Introduction

This document discusses the major and minor issues raised during the last few weeks in the WSIA-WSRP joint interfaces subcommittee.

Terminology

During the discussion of the lifecycle interface, the WSRP committee introduced the concept of a “Producer” as an aggregator of services. This contrasts with the point of view of WSIA in which a Producer is the service. In this case, WSIA used the term producer for both terms, but the WSRP added the concept that one SOAP endpoint can server different thingies. The question is – what is the name for the “thingy”.

· Producer: a container of services. Example: Acme services. It is also the endpoint of the SOAP service. Example: http://acme.com/services
· Thingy: One of the services a Producer exposes. Example: Acme Producer exposes a stock portfolio thingy and a weather thingy.

A common name suggested for “thingy” was Producer Service, or just plain “Service”, and this is what this document will use.

Another alternative is to use the word “entity type”.

Major Issue: Conversation scope

Probably the biggest discussion was the lifecycle discussion. In this discussion, the question was – 

1. If the Service is stateful, then a conversation between a consumer and the Producer cannot be stateless.

2. Because SOAP is stateless, the Producer must receive something that identifies the conversation. This is similar to a cookie or URL parameter that a browser receives from a web application and sends back to it to identify the user (anonymously).

3. That something, in Web-app terminology, is usually called a session.

4. In the WSIA/WSRP world, the consumer would create such a session between itself and the user to identify a conversation between it and the user.

5. The question is – to what is the conversation tied to on the other end, the Producer/service’s end? What is its scope?

Two alternatives were proposed:

Conversation is in the Session Scope

In this alternative, the conversation is in the session scope, i.e is tied to the Producer. But this is not enough. To enable the different Producer services to differentiate their specific runtime states, a reference to an “entity” (or multiple entities) is also created. The entity represents the Producer service on the page, but is common to all users. 

See appendix for a Use case of such a conversation.

Conversation is in the Entity Session Scope

In this alternative, there is only one reference – a reference to a conversation that is tied to the runtime entity on the page
. The runtime entity is the manifestation of a Producer service on a particular user’s page. But this is not enough. To enable services from the same Producer to share data, a “shared session” must also be created.

See appendix for a use case of such a conversation.

Medium Issue: Implicit vs. explicit Session/Object-reference Creation

In the above descriptions, the Consumer created the handles by an explicit operation to the Producer. In the Web application world, sessions are created differently – implicitly, on the assumption that a lot of pages are stateful, creation of sessions are expensive, and so should be created only when needed.

There seems to be a growing consensus that implicit session creation is a must. The question is whether we need to support explicit session creation.

Medium Issue: Who creates those references?

In the above descriptions, the Producer always generated the handles and returned them to the Consumer, to be passed back to the Producer on subsequent calls.

But this is not necessary. The Consumer could create those handles and pass them to the Producer. This would obviate the need for the Consumer to manage and store those references, as it could sometimes auto-generate them from information it already has.

A mixed-approach has also been suggested where (in the first alternative), the session reference is created by the Producer (as it is the Producer’s session), but the entity reference is created by the Consumer (as it is the Consumer which “knows” which entities there are on the page).

Technical Issue: Batching operations vs. simple operations

In the above descriptions, each line in the use case is a SOAP message from the Consumer to the Producer. This is the concept of simple operations.

An alternative would be to provide an API in which each operation can batch several together. For example, an operation that would set properties on several Producer services, performs actions, and in the end returns the markup.

Appendix: Use Case for Conversation Scope alternatives

The following will try to describe a common use case, in which there exists a Consumer page Cp, which contains:

a. Services A1 and A2 coming from Producer A, and

b. Service B1 coming from Producer B.

Conversation in Session Scope
Initialization

2. In an unspecified time (on demand?), the Consumer requests Producer A to create two Entities, for services A1 and A2, referenced by the handles EntityA1 and EntityA2. These Entity references will be used for all users seeing the service in Consumer page Cp.

a. If the Producer’s reference holds for “eternity”, this is a Persistent entity; 

b. Otherwise it is a Transient entity.
3. Same for Producer B – EntityB1 representing B1.

First page

1. User navigates to Consumer page Cp (Consumer servlet receives a request).

2. Consumer creates an “HTTP session” for the user (which has nothing to do with WSIA/WSRP).

3. Consumer requests Producer A to create a “WS session”, referenced by the handle SessionA.

4. Consumer requests Producer B to create a “WS session”, referenced by the handle SessionB.

5. Consumer stores the above “WS sessions” references in its “HTTP session”.

6. Consumer requests fragment from Producer A, passing it SessionA and EntityA1.

7. Consumer requests fragment from Producer A, passing it SessionA and EntityA2.

8. Consumer requests fragment from Producer A, passing it SessionB and EntityB1.

9. Consumer combines fragments into its own markup and returns this to be displayed to the user.

Second page

1. User clicks on a link in service A1, which eventually returns to Consumer.

2. Consumer reads “WS session” and entity references from its “HTTP session”.

3. Consumer sends a “performAction” to Producer A, passing it SessionA and EntityA1.

4. Consumer requests fragment from Producer A, passing it SessionA and EntityA1.

5. Consumer requests fragment from Producer A, passing it SessionA and EntityA2.

6. Consumer requests fragment from Producer A, passing it SessionB and EntityB1.

7. Consumer combines fragments into its own markup and returns this to be displayed to the user.

How does this work?

1. Producer returns its session id as the “WS session handle”.

2. Whenever it receives this handle, it uses it to reference the session information, just like any Web application.

3. Because the session handle is common to all services in the Producer (although still per-user), then to differentiate between services, the session information must be keyed by Entity reference, so that the key <session, entity> uniquely identifies the object on the page, which is per user.

4. The Producer can use this session to share data between its services by not differentiating by Entity reference, but note that this information is still per-user.

5. If there are 100 users and 5 entities on the page belonging to one Producer, the Consumer must “manage” 105 references (100 sessions + 5 entities).

6. If there are 100 users and 5 entities on the page belonging to five Producers, the Consumer must “manage” 505 references (500 sessions + 5 entities).

Conversation in Entity Session Scope
Initialization

1. In an unspecified time (on demand?), the Consumer requests Producer A to create a Shared Session, referenced by the handle SharedSessionA.

2. Same for Producer B.

3. This will be done only if the Producer requests that a shared session be created.

First page

1. User navigates to Consumer page Cp (Consumer servlet receives a request).
2. Consumer creates an “HTTP session” for the user (which has nothing to do with WSIA/WSRP).
3. Consumer requests Producer A to create a “WS Session” for A1, referenced by the handle EntityA1.
4. Consumer requests Producer A to create a “WS Session” for A2, referenced by the handle EntityA2.
5. Consumer requests Producer B to create a “WS Session” for B1, referenced by the handle EntityB1.
6. Consumer stores the above entity references in its “HTTP session”.
7. Consumer requests fragment from Producer A, passing it EntityA1 and SharedSessionA.
8. Consumer requests fragment from Producer A, passing it EntityA2 and SharedSessionA.
9. Consumer requests fragment from Producer A, passing it EntityB1 and SharedSessionB.
10. Consumer combines fragments into its own markup and returns this to be displayed to the user.
Second Page
11. User clicks on a link in service A1, which eventually returns to Consumer.

12. Consumer reads “transient entity handles” and entity references from its “HTTP session”.

13. Consumer sends a “performAction” to Producer A, passing it EntityA1 and SharedSessionA,

14. Consumer requests fragment from Producer A, passing it EntityA1 and SharedSessionA.

15. Consumer requests fragment from Producer A, passing it EntityA2 and SharedSessionA.

16. Consumer requests fragment from Producer A, passing it EntityB1 and SharedSessionB.

17. Consumer combines fragments into its own markup and returns this to be displayed to the user.

How does this work?

1. Producer uses the “WS Session” handle to reference the session in its “memory”.

2. Producer can use the shared session to share information between services.

3. If there are 100 users and 5 entities on the page on one Producer, the Consumer must “manage” 501 references (500 WS sessions + 1 shared sessions).

� In our discussions, to confuse the issue, this session is called a “transient entity” (the “transient entity” in this alternative is per-user, while in the above alternative it isn’t!)





