11.3 Support for Multi-Section Rendering

The purpose of this extension is to allow portlets to render markup to multiple sections of the wrapping document as well as headers. The most common use case is to render the document’s headers and head (e.g. HTML <head> tag) separate from the document’s body (e.g. HTML <body> tag).
A producer indicates support for this extension in the ServiceDescription's response’s extensionDescriptions field and on a per-portlet basis as indicated in the PortletDescription's extensions field with a type of wsrp-extra:MarkupSectionDescriptions. Each portlet which supports multiple sections MUST include the sections it supports.
When this extension is supported by the consumer and producer, the consumer SHOULD invoke getMarkup with each section specified as defined in the portlet’s description. The section names are indicated in the extensions field of markupParams, with a type of wsrp-extra:MarkupSectionParams. The response’s markupContext MUST contain the markup for all the specified sections. The producer is free to set each section’s caching independently.
Notes on caching:

The producer may use different caching for each section including differing expirations and unique validateTags. This may allow the consumer to limit the number of calls needed to render certain sections. Additionally the optional cacheability attribute (default: “full”) may be specified and has the same values and meaning as wsrp-resourceCacheability as defined in Section 9.2.1.1.3.6. It is up to the consumer to determine when a section’s cache is no longer valid and should be requested from the producer.
Furthermore, the consumer MAY specify only those sections it currently needs when invoking getMarkup.
For example, if the head section has a longer cache expiration, the consumer may call getMarkup request for the body section without the head section specified.

Also, the producer if free to return useCache of true for any markup sections it wishes not to render.
The following well known section names are defined for common usage:
· wsrp-extra:head – The document’s head (e.g. HTML <head> tag)

· wsrp-extra:body – The document’s body (e.g. HTML <body> tag)

Special Note on wsrp-extra:head and HTML (and similar markup):

During the head render phase, the HTML <title> and <base> tags SHOULD NOT be rendered by the portlet. The contents of the <meta>, <style>, <script> tags SHOULD be appropriately namespaced by the portlet. The <script> (when using the src attribute) and <link> tags SHOULD refer to a resource URL so the referenced content MAY be rewritten.

11.3.1 ServiceDescription Extension

In the ServiceDescription response, the producer indicates support for the multi-section rendering extension by including a ExtensionDescription with a label of “MarkupSectionDescriptions”.

11.3.2 PortletDescription Extension

For portlets which support multi-phase render, the producer indicates this in the returned PortletDescription by including an extension of type wsrp-extra: MarkupSectionDescriptions with an element for each section supported. If this extension is missing, the portlet MUST be assumed by the consumer to not support multi-section rendering.

11.3.3 getMarkup Operation Extension

If the producer has indicated support for multi-section rendering in the ServiceDescription and the PortletDescription for the portlet indicates that the portlet supports multi-section rendering, the consumer SHOULD invoke the getMarkup operation for all the sections specified. For each call the MarkupParams’ extension field MUST contain an element of type wsrp-extra:MarkupSectionParams with the sections’ names, and optional validate tags.
The response’s markupContext MUST contain a markup section for each section specified in the markup params. The markupContext MUST be formatted as follows:
· One section of markup in the spec defined markupContext field (main section)
· The MainMarkupSectionDescription extension MUST be used to name the main markup context

· The producer MUST choose the main section as follows:

· If the sections specified in the request contain a wsrp-extra:body section, it MUST be the main section

· If there is only one section specified it MUST be the main section

· Otherwise, the main section SHOULD be the first section specified

· Additional sections (if present) MUST be in the MarkupSections extension
If the consumer does not supply the wsrp-extra:MarkupSectionParams extension in the getMarkup call, the portlet on the producer must assume that it is not being rendered in sections and take appropriate actions to render everything necessary in the single markup context of the response.

Schema additions:

 <attributeGroup name="markupSectionAttrs">

 <attribute name=”sectionName” type=”xsd:string” use=”required”/>

 <attribute name=”cacheability” type=”xsd:string” default=”full”/>

 </attributeGroup>
 <complexType name="MainMarkupSectionDescription">

 <attributeGroup ref="markupSectionAttrs"/>

 </complexType>

 <element name="mainMarkupSectionDescription" type="MainMarkupSectionDescription"/>

 <complexType name="MarkupSectionParams">

 <sequence>

 <element name=”section” minOccurs=”1”>
 <complexType>

 <sequence>

 <element name=”name” type=”xsd:string”/>

 <element name=”validateTag” type=”xsd:string” minOccurs=”0”/>

 </sequence>

 </complexType>

 </element>

 </sequence>

 </complexType>

 <element name="markupSectionParams" type="MarkupSectionParams"/>

 <complexType name=”MarkupSections”>
 <sequence>

 <element name=”sectionMarkupContext>

 <complexType>

 <complexContent>

 <extension base=”types:MarkupContext”/>

 </complexContent>

 </complexType>

 <attributeGroup ref="markupSectionAttrs"/>

use=”required” />

 </element>

 </sequence>

 </complexType>

 <element name="markupSections" type="MarkupSections"/>

 <complexType name=”MarkupSectionDescriptions”>

 <sequence>

 <element name=”section” minOccurs=”1” maxOccurs=”unbounded”>

 <sequence>

 <element name=”name” type=”xsd:string” />

 <element name=”description” type=”types:LocalizedString” minOccurs=”0” />

 </sequence>

 </element>

 </sequence>

 </complextType>

 <element name=”markupSectionDescriptions” type=”MarkupSectionDescriptions”/>

