11.3 Support for Multi-Section Rendering

The purpose of this extension is to allow portlets to render markup to multiple sections of the wrapping document as well as headers. The most common use case is to render the document’s headers and head (e.g. HTML <head> tag) separate from the document’s body (e.g. HTML <body> tag).
11.3.1 Service Description
11.3.1.1 Request
A producer SHOULD indicates support for this extension in the ServiceDescription's response’s extensionDescriptions field and on a per-portlet basis as indicated in the PortletDescription's extensions field with a type of wsrp-extra:MarkupSectionDescriptions. Each portlet which supports multiple sections MUST describe the sections it requires.
11.3.1.2 Response

When this extension is supported by the consumer and producer, the consumer MUST invoke getMarkup with each section specified as defined in the portlet’s description. In order to use multi-part rendering the consumer MUST support all the sections specified and place them in the wrapping page. If the consumer does not support any section the producer specified it MUST NOT use multi-section rendering.
11.3.1.3 Well Known Sections

The following well known section names are defined for common usage:

· wsrp-extra:body – The document’s body (e.g. HTML <body> tag)

· This section MUST be returned in the getMarkupResponse’s MarkupContext

· wsrp-extra:head – The document’s head (e.g. HTML <head> tag)

· This section MUST be returned as an extension to getMarkupResponse MarkupContext in a markupSections element
· When using HTML

· The markup returned SHOULD NOT contain any <base> or <title> tags

· The contents of the <meta>, <style>, <script> tags SHOULD be appropriately namespaced by the portlet.

· The <script> tag’s src attribute SHOULD refer to a resource URL to allow for rewriting.
· The <link> tag’s href attribute SHOULD refer to a resource URL to allow for rewriting.

11.3.2 Get Markup
11.3.2.1 Request
The section names are indicated in the extensions field of markupParams, with a type of wsrp-extra:MarkupSectionParams. The consumer MAY request all the sections specified in the portlet’s description or MAY request only those sections it currently needs. For example, if the head section is shared, the consumer may call getMarkup for only the body.

If the consumer does not supply the wsrp-extra:MarkupSectionParams extension in the getMarkup call, the portlet on the producer SHOULD assume that it is not being rendered in sections and take appropriate actions to render everything necessary in the single markup context of the response.

11.3.2.2 Response

The producer getMarkupResponse section markupContext MUST contain the markup for all the specified sections. However, the producer MAY set useCachedItem to true for any section. If the consumer requested wsrp-extra:body its markup MUST be the returned in the markupContext. If the consumer did not request wsrp-extra:body the markupContext SHOULD not contain any markup (in itemString or itemBinay) and set useCachedItem to true.
11.3.2.3 Caching

The producer may use different caching for each section including differing expirations and unique validateTags. This may allow the consumer to limit the number of calls needed to render sections. Additionally the optional cacheability attribute (default: “page”) may be specified and has the same values and meaning as wsrp-resourceCacheability as defined in Section 9.2.1.1.3.6.
11.3.2.4 Section Sharing

If multiple portlets on a page have the same markup for a section they may share this section.

Example:

Portlet A and Portlet B both use Dojo and need a <script> tag referring to the Dojo javascript. However, Dojo should be loaded at most once (only one <script> tag referring to it)

To share a section’s markup the producer SHOULD specify a sectionID in the section’s description. When the consumer has portlets on a page which specify a section with the same name and sectionID it SHOULD only call getMarkup once for that portlet. The consumer is free to choose any one portlet it wishes to render the section, the producer SHOULD not assume any particular portlet will be chosen.

11.3.1 Schema
<!-- Sent in getMarkup to describe the desired sections -->
<complexType name="MarkupSectionParams">

 <sequence>

 <element name=”section” minOccurs=”1”>
 <complexType>

 <sequence>

 <element name=”name” type=”xsd:string”/>

 <element name=”validateTag” type=”xsd:string” minOccurs=”0”/>

 </sequence>

 </complexType>

 </element>

 </sequence>

 </complexType>

 <element name="markupSectionParams" type="MarkupSectionParams"/>

 <!-- Sent in getMarkupResponse to return a section’s markup -->
 <complexType name=”MarkupSections”>
 <sequence>

 <element name=”sectionMimeResponse>

 <complexType>

 <complexContent>

 <extension base=”types:MimeResponse”/>

 </complexContent>

 </complexType>

 <attribute name=”sectionName” type=”xsd:string” use=”required”/>

 <attribute name=”cacheability” type=”xsd:string” default=”page”/>

 </element>

 </sequence>

 </complexType>

 <element name="markupSections" type="MarkupSections"/>

 <!-- Sent in serviceDescriptionResponse to describe the sections -->
 <complexType name=”MarkupSectionDescriptions”>

 <sequence>

 <element name=”section” minOccurs=”1” maxOccurs=”unbounded”>

 <sequence>

 <element name=”name” type=”xsd:string” />

 <element name=”description” type=”types:LocalizedString” minOccurs=”0” />

 <element name=”sectionID” type=”xsd:qname” minOccurs=”0” />

 </sequence>

 </element>

 </sequence>

 </complextType>

 <element name=”markupSectionDescriptions” type=”MarkupSectionDescriptions”/>

