1 Publish/Find/Bind

[working title]

A Producer MAY facilitate the discovery and binding of the portlets it hosts by a potential Consumer, using common discovery mechanisms such as UDDI and ebXML. [Req?].

A Produecer MAY facilitate the discovery of its WSRP WSDL using common discovery mechanisms such as UDDI and ebXML.

This is an abstract model for publishing information about Producers and Portlets in general. Additional documentation in the form of technical notes will offer concrete guidelines for implementing the model in UDDI and ebXML (others?).

1.1 Producer publishing model

1.1.1 Details to be published

· Name (human friendly, NLS enabled)

· Description (optional)

· URI to Producer-specific WSDL.

1.1.2 Categorization

· “wsrp:producer”

· Producer-specific categories

· Other categories

1.1.3 Keywords

1.2 Portlet publishing model

1.2.1 Details to be published

· Producer offered handle

· Name (human friendly – optional, though strongly suggested)

· Description (optional)

· “Link” to Producer

1.2.2 Categorization

· “wsrp:portlet”

· Producer-specific categories

· Other categories

1.2.3 Keywords

1.3 Consumer discovery

1.3.1 Search for services from a specific Producer

Typical intranet scenario

Consumer needs only the Producer information, and uses getServiceDescription (after possibly registering) to get info for all portlets

1.3.2 Search for services across several Producers

1.3.2.1 Name of service

1.3.2.2 Category(ies) of service

1.3.2.3 Service keywords

1.4 Bindings to registry implementations

1.4.1 UDDI 2.0

· “wsrp:producer” and “wsrp:portlet” tModel specs in wsrp namespace, derive from “wsdlSpec”. (Per IBM proposal).

·
Producer published as both a businessEntity and a businessService.

· Portlets published as businessService entities linked to the Producer businessEntity.

· BindingTemplate associated with a Producer will, at a minimum, contain the endpoint(s) for the required interfaces, ServiceDescription and Markup. As there will always be a URI to the Producer WSDL, additional access information can be found there for other interfaces, as well as for alternate bindings.
1.4.2 UDDI 3.0

Same as 2.0, except ID’s can be human-readable instead of string UID’s.

Future WSRP version will address other 3.0 capabilities (i.e. permissions, notification).

1.4.3 ebXML Registry
· The WSDL for “wsrp:producer” and “wsrp:portlet” must defined within ebXML Registry in one of two ways:

1. As an ExtrinsicObject of objectType WSDL and stored natively within the repository of the registry. In this case the WSDL lifecycle and access control is management by the registry.
2. As an ExternalLink of objectType WSDL and stored anywhere on the web and accessible via its URL. In this case the WSDL lifecycle and access control is not management by the registry.

· A Service, ServiceBinding and Specification link object must be defined for the for “wsrp:producer” and “wsrp:portlet” as defined by the “Registring Web Services in an ebXML Registry” technical note.

· An Organization must be defined for the “wsrp:producer”

· An XSLT style sheet may defined as Catalog Definition file for converting selected content from submitted WSDL to metadata based as defined by ebXML Registry Information Model. This allows for content-based discovery as defined later.

· A set of parameterized queries may be defined that are custom tailored to the use cases identified for discovery of “wsrp:producer” and “wsrp:portlet”. For example one can define queries such as follows:

1. Find all WSDL that import a certain file or use a certain name space or use a certain portType etc.

2. Find all WSDL that match a certain version for the service

3. Find all services that export an SMTP binding

4. Find all services whose WSDL includes an annotation with certain keywords

· A content validation service may be defined that can be invoked to validate all WSRP services published to the registry in a content specific manner. The validation service would decide whether to accept or reject the publish request based upon business rules.

· A set of Subscriptions may be defined that can be used to send Content specific alerts or Notifications to subscribers whenever published WSRP services experience an interesting change. For example subscribers may be notified when a service is published, approved, modified, versioned, deprecated or deleted. Subscribers may be a web service agent or a human.
· A set of arbitrary associations may be defined among the WSDL for WSRP services and with other related objects in the registry.

· WSRP may define arbitrary multi-level, hierarchical classification schemes (taxonomies) that can then be used to classify WSRP services. What are some use cases?
· A set of custom Role Based Access Control (RBAC) Policies may be defined to define who can do what to the published WSRP content based upon their identity, Role and Group affiliations. A set of canonical Roles and Groups can be defined by WSRP TC and may be extended by deployment sites.

�We should make this mandatory, because the name is what is used by all browsing engines. Without a mandatory name it is likely that portlet entities will not be considered by many registry users.

�You mean "link to the producer entry in this very registry"?

�As discussed at the F2F we should move 1.4 into three additional documents, each describing the concrete registry binding.

�Are these the needed “canonical” tModels that represent the normative WSDL portType and binding definitions for WSRP?

�I wonder how tools that conform to the WSDL Technical Note for UDDI can discover WSRP-based Web service metadata (including the WSDL document) if the WSRP TN for UDDI uses a non-conformant approach.�Is there really a need to model WSRP portlets differently than other Web services?

�UDDI 2.0 and 3.0 should be discussed together. In fact, UUID-based V2 keys can be programmatically derived from domain-based V3 keys.

