wsia:ConsumerResource:

9.3 Namespace Encoding

Aggregating multiple entities from different sources can potentially result in naming conflicts for various types of elements: named attributes, JavaScript functions and variables, etc. Such tokens must therefore be encoded to an entity-instance specific namespace [A301]. The entity does this by prefixing the name of the resource by a namespace prefix. Similar to the case of URL rewriting, two options exist to obtain such a prefix.

· The entity uses a static, predefined method to denote tokens needing a namespace prefix. The Consumer parses the markup fragment to locate these tokens and replace them with a namespaced token unique in the context of the page aggregation. This is done using the same method as URL rewriting and is described in that section.

· The entity uses a namespace provided by the Consumer to prefix these tokens in its markup. The Consumer ensures this prefix is unique for the page aggregation, so the Consumer is not required to process the markup. If namespace encoding is used for form parameters or other data the entity receives as in a processInteraction() or getMarkup() invocation, then the Consumer is responsible for stripping the namespace from the parameter names before passing them to the Producer. This means the entity logic can be agnostic regarding namespace issues except when encoding parameters in the markup.

9.3.1 Producer Namespace Writing

The producer can obtain a unique namespace by exposing a well know property name:

wsia:NameSpacingPrefix

9.3.2 Consumer offered resources

Section ___ defines how a producer can embed resources (e.g. images) in its markup. This method assumes that the entity has detailed knowledge of the resource to include. The entity may want to include resources that reflect a certain state or semantics without knowing how these should be visualized in the markup. An example for this is the use of standard icons that are uniform across all entities displayed on the aggregated page; such as OK or Cancel icons or icons reflecting the producer’s state (Active, Inactive, etc). Consumer offered resources are not limited to images but could reference commonly used markup fragments.

[AK: I wish we could come up with a different term than “Consumer offered resources”…what about Consumer-proxied resources?]

9.3.2.1 Consumer URL Writing

The entity encodes wsia:urlType=ConsumerResource using the definitions found in Section 9.2.1.

9.3.2.2 Producer URL Writing

The Consumer sends the wsia:ConsumerResourceTemplate template the entity may use to encode the consumer offered resource as per Section 9.2.2.
9.3.2.3 Resource identifiers

The following identifiers for Consumer offered resources are defined:

· OK_ICON

· CANCEL_ICON

· INFO_ICON

· WARNING_ICON

· ERROR_ICON

· QUESTION_ICON

· [CL: to be completed]

· [RT: adding an array for additional ones to RegistrationData … ie. make it an extensible list.]

9.4 URL Writing Semantics

1. IF an entity’s properties include wsia:ActionTemplate, wsia:RenderTemplate, wsia:ResourceTemplate or wsia:NameSpacingPrefix, then it MUST be willing to correctly format URLs for all content it generates.

2. IF the Consumer sets the above properties, then the entity MUST generate URLs based on those setting and the Consumer is not required to parse the generated markup.
3. IF either the entity doesn’t expose these properties or the Consumer chooses to not set them, then the Consumer MUST parse the returned markup and rewrite URLs conforming to the definitions in Section 9 of this specification.

9.5 Markup Fragment Rules

Because the Consumer aggregates the markup fragments produced by entities into a single page, some rules and limitations are needed to ensure the coherence of the resulting page to be displayed to the End-User. For efficiency reasons Consumers are not required to validate the markup fragments returned by the entity. So in order to be aggregatable the entity must ensure that the markup conforms to the following general guidelines [A300][A302].

The disallowed tags listed below are those tags that impact other entities or may even break the entire aggregated page. Inclusion of such a tag invalidates the whole markup fragment, which the Consumer MAY replace with an error message.

9.5.1 HTML

9.5.1.1 Disallowed Tags

Since the Consumer may implement its aggregation in many ways, including using frames, some Consumers may actually support these disallowed tags. However, in order to be certified as being a cross-platform entity, an entity MUST NOT use the following tags:

	Disallowed

	 base

	 body

	 frame

	 frameset

	 head

	 html

	 title

9.5.1.2 Other Tags

There are some tags that are specifically prohibited by the HTML specs from existing outside the <head> of the document. However, for some of these tags browser implementations may vary. For example: current versions of Internet Explorer and Netscape Navigator both support the style tag anywhere within the document.

It is up to the entity developer to decide when using such tags is appropriate. Here is a list of tags that fit this description:

	link

	meta

	style

	xforms:model

Note: The XForms specification explicitly requires the xforms:model tag to exist in the head of an XHTML page. At least some initial implementations of XForms processors relax this to requiring the xforms:model tag precede any reference to it by the rest of the markup.

9.5.2 XHTML

9.5.2.1 Disallowed Tags

	Disallowed

	 base

	 body

	 head

	 html

	 title

9.5.2.2 Other Tags

	link

	meta

	style

	xforms:model

Note: The XForms specification explicitly requires the xforms:model tag to exist in the head of an XHTML page. At least some initial implementations of XForms processors relax this to requiring the xforms:model tag precede any reference to it by the rest of the markup.

9.5.3 XHTML Basic

9.5.3.1 Disallowed Tags

	Disallowed

	 base

	 body

	 head

	 html

	 title

9.5.3.2 Other Tags

	link

	meta

	style

	xforms:model

Note: The XForms specification explicitly requires the xforms:model tag to exist in the head of an XHTML page. At least some initial implementations of XForms processors relax this to requiring the xforms:model tag precede any reference to it by the rest of the markup.

9.5.4 VoiceML

9.5.4.1 Disallowed Tags

9.5.4.2 Other Tags

9.6 CSS Style Definitions

One of the goals of an aggregated page is a common look-and-feel across the entities contained on that page. This not only affects the decorations around the entities, but also their content. Using a common CSS style sheet for all entities and defining a set of standard styles provide this common look-and-feel without requiring the entities generate Consumer specific markup. Entities MAY use these style definitions to participate in a uniform display of their content by various Consumers.

This section defines styles for a variety of logical units in the markup.

9.6.1 Links (Anchor)

A custom CSS class is not defined for the <a> tag. The entity should use the default classes when embedding anchor tags.

9.6.2 Fonts
	Style
	Description

	.wsia-font
	

	.wsia-font-dim
	

If an entity author wants a certain font type to be larger or smaller, they should indicate this using a relative size.

Example1: <div class="wsia-font" style="font-size:larger">Important information</div>

Example1: <div class="wsia-font-dim" style="font-size:80%">Small and dim</div>

9.6.3 Messages

	Style
	Description

	.wsia-msg-status
	Display status messages

	.wsia-msg-info
	 Help/info messages

	.wsia-msg-error
	Errors

	.wsia-msg-alert
	 Warnings

	.wsia-msg-success
	Successful completion

9.6.4 Sections

	Style
	Description

	wsia-section-header
	

	.wsia-section-body
	

	.wsia-section-alternate
	

	.wsia-section-selected
	

	wsia-section-subheader
	

	wsia-section-footer
	

	wsia-section-text
	

9.6.5 Forms

	Style
	Description

	.wsia-form-label
	

	.wsia-form-field
	

	.wsia-form-button
	

	
	

	.wsia-icon-label
	Text that appears beside a context dependent action icon.

	.wsia-dlg-icon-label
	Text that appears beside a “standard” icon (e.g. Ok, or Cancel)

	.wsia-form-field-label
	Text for a separator of fields (e.g. checkboxes, etc.)

	.wsia-form-field
	Text for a field (not input field, e.g. checkboxes, etc)

9.6.6 Menus
	Style
	Description

	.wsia-menu
	

	.wsia-menu-item
	

	.wsia-menu-item-selected
	

	.wsia-menu-item-hover
	

	.wsia-menu-item-hover-selected
	

	.wsia-menu-cascade-item
	

	.wsia-menu-cascade-item-selected
	

	 .wsia-menu-description
	

	 .wsia-menu-caption
	

9.6.7 Entity
	Style
	Description

	.wsia-entity
	

	.wsia-entity-edit
	Allow for different styles in edit and config mode.

	.wsia-entity-config
	Do we need to redefine all styles mode dependent? Other modes?

[AK: Is this still an open question?]

10 User Information

Entities can provide content that is dependent on the End-User [A600][A606].

10.1 Default User Attributes

The extensible user profile structure includes the following fields:

name which includes:

prefix:

given:

family:

middle:

suffix:

nickname:

birthdate:

gender:

employer which includes:

employer:

department:

jobTitle:

homeInfo which includes:

postalAddress which includes:

name:

street:

city:

stateprov:

postalcode:

country:

org:

telephones:

email:

online:

homeInfo which includes:

postalAddress which includes:

name:

street:

city:

stateprov:

postalcode:

country:

org:

telephones:

email:

online:

10.2 Custom User Attributes

Besides the attributes defined in the previous section, entities can use custom user attributes if the Consumer provides them.
11 Data Structures.

It is often necessary to pass data to operations. Wherever possible typed data object are defined as the transport mechanism for this data [A504][A505]. Extensibility elements are also provided for vendor or application specific data extensions.

In order to allow extensibility of any data object we define a base class for all data objects that simply includes an untyped property list and a security modifier.

Optional parameters are marked with [O], required parameters with [R]

The defined data structures passed in messages to operations are:

11.1 Handle Types

Handle extends String

ConsumerHandle extends Handle

EntityHandle extends Handle

ProducerOfferedEntityHandle extends EntityHandle

ConsumerConfiguredEntityHandle extends EntityHandle

SessionID extends Handle

11.2 Property Type

Property

[R] String

name

[O] String

datatype

[O] String

value

[O] String

scope

[O] boolean

required
Members:
name

Name of the property, must not be null

datatype
Definition of the Property’s datatype (default is “xsd:string”). This data field SHOULD only be specified in the metadata that describes a property to the Consumer and not on any invocation that sets properties.

value

String representation of the property’s value. The interpreter is responsible for serializing and deserializing the correct value type.

scope

Scope for this property. Default value is “Entity”.

required
Boolean to indicate whether this property is required. Default value is “false”. This data field SHOULD only be specified in the metadata that describes a property to the Consumer and not on any invocation that sets properties.
11.3 RegistrationData Type

RegistrationData

[R] String

consumerName

[O] String

consumerVendor

[O] boolean

characterSetConversion

[O] String[]

userProfileExtensions

[O] String[]

consumerModes

[O] String[]

consumerWindowStates

[O] Property[]
registrationProperties

Members:
consumerName

Globally unique name that identifies the Consumer. [R355]

consumerVendor

Name and version of the Consumer vendor. [R356]

characterSetConversion
A boolean indicating whether the Consumer will do character set conversion if the markup returned by an entity does not match the requested characterSet. Default value is ‘false’.

userProfileExtensions
An array of named extensions to the user profile defined in this specification

consumerModes

An array of named extensions to the modes defined in this specification

consumerWindowStates
An array of named extensions to the window states defined in this specification

registrationProperties
List of registration properties. The names of these properties SHOULD be from the set declared in the RegistrationData array from the Producer’s service description and are not part of this specification.

11.4 ConsumerContext Type

ConsumerContext

[R] Handle

consumerHandle

[O] String

consumerState

[O] String

userID

[O] boolean
sendPublishedState

[O] Property[]
extensions

Members:
consumerHandle

An opaque reference to the Consumer-Producer relationship. This opaque reference is generated by the registerConsumer() operation. [R355]

consumerState

An opaque string the Producer MAY use to store the state for this Consumer registration. If this field is non-null the Consumer must persist it with the consumerhandle. The Consumer must return this value on any consecutive calls in the same consumerContext.

userID

An opaque reference to the End-User’s profile (separately supplied). [RT: This field is under discussion by the WSRP-security subgroup. This version requires a separate operation (no yet in this draft) for setting the user profile, though this operation could be targeted at a Producer level. The other possibility under discussion is sending the profile information with each invocation. The advantage of the first is reduced payloads on messages and likely lower security requirements on most invocations. The advantage of the second is reduced exposure of information.]

sendPublishedState
This boolean allows a Consumer to indicate that it is interested in the published state of the entity. When set to true, the Producer SHOULD include the published state of the entity in any return messages that permit its inclusion. Default value is false.

extensions

An array of properties for use when implementations choose to extend this structure.
11.5 EntityContext Type

EntityContext

[R] Handle

entityHandle

[O] Property[]
entityProperties

[O] String

entityState

[O] boolean

modifiedProperties

[O] Property[]
extensions

Members:
entityHandle

An opaque reference to the entity targeted by the invocation. This may either be a ProducerOfferedEntity or a ConsumerConfiguredEntity.

entityProperties

Array of entity properties. The names of these properties MUST be from the set declared in the entityProperties array from the EntityType data element in the service description.

entityState

An opaque string the entity MAY use to store its entire state. If the Producer returns a non-null value, the Consumer MUST return this value on any consecutive calls to the same entity.
Note that such uses MAY span various cyclings of the Consumer and therefore this MUST be persisted by the Consumer.

modifiedProperties
A boolean a Consumer MUST set if supplying modified values in the properties field. If set to ‘true’, the Producer MUST process the supplied properties as if modifyEntity() had been invoked immediately before the current invocation. The default value of this field is ‘false’.

extensions

An array of properties for use when implementations choose to extend this structure.
11.6 Markup Types

MarkupContext

[O] String

groupID

[O] String

sessionID

[R] Clientdata
clientData

[R] String

locale

[O] String

navigationalState

[O] Integer
currentMode

[O] Integer
previousMode

[O] Integer
windowState

[O] String

characterSet

[O] String

markupType

[O] Property[]
httpHeaders

[O] boolean
secureClientCommuncations

[O] Property[]
extensions

Members:
groupID

A reference supplied by the Consumer which the Producer MAY use when establishing any local data sharing. This reference MAY be the same for several entities. The Producer SHOULD only inspect the value of this field when it is in the process of creating a shared data area. Consumers MUST not change this id for a particular session with an entity once it is supplied to the Producer.

sessionID

The reference returned by the Producer in a previous invocation which allows it to look up locally stored state.

clientData

A structure defined elsewhere in this section that provides information about the client device which will render the markup.

locale

Locale to generate the markup for.

navigationalState
Opaque state for this entity from the immediately preceeding invocation of the Producer.

currentMode

The mode the entity should render its output for (e.g. view, edit, config, help, design, preview). See definition of these constants elsewhere in this appendix.

previousMode

The previous mode (if any) the entity rendered its output for.

windowState

The state of this entity’s virtual window relative to other entities on the aggregated page (e.g. normal, minimized, maximized). See definition of these constants elsewhere in this appendix.

characterSet

characterset used for encoding (e.g. UTF8, maybe different from the character set used for the transport.

markupType

Markup type to generate (e.g. HTML, XHTML, cHTML).

httpHeaders

Http headers of the initial request.

secureClientCommunications
Is the client-Consumer connection secured?

extensions

An array of properties for use when implementations choose to extend this structure.

MarkupResponse

[O] String
markup

[O] String
sessionID

[O] int

expires

Members:
markup

The markup to be used for visualizing the current state of the entity.

sessionID
Opaque handle to Producer stored state for the entity.

expires
An int value for the number of seconds before the state represented by SessionID will be “timed out” by the Producer and the resources reclaimed. A value of –1 means the Producer does not time out this state.

11.7 Interaction Types

InteractionContext

[O] String

groupID

[O] String

sessionID

[R] String

locale

[O] Integer
currentMode

[O] Integer
previousMode

[O] Integer
windowState

[O] Property[]
httpHeaders

[O] Property[]
clientParameters

[O] String

uploadData

[O] boolean
secureClientCommuncations

[O] Property[]
extensions

Members:
groupID

A reference supplied by the Consumer which the Producer MAY use when establishing any local data sharing. This reference MAY be the same for several entities. The Producer SHOULD only inspect the value of this field when it is in the process of creating a shared data area. Consumers MUST not change this id for a particular session with an entity once it is supplied to the Producer.

sessionID

The reference returned by the Producer in a previous invocation which allows it to look up locally stored state.

locale

Locale to generate the markup for.

currentMode

The mode the entity should render its output for (e.g. view, edit, config, help, design, preview). See definition of these constants elsewhere in this appendix.

previousMode

The previous mode (if any) the entity rendered its output for.

windowState

The state of this entity’s virtual window relative to other entities on the aggregated page (e.g. normal, minimized, maximized). See definition of these constants elsewhere in this appendix.

httpHeaders

Http headers of the initial request.

clientParameters

Request parameters of the initial request. Name/value pairs from a client post are parsed into this list of properties.

uploadData

Data blob if a file is to be uploaded [CL: Axis limits soap messages to 500K.] [Evaluate the use of SOAP attachments and/or DIME]

secureClientCommunications
Is the client-Consumer connection secured?

extensions

An array of properties for use when implementations choose to extend this structure.
InteractionResponse

[O] String

navigationalState

[O] String

sessionID

[O] int

expires

[O] boolean

stateChanged

[O] int

newWindowState

[O] int

newMode

[O] String

redirectURL

[O] Property[]
extensions

Members:
navigationalState
Opaque respresentation of navigational state which the entity is returning to the Consumer. The Consumer MUST supply this on the next invocation such that the correct state of the entity is used when processing that invocation.

sessionID

Opaque handle to Producer stored state for the entity.

expires

An int value for the number of seconds before the state represented by SessionID will be “timed out” by the Producer and the resources reclaimed. A value of –1 means the Producer does not time out this state.

stateChanged

This boolean informs the Consumer whether or not it needs to process navigationalState as having been modified relative to the version supplied with the invocation generating this response. [RT: An alternative to returning this boolean is assigning this semantic meaning to returning a null for navigationalState.]

[CL: I agree. It would make more sense to only return the state if something has changed.]

newWindowState

The window state the entity needs for its next markup generation. This data item MAY NOT be included unless the value is different than the current windowState.

newMode

The mode the entity needs for its next markup generation. This data item MAY NOT be included unless the value is different than the current mode.

redirectURL

As a result of processing this interaction, the entity is indicating to the Consumer that it would like the user to view a different URL.

extensions

An array of properties for use when implementations choose to extend this structure.

11.8 Entity Metadata Types

 LocaleData

[O] String

locale

[O] String

description

[O] String

shortTitle

[O] String

title

[O] String[]

keywords

[O] String[]

roles

Members:
locale

The locale for this descriptive response.

description
Descriptions of the entity. This SHOULD be displayed on selection dialogs, etc.

shortTitle
A short title for the entity.

titles

Title for the entity.

keywords

Array of keywords describing the entity which can be used for search, etc.

roles

Array of localized names for the roles the entity can manage. Note: This support MAY be provided by the Producer service on behalf of the entity. The entity can freely define any role it wants, however there exists a set of predefined roles in this appendix. [R416]
EntityType

[R] Handle

entityHandle

[O] URL

wsdlURL

[O] LocaleData[]
localeData

[O] String[]

markupTypes

[O] String[]

modes

[O] String[]

viewStates

[O] boolean

cacheability

[O] Property[]

entityProperties

[O] Property[]

extensions

Members:
entityHandle

The handle by which Consumers MAY refer to this offered entity.

wsdlURL

The URL for the WSDL description of this entity. [use case?]

markupLocales[]
The list of locales for which this entity is willing to generate markup.

locales[]

A array of locale specific data.

markupTypes[]

The different markup languages supported by the entity, e.g. HTML, XHTML, WML, VoiceXML, cHTML, …

modes

The modes that are supported by the entity (e.g. view, edit, config, help, design, preview). Mode constants are defined elsewhere in this section. In addition the portlet can define its own modes (see JSR168).

viewStates

The viewStates that are supported by the entity (eg. minimized, normal, maximized, …). These constants are is defined elsewhere in this section.

cacheability

Information on how caching may be applied, including expiry times and indication on whether content is personal or shared. [RT: Either this needs to become a structure of its own or the description changed to indicate it only reflects whether the document fragments may be cached at all. Didn’t the markup subgroup decide to use the transport level indicators about cacheability.]

entityProperties
List of properties the entity exposes as its published state.

extensions

An array of properties for use when implementations choose to extend this structure.

[RT: Should an entity state that it is clonable?]

11.9 Description Types

Description

[R] DocFragment
wsdl

[O] Property[]

extensions

ServiceDescription extends Description

[R] EntityType[]
entities

[O] boolean

supportsRegistration

[O] Property[]

registrationProperties

EntityDescription extends Description

[R] EntityType
entity

ClientData

[R] String
userAgent

[R] String
deviceInfo

Members:
userAgent

String identifying the UserAgent of the End-User.

deviceInfo
Type of device rendering the markup to the End-User.

(The complete list will have to be worked out by the markup subcommittee and may have to be in sync with the description that goes to UDDI directories).

11.10 MetaData

These can be placed in the WSDL description of the service/entity using the tag <wsia:metadata>. Child elements MAY include:

<wsia:roles>

<wsia:entity>

…

[RT: Do the metadata items from the structures above want to also be explicit element types here?]

11.11 Roles

	User
	Need some semantic definitions!

	Administrator
	

	PageDesigner
	

	
	

11.12 Constants

	1
	VIEW_MODE

	2
	EDIT_MODE

	4
	CONFIG_MODE

	8
	HELP_MODE

	16
	DESIGN_MODE

	32
	PREVIEW_MODE

	
	

	1
	VIEW_NORMAL

	2
	VIEW_MINIMIZED

	4
	VIEW_MAXIMIZED

	8
	VIEW_DETACHED

	
	

	
	

	
	

12 Using UDDI

12.1 Publishing WSRP Services to UDDI

12.1.1 Public UDDI

12.1.2 Private UDDI

12.2 Finding WSRP Services in UDDI

12.2.1 Public UDDI

12.2.2 Private UDDI

13 WSDL Interface Definition

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions
targetNamespace="http://schemas.oasis-open.org/wsrp"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl="http://schemas.oasis-open.org/wsrp-impl"

xmlns:intf="http://schemas.oasis-open.org/wsrp"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://wsrp.oasisopen.org"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>

<schema
targetNamespace="http://wsrp.oasisopen.org"

xmlns="http://www.w3.org/2001/XMLSchema">

<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

<complexType name="Property">

<sequence>

<element name="name"

nillable="true" type="soapenc:string"/>

<element name="datatype" nillable="true" type="soapenc:string"/>

<element name="value"

nillable="true" type="soapenc:string"/>

<element name="scope"

nillable="true" type="soapenc:string"/>

<element name="required" type="xsd:boolean"/>

</sequence>

</complexType>

<complexType name="PropertyArray">

<complexContent>

<restriction base="soapenc:array">

<sequence>

<element name="Property" type="tns:Property" maxOccurs="unbounded"/>

</sequence>

</restriction>

</complexContent>

</complexType>

<complexType name="StringArray">

<complexContent>

<restriction base="soapenc:array">

<sequence>

<element name="string" type="soapenc:string" maxOccurs="unbounded"/>

</sequence>

</restriction>

</complexContent>

</complexType>

<complexType name="RegistrationDataType">

<sequence>

<element name="consumerName" nillable="true" type="tns:Property"/>

<element name="consumerVendor" nillable="true" type="tns:Property"/>

<element name="userProfileExtensions" nillable="true" type="tns:StringArray"/>

<element name="registrationProperties" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexType>

<element name="RegistrationData" nillable="true" type="tns:RegistrationDataType"/>

<complexType name="ConsumerContextType">

<complexContent>

<sequence>

<element name="consumerHandle" nillable="true" type="soapenc:string"/>

<element name="consumerState" nillable="true" type="soapenc:string"/>

<element name="userID" nillable="true" type="soapenc:string"/>

<element name="sendPublishedState" type="xsd:boolean"/>

<element
name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

<element name="ConsumerContext" nillable="true" type="tns:ConsumerContextType"/>

<complexType name="EntityContextType">

<complexContent>

<sequence>

<element name="entityHandle" nillable="true" type="soapenc:string"/>

<element name="entityProperties" nillable="true" type="tns:PropertyArray"/>

<element name="entityState" nillable="true" type="soapenc:string"/>

<element name="expires" type="xsd:int"/>

<element name="modifiedParameters" type="xsd:boolean"/>

<element name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

<element name="EntityContext" nillable="true" type="tns:EntityContextType"/>

<complexType name="ClientDataType">

<complexContent>

<sequence>

<element name="userAgent" nillable="true" type="soapenc:string"/>

<element name="deviceinfo" nillable="true" type=" soapenc:string "/>

</sequence>

</complexContent>

</complexType>

<element name="ClientData" nillable="true" type="tns:ClientDataType"/>

<complexType name="MarkupContextType">

<complexContent>

<sequence>

<element name="groupID" nillable="true" type="soapenc:string"/>

<element name="sessionID" nillable="true" type="soapenc:string"/>

<element name="clientData" nillable="true" type="tns:ClientDataType"/>

<element name="locale" nillable="true" type="soapenc:string"/>

<element name="navigationalState" nillable="true" type="soapenc:string"/>

<element name="currentMode" type="xsd:int"/>

<element name="previousMode" type="xsd:int"/>

<element name="windowState" type="xsd:int"/>

<element name="characterSet" nillable="true" type="soapenc:string"/>

<element name="markupType" nillable="true" type="soapenc:string"/>

<element name="httpHeaders" nillable="true" type="tns:PropertyArray"/>

<element name="secureClientCommunications" type="xsd:boolean"/>

<element
name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

<element name="MarkupContext" nillable="true" type="tns:MarkupContextType"/>

<complexType name="MarkupResponseType">

<complexContent>

<sequence>

<element name="markup" nillable="true" type="soapenc:string"/>

<element name="sessionID" nillable="true" type="soapenc:string"/>

<element name="expires" type="xsd:int"/>

</sequence>

</complexContent>

</complexType>

<element name="MarkupResponse" nillable="true" type="tns:MarkupResponseType"/>

<complexType name="InteractionContextType">

<complexContent>

<sequence>

<element name="groupID" nillable="true" type="soapenc:string"/>

<element name="sessionID" nillable="true" type="soapenc:string"/>

<element name="locale" nillable="true" type="soapenc:string"/>

<element name="currentMode" type="xsd:int"/>

<element name="previousMode" type="xsd:int"/>

<element name="windowState" type="xsd:int"/>

<element name="httpHeaders" nillable="true" type="tns:PropertyArray"/>

<element name="clientParams" nillable="true" type="tns:PropertyArray"/>

<element name="uploadData" nillable="true" type="soapenc:string"/>

<element name="secureClientCommunications" type="xsd:boolean"/>

<element
name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

 <element name="InteractionContext" nillable="true" type="tns:InteractionContextType"/>

<complexType name="InteractionResponseType">

<complexContent>

<sequence>

<element name="navigationalState" nillable="true" type="soapenc:string"/>

<element name="sessionID" nillable="true" type="soapenc:string"/>

<element name="expires" type="xsd:int"/>

<element name="newWindowState" type="xsd:int"/>

<element name="newMode" type="xsd:int"/>

<element name="redirectURL" nillable="true" type="soapenc:string"/>

<element
name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

<element name="InteractionResponse" nillable="true" type="tns:InteractionResponseType"/>

<complexType name="EntityType">

<complexContent>

 <sequence>

<element name="entityHandle" nillable="true" type="soapenc:string"/>

<element name="wsdlURL" nillable="true" type="soapenc:string"/>

<element name="markupLocales" nillable="true" type="tns:StringArray"/>

<element name="locales" nillable="true" type="tns:StringArray"/>

<element name="description" nillable="true" type=" tns:StringArray "/>

<element name="shortTitles" nillable="true" type=" tns:StringArray "/>

<element name="titles" nillable="true" type=" tns:StringArray "/>

<element name="roles" nillable="true" type=" tns:StringArray "/>

<element name="keywords" nillable="true" type=" tns:StringArray "/>

<element name="markupTypes" nillable="true" type=" tns:StringArray "/>

<element name="modes" type="xsd:int"/>

<element name="viewStates" type="xsd:int"/>

<element name="cachability" type="xsd:boolean"/>

<element name="entityProperties" nillable="true" type="tns:PropertyArray"/>

<element
name="extensions" nillable="true" type="tns:PropertyArray"/>

</sequence>

</complexContent>

</complexType>

<complexType name="EntityTypeArray">

<complexContent>

<restriction base="soapenc:array">

<sequence>

<element name="EntityType" type="tns:EntityType" maxOccurs="unbounded"/>

</sequence>

</restriction>

</complexContent>

</complexType>

<complexType name="DescriptionType">

<complexContent>

<sequence>

<element name="wsdlDescription" nillable="true" type="soapenc:string"/>

</sequence>

</complexContent>

</complexType>

<complexType name="ServiceDescriptionType">

<complexContent>

<extension base="tns:DescriptionType">

<sequence>

<element name="entities" nillable="true" type="tns1:EntityTypeArray"/>

<element name="registrationData" nillable="true" type="tns:PropertyArray"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="ServiceDescription" nillable="true" type="tns:ServiceDescriptionType"/>

<complexType name="EntityDescriptionType">

<complexContent>

<extension base="tns:DescriptionType">

<sequence>

<element name="entity" nillable="true" type="tns1:EntityType"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="ServiceDescription" nillable="true" type="tns:ServiceDescriptionType"/>

</schema>

</wsdl:types>

<wsdl:message name="getDescriptionRequest">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="handle"

type="soapenc:string"/>

<wsdl:part name="userRoles"

type="tns:StringArray"/>

</wsdl:message>

<wsdl:message name="getDescriptionResponse">

<wsdl:part name="description" type="tns:DescriptionType"/>

</wsdl:message>

<wsdl:message name="registerConsumerRequest">

<wsdl:part name="registrationData" type="tns:RegistrationDataType"/>

</wsdl:message>

<wsdl:message name="registerConsumerResponse">

<wsdl:part name="consumerContext" type="tns:ConsumerContextType"/>

</wsdl:message>

<wsdl:message name="modifyConsumerRequest">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="registrationData"

type="tns:RegistrationDataType"/>

</wsdl:message>

<wsdl:message name="modifyConsumerResponse">

<wsdl:part name="consumerContext" type="tns:ConsumerContextType"/>

</wsdl:message>

<wsdl:message name="cloneEntityRequest">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="handle"

type="soapenc:string"/>

<wsdl:part name="entityProperties"

type="tns:PropertyArray"/>

</wsdl:message>

<wsdl:message name="cloneEntityResponse">

<wsdl:part name="entityContext" type="tns:EntityContextType"/>

</wsdl:message>

<wsdl:message name="modifyEntityRequest">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="entityContext"

type="tns:EntityContextType"/>

</wsdl:message>

<wsdl:message name="modifyEntityResponse">

<wsdl:part name="entityContext" type="tns:EntityContextType"/>

 </wsdl:message>

<wsdl:message name="releaseHandlesRequest">

<wsdl:part name="handles" type="tns:StringArray"/>

</wsdl:message>

<wsdl:message name="releaseHandlesResponse">

<wsdl:part name="releasedHandles" type="tns:StringArray"/>

</wsdl:message>

<wsdl:message name="getMarkupRequest">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="entityContext"

type="tns:EntityContextType"/>

<wsdl:part name="markupContext"

type="tns:MarkupContextType"/>

</wsdl:message>

<wsdl:message name="getMarkupResponse">

<wsdl:part name="markupResponse" type="tns:MarkupResponseType"/>

</wsdl:message>

<wsdl:message name="performInteractionRequest">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="entityContext"

type="tns:EntityContextType"/>

<wsdl:part name="interactionContext" type="tns:InteractionContextType"/>

</wsdl:message>

<wsdl:message name="performInteractionResponse">

<wsdl:part name="interactionResponse" type="tns:InteractionResponseType"/>

</wsdl:message>

<wsdl:message name="setPropertiesRequest1">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="entityContext"

type="tns:EntityContextType"/>

</wsdl:message>

<wsdl:message name="setPropertiesResponse1">

<wsdl:part name="properties" type="tns:PropertyArray"/>

</wsdl:message>

<wsdl:message name="getPropertiesRequest1">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="entityContext"

type="tns:EntityContextType"/>

<wsdl:part name="names"

type="tns:StringArray"/>

</wsdl:message>

<wsdl:message name="getPropertiesResponse1">

<wsdl:part name="properties" type="tns:PropertyArray"/>

</wsdl:message>

<wsdl:message name="setPropertiesRequest">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="entityContext"

type="tns:EntityContextType"/>

<wsdl:part name="markupContext"

type="tns:MarkupContextType"/>

<wsdl:part name="properties"

type="tns:PropertyArray"/>

</wsdl:message>

<wsdl:message name="setPropertiesResponse">

<wsdl:part name="interactionResponse" type="tns:InteractionResponseType"/>

</wsdl:message>

<wsdl:message name="getPropertiesRequest">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="entityContext"

type="tns:EntityContextType"/>

<wsdl:part name="markupContext"

type="tns:MarkupContextType"/>

<wsdl:part name="names"

type="tns:StringArray "/>

</wsdl:message>

<wsdl:message name="getPropertiesResponse">

<wsdl:part name="properties" type="tns:PropertyArray "/>

</wsdl:message>

<wsdl:message name="getPropertyDescriptionRequest">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="handle"

type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getPropertyDescriptionResponse">

<wsdl:part name="description" type="soapenc:string"/>

</wsdl:message>

<wsdl:portType name="WSRPPortType">

<wsdl:operation name="getDescription" parameterOrder="consumerContext handle userRoles">

<wsdl:input
message="intf:getDescriptionRequest" name="getDescriptionRequest"/>

<wsdl:output message="intf:getDescriptionResponse" name="getDescriptionResponse"/>

</wsdl:operation>

<wsdl:operation name="registerConsumer" parameterOrder="registrationData">

<wsdl:input
message="intf:registerConsumerRequest" name="registerConsumerRequest"/>

<wsdl:output message="intf:registerConsumerResponse" name="registerConsumerResponse"/>

</wsdl:operation>

<wsdl:operation name="modifyConsumer" parameterOrder="consumerContext registrationData">

<wsdl:input
message="intf:modifyConsumerRequest" name="modifyConsumerRequest"/>

<wsdl:output message="intf:modifyConsumerResponse" name="modifyConsumerResponse"/>

</wsdl:operation>

<wsdl:operation name="cloneEntity" parameterOrder="consumerContext handle entityProperties">

<wsdl:input
message="intf:cloneEntityRequest" name="cloneEntityRequest"/>

<wsdl:output message="intf:cloneEntityResponse" name="cloneEntityResponse"/>

</wsdl:operation>

<wsdl:operation name="modifyEntity" parameterOrder="consumerContext entityContext">

<wsdl:input
message="intf:modifyEntityRequest" name="modifyEntityRequest"/>

<wsdl:output message="intf:modifyEntityResponse" name="modifyEntityResponse"/>

</wsdl:operation>

<wsdl:operation name="releaseHandles" parameterOrder="handles">

<wsdl:input
message="intf:releaseHandlesRequest" name="releaseHandlesRequest"/>

<wsdl:output message="intf:releaseHandlesResponse" name="releaseHandlesResponse"/>

</wsdl:operation>

<wsdl:operation name="getMarkup" parameterOrder="consumerContext entityContext markupContext">

<wsdl:input
message="intf:getMarkupRequest" name="getMarkupRequest"/>

<wsdl:output message="intf:getMarkupResponse" name="getMarkupResponse"/>

</wsdl:operation>

<wsdl:operation name="performInteraction" parameterOrder=" consumerContext entityContext interactionContext">

<wsdl:input
message="intf:performInteractionRequest" name="performInteractionRequest"/>

<wsdl:output message="intf:performInteractionResponse" name="performInteractionResponse"/>

</wsdl:operation>

<wsdl:operation name="setProperties" parameterOrder=" consumerContext entityContext">

<wsdl:input
message="intf:setPropertiesRequest1" name="setPropertiesRequest1"/>

<wsdl:output message="intf:setPropertiesResponse1" name="setPropertiesResponse1"/>

</wsdl:operation>

<wsdl:operation name="getProperties" parameterOrder=" consumerContext entityContext names">

<wsdl:input
message="intf:getPropertiesRequest1" name="getPropertiesRequest1"/>

<wsdl:output message="intf:getPropertiesResponse1" name="getPropertiesResponse1"/>

</wsdl:operation>

<wsdl:operation name="setProperties" parameterOrder="consumerContext entityContext markupContext properties">

<wsdl:input
message="intf:setPropertiesRequest" name="setPropertiesRequest"/>

<wsdl:output message="intf:setPropertiesResponse" name="setPropertiesResponse"/>

</wsdl:operation>

<wsdl:operation name="getProperties" parameterOrder="consumerContext entityContext markupContext names">

<wsdl:input
message="intf:getPropertiesRequest" name="getPropertiesRequest"/>

<wsdl:output message="intf:getPropertiesResponse" name="getPropertiesResponse"/>

</wsdl:operation>

<wsdl:operation name="getPropertyDescription" parameterOrder="consumerContext handle">

<wsdl:input message="intf:getPropertyDescriptionRequest" name="getPropertyDescriptionRequest"/>

<wsdl:output message="intf:getPropertyDescriptionResponse" name="getPropertyDescriptionResponse"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:message name="initEnvironmentRequest">

<wsdl:part name="consumerContext"
type="tns:ConsumerContextType"/>

<wsdl:part name="groupID"
type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="initEnvironmentResponse">

 </wsdl:message>

<wsdl:portType name="WSRPEnvironmentPortType">

<wsdl:operation name="initEnvironment" parameterOrder="consumerContext groupID">

<wsdl:input message="intf:initEnvironmentRequest" name="initEnvironmentRequest"/>

<wsdl:output message="intf:initEnvironmentResponse" name="initEnvironmentResponse"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="WSRPServiceSoapBinding" type="intf:WSRPPortType">

<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="getPropertyDescription">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getPropertyDescriptionRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getPropertyDescriptionResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="performInteraction">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="performInteractionRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="performInteractionResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="performInteraction">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="performInteractionRequest1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="performInteractionResponse1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="performInteraction">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="performInteractionRequest2">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="performInteractionResponse2">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getProperties">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getPropertiesRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getPropertiesResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getProperties">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getPropertiesRequest1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getPropertiesResponse1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="setProperties">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="setPropertiesRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="setPropertiesResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="setProperties">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="setPropertiesRequest1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="setPropertiesResponse1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getMarkup">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getMarkupRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getMarkupResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getMarkup">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getMarkupRequest1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getMarkupResponse1">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getMarkup">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getMarkupRequest2">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getMarkupResponse2">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="releaseHandles">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="releaseHandlesRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="releaseHandlesResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="modifyEntity">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="modifyEntityRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="modifyEntityResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="createEntity">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="createEntityRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="createEntityResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="modifyConsumer">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="modifyConsumerRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="modifyConsumerResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="registerConsumer">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="registerConsumerRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="registerConsumerResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getServiceDescription">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getServiceDescriptionRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:input>

<wsdl:output name="getServiceDescriptionResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://schemas.oasis-open.org/wsrp" use="encoded"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="WSRPServiceService">

<wsdl:port binding="intf:WSRPServiceSoapBinding" name="WSRPService">

<wsdlsoap:address location="http://cieplytp:8080/WSRPService"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

14 References

14.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

Appendix A. Use Cases

One goal of this specification is enabling easy implementation of simple services. In addition to these simple services, which often just provide markup fragments, this specification also enables more complex services that require consumer registration, support complex user interaction and/or operate based on transient and persistent state. In this section we give an overview of the different levels of functionality enabled and explain the relevant parts of the interfaces and protocol.

14.1.1 Simple Service – View only

The simplest possible WSRP service provides a simple view, without any user interaction. An example is a schedule of flights leaving from an airport. For such a simple WSRP service, implementing a getMarkup() operation that returns a markup fragment for the current flight schedule is sufficient.

[image: image11.wmf]Portal

Portlet

Portlet

Access

Point

WSRP Producer

Entity

Figure 10: Simple Service

14.1.1.1 Interactive Service with Transient Session State

A slightly more complex service would support End-User interaction and maintain conversational state reflecting this interaction. An example is a news service that provides an overview of headlines of the different news articles and allows users to click on the headlines to navigate to the individual articles and on a back-link. Such a service may want to track conversational state within a Session to always display the correct view for a particular user and return an ID for an internally managed session in the response from the getMarkup() operation. The markup returned may contain action links that will trigger subsequent invocations of the performInteraction() operation.

[image: image12.wmf]Entity

Portal

Portlet

Portlet

Session

WSRP

Handle

Access

Point

Session

WSRP Producer

Client

HTTP

Session

Handle

Figure 11: Entities and their relation to Portlet Instances in a Portal

14.1.2 Interactive Service with Persistent Entity State

At about the same level of complexity of the last example, consider a service that maintains persistent state that can be associated with an individual entity. An example for such an entity is a stock quote entity where individual users can define a personal portfolio. This use case requires the concept of multiple persistent Entities. Each of these is a clone of the base level entity offered by the service where the settings have then been customized to contain the user’s personal portfolio.

[image: image13.wmf]Portal

Portlet

Portlet

State

Persistent Entity

Handle

Access

Point

WSRP Producer

Persistent Entity

State

Figure 12: WSRP Entities and their relation to Portlet Instances in a Portal

Consumers create persistent entities by invoking cloneEntity(), specifying an existing entity – either a Producer offered entity or one the consumer previously created. As a result, the Consumer obtains a unique entity handle to refer to the new entity when invoking entity specific operations at the Producer. When an entity is no longer needed, it can be discarded by calling releaseHandles(), passing the entity handle.

14.1.3 Interactive Service with both Entity and Session State

A more complex service may employ both persistent entity state as well as transient session state. While in many cases there will be one session per persistent entity, it is also possible that multiple sessions are associated with the same persistent entity. For example, if the Consumer is a portal with shared pages referencing entities that are used concurrently by multiple users with separate sessions (see Figure 13).

[image: image14.wmf]Portal

Portlet

Portlet

State

Persistent Entity

Handle

Access

Point

WSRP Producer

Session

Session

Handle

Persistent

Entity

Session

Portlet

Handle

State

Figure 13: Producer employing persistent both Entity State and Session State

A typical usage pattern for interactive Services with entity and session state is shown in Figure 14:

[image: image15.wmf]performInteraction

releaseHandles

cloneEntity

WSRP Consumer

(Portal)

WSRP Producer

(Service)

Adds

Portlet

Removes

Portlet

Clicks

Action

getMarkup

I

S

S

User

Views

Portlet

Create new Entity

Generate Markup,

(opt: create Session)

Action Handling

(opt: create Session)

I

I

A

I

A

I

I

A

I

I

S

I

Destroy instance

I

A

S

I

A

Figure 14: Interaction Diagram for an interactive Service with Entity State

· When a portal user adds a portlet to a page in the portal, the portal makes a call to the cloneEntity operation of the WSRP service specifying the producer offered entity corresponding to the portlet to obtain a new entity handle I that it stores under a newly created portlet instance on the portal side.

· When the user views the page containing the new portlet instance, the portal determines the entity handle and uses it to make a call to the getMarkup operation of the WSRP service to obtain the markup fragment to be displayed. The returned markup may contain action links A and may be accompanied with a session handle S if the WSRP service wants to maintain session state. The portal must rewrite any action links to make them work in the final markup sent to the browser and must store any returned session handle to provide it with each subsequent request.

· When the user clicks on a link in the final markup resulting in a request being sent from the browser to the portal, the portal intercepts the request and makes a call to the performInteraction operation of the WSRP service, passing the session handle to allow the WSRP service to look up associated session state. Upon a performInteraction call, the WSRP service typically changes state. After the performInteraction operation returns, the portal refreshes the page which results in another call to the getMarkup operation which starts over the user-interaction cycle.

When a portal user does not need a portlet instance anymore and discards it from a portal page, the portal determines the handle of the entity to which it is attached and makes a call to the releaseHandles operation of the WSRP service. The WSRP service must discard the entity.

14.1.4 WSRP Service with Registration / Deregistration

WSRP providers that do not just support access by anonymous consumers need to implement appropriate operations for registration and deregistration of consumers. To register with such a service, the consumer calls the registerConsumer operation. To deregister, the consumer calls the releaseHandles operation.

14.2 WSRP Life Cycles

WSRP services may maintain state in the scope of consumer registrations, entities, and sessions which have nested life cycles. A consumer can create a consumer registration by calling the registerConsumer operation of the WSRP service. In the scope of a consumer registration, a consumer can create many entities by calling the cloneEntity operation. In the scope of an entity, the WSRP service may create sessions, typically per user, that expire after a certain duration of inactivity.

[image: image16.wmf]registerConsumer

releaseHandles

cloneEntity

releaseHandles

. . .

Session Creation

Session Expiry

. . .

Consumer Registration Scope

Entity Scope

Session Scope

Figure 15: WSRP Life Cycles

When a consumer does not need an entity anymore, it calls the releaseHandles operation, passing the entity handle, to allow the WSRP service to release all associated resources and all sessions within the entity scope. When a consumer does not need the WSRP service anymore, it calls the releaseHandles operation, passing the consumer registration handle.

Appendix B. Glossary

Appendix C. Acknowledgments

The following individuals were members of the WSIA committee during the development of this specification:

· Sasha Aickin, Plumtree

· Patel Ashish, France Telecom

· Stefan Beck, SAP

· Dan Bongard, Kinzan

· Kevin Brinkley, Intel

· Jeffery C. Broberg, Silverstream

· Rex Brooks, Individual

· Tyson Chihaya, Netegrity

· Carlos Chue, Kinzan

· Terry Cline, Peregrine Systems

· William Cox, BEA

· Suresh Damodaran, Sterling Commerce

· Alan Davies, SeeBeyond

· Jacques Durand, Fujitsu

· John Evdemon, Vitria

· Sean Fitts, CrossWeave

· Greg Giles, Cisco

· Dan Gisolfi, IBM

· Timothy N. Jones, CrossWeave

· Aditi Karandikar, France Telecom

· John Kelley, Individual

· John Kneiling, Individual

· Ravi Konuru, IBM

· Alan Kropp, Epicentric

· Michael Mahan, Nokia

· Monica Martin, Drake Certivo

· Dale Moberg, Cyclone Commerce

· Dean Moses, Epicentric

· Peter Quintas, Divine

· T.V. Raman, IBM

· Shankar Ramaswamy, IBM

· Eilon Reshef, WebCollage

· Graeme Riddell, Bowstreet

· Don Robertson, Documentum

· Royston Sellman, HP

· Sim Simeonov, Macromedia

· Davanum Srinivas, Computer Associates

· Sandra Swearingen, DoD

· Rich Thompson, IBM

· Srinivas Vadhri, Commerce One

· Vinod Viswanathan, Pointgain Corp.

· Charles Wiecha, IBM

· Chad Williams, Epicentric

· Kirk Wilson, Computer Associates

· Garland Wong, Kinzan

The following individuals were members of the WSRP committee during the development of this specification:

· Alejandro Abdelnur, Sun

· Sasha Aickin, Plumtree

· Jeff Broberg, Silverstream

· Mark Cassidy, Netegrity

· Dave Clegg, Sybase

· Brian Dirking, Stellent

· William Cox, BEA

· Ron Daniel Jr., Interwoven

· Angel Luis Diaz, IBM

· Gino Filicetti, Bowstreet

· Adrian Fletcher, BEA

· Michael Freedman, Oracle

· Tim Granshaw, SAP Portals

· Andreas Kuehne

· Mike Hillerman, Peoplesoft

· Aditi Karandika, France Telecom

· Alan Kropp, Epicentric

· Jon Klein, Reed-Elsivier

· Carsten Leue, IBM

· Susan Levine, Peoplesoft

· Khurram Mahmood, Peoplesoft

· Lothar Merk, IBM

· Madoka Mitsuoka, Fujitsu

· Takao Mohri, Fujitsu

· Adam Nolen, Reed-Elsivier

· Petr Palas, Moravia IT

· Gregory Pavlik, HP

· Peter J Quintas, Divine

· Nigel Ratcliffe, Factiva

· Eilon Reshef, WebCollage

· Mark Rosenberg, Tibco

· Thomas Schaeck, IBM

· Robert Serr, Divine

· Davanum Srinivas, Computer Associates

· David Taieb, IBM

· Yossi Tamari, SAP Portals

· Rich Thompson, IBM

· Stephen A. White, SeeBeyond

· Charles Wiecha, IBM

Appendix D. Revision History

	Rev
	Date
	By Whom
	What

	0.1
	6/03/2002
	Rich Thompson
	Initial Draft

	0.1.1
	6/04/2002
	Carsten Leue
	Worked in some additional WSRP requirements

	
	6/05/2002
	Rich Thompson
	Added exemplary section to overview

	
	6/06/2002
	Carsten Leue
	Added request data to getFragment and invokeAction

	0.1.2
	6/06/2002
	Rich Thompson
	Added cloneEntities() & descriptive text

	0.2
	7/09/2002
	Alan Kropp,

Rich Thompson
	Modified as per face-2-face discussions

	0.21
	7/10/2002
	Rich Thompson
	Refactored data objects

	0.22
	7/19/2002
	Rich Thompson
	Reflect discussion on email list

	0.23
	7/25/2002
	Carsten Leue

Rich Thompson
	Added WSDL and included some explanations

Reformat style

Reflect discussion

	0.3
	8/01/2002
	Rich Thompson
	Migrate to OASIS spec template

Reflect email list and concall discussions

	0.31
	8/08/2002
	Rich Thompson

Alan Kropp

Chris Braun
	Reflect discussion

Fill out more of spec template

Markup section

Environment initialization section

	0.32
	8/10/2002
	Rich Thompson

Carsten Leue

Chris Braun
	Incorporated misc. comments/discussion

Introduction section and explanation of sections

Updated Markup section

	0.4
	8/16/2002
	Rich Thompson

Thomas Schaeck

Alan Kropp
	Rewrote Markup section, reflect discussion

WSRP Use cases

Cross references to requirements

	
	
	
	

	
	
	
	

Appendix E. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

� � HYPERLINK "http://java.sun.com/j2ee/" ��http://java.sun.com/j2ee/�

� � HYPERLINK "http://www.microsoft.com/net/" ��http://www.microsoft.com/net/�

� � HYPERLINK "http://www.w3.org/TR/wsdl" ��http://www.w3.org/TR/wsdl�

� � HYPERLINK "http://www.w3.org/TR/SOAP/" ��http://www.w3.org/TR/SOAP/�

� � HYPERLINK "http://www.uddi.org/specification.html" ��http://www.uddi.org/specification.html�

� � HYPERLINK "http://www.uddi.org/specification.html" ��http://www.uddi.org/specification.html�

� � HYPERLINK "http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html" ��http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html�

� � HYPERLINK "http://lcweb.loc.gov/standards/iso639-2/langcodes.html" ��http://lcweb.loc.gov/standards/iso639-2/langcodes.html�

�May return null

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Only one method is required here (the consumer just registers once).

�Only one method is required here (the consumer just registers once).

Page 28 of 77

_1089578315.ppt

Weather

Web Service

Employee

Portal

Weather

Portlet

HR

Portlet

HR

Web Service

_1089657925.ppt

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Users

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Web

Clients

Users

Portals

WSRP

Services

Portals

Portals

Portals

Portals

Clients

Clients

Portals

Portals

Registry

Portals

Portals

Portals

Publish

Find

WSRP

Services

Portals

Portals

Bind

WSRP

Services

_1089739946.ppt

Portal

Portlet

Portlet

Access

Point

WSRP Producer

Entity

_1089740242.ppt

Portal

Portlet

Portlet

State

Persistent Entity

Handle

Access

Point

WSRP Producer

Persistent Entity

State

_1089740344.ppt

Portal

Portlet

Portlet

State

Persistent Entity

Handle

Access

Point

WSRP Producer

Session

Session

Handle

Persistent

Entity

Session

Portlet

Handle

State

_1089739794.ppt

Entity

Portal

Portlet

Portlet

Session

WSRP

Handle

Access

Point

Session

WSRP Producer

Client

HTTP

Session

Handle

_1089578342.ppt

Weather

Web Service

Employee

Portal

Portlet

Proxy

Portlet

Proxy

HR

Web Service

Weather

Portlet

HR

Portlet

_1089577615.ppt

Aggregated

HTML, WML, VoiceXML,

... over HTTP

Mark-Up Fragments

Transferred via SOAP

Portal

WSRP Service

WSRP Service

WSRP Service

WSRP Consumer

WSRP Producer

_1089577653.ppt

Aggregation

User‘s Client

Portlet API

Portlet API

Portlet

Proxy

Portlet

Proxy

WSRP Service 1

(includes data and

presentation)

WSRP Service 2

(includes data and

presentation)

SOAP

SOAP

WSRP

API

WSRP

API

_1089577826.ppt

performInteraction

releaseHandles

cloneEntity

WSRP Consumer

(Portal)

WSRP Producer

(Service)

Adds

Portlet

Removes

Portlet

Clicks

Action

getMarkup

I

S

S

User

Views

Portlet

Create new Entity

Generate Markup,

(opt: create Session)

Action Handling

(opt: create Session)

I

I

A

I

A

I

I

A

I

I

S

I

Destroy instance

I

A

S

I

A

_1089575085.ppt

registerConsumer

releaseHandles

cloneEntity

releaseHandles

. . .

Session Creation

Session Expiry

. . .

Consumer Registration Scope

Entity Scope

Session Scope

_1089577587.ppt

Server

Portal

Portals

Huge number

of users

Portals as Intermediaries,

Caching offloads requests

from WSRP provider

Publishing Portal

WSRP

Wrapper

Portals

Portals

Portal

Portlet

Portlet

Portlet

WSRP Consumer

WSRP Producer

_1084738326.ppt

Data-oriented Web Service

100

101

96

100

100

101

96

100

100

101

96

100

Presentation

Layer

Presentation-oriented Web Service

100

101

96

100

100

101

96

100

100

101

96

100

Presentation

Layer

@ Beschreibung.doc - Microsoft Word

e Edt Vew Insert FomafyToos Toble Window Heb
DEEHa28 GRY {B2RY -« [@HD w%
44 Normal +Verde « Verdana -0 - Bz uE]

Final showngMarkp - show~ | By By &y - B> - i@~ B. @ & W

O SRR ERR SRR AR NRRRS SRR AR SRR

“ intuitives Bearbeiten Threr Datenbestande mit Drag & Drop
« machtige Suchfunktionen

« graphische Nachfahren- und Ahnentafeln
Bildern

« Im- und Export des GEDCOM Standards,
diverse Text- und Graphikformate

« Erstellung eigener, graphisch
ansprechender HTML Seiten zur
Prasentation im Internet

« Zusammenstellung Threr genealogischen Date
Berichten
Mit Stammbaum konnen Sie Thre Daten nach
unterschiedlichen Kriterien
zusammenstellen und sog. Ansichten
betrachten: Listenansicht, graphische Ansicht, Reportansicht, staistische Ansicl _ |
Karteikartenansicht.

In der unlizensierten Version lassen sich die Daten jedoch nicht ausdrucken, die
maximale Personenzahl ist auf 100 beschrankt.

Draw~ [y | Autoshapes- \ N\ 1O B 4l
Page 1 Sec 1 1/1 At 17 ln1 Col1

1B 1 year Chapmen Adv Grp €2001

T

o7

T ATS 0D e

